mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' into model-switching
This commit is contained in:
commit
fe2a2cfc8b
@ -319,7 +319,7 @@ class InvokeAIWebServer:
|
||||
elif postprocessing_parameters['type'] == 'gfpgan':
|
||||
image = self.gfpgan.process(
|
||||
image=image,
|
||||
strength=postprocessing_parameters['gfpgan_strength'],
|
||||
strength=postprocessing_parameters['facetool_strength'],
|
||||
seed=seed,
|
||||
)
|
||||
else:
|
||||
@ -625,7 +625,7 @@ class InvokeAIWebServer:
|
||||
seed=seed,
|
||||
)
|
||||
postprocessing = True
|
||||
all_parameters['gfpgan_strength'] = gfpgan_parameters[
|
||||
all_parameters['facetool_strength'] = gfpgan_parameters[
|
||||
'strength'
|
||||
]
|
||||
|
||||
@ -723,6 +723,7 @@ class InvokeAIWebServer:
|
||||
'height',
|
||||
'extra',
|
||||
'seamless',
|
||||
'hires_fix',
|
||||
]
|
||||
|
||||
rfc_dict = {}
|
||||
@ -735,12 +736,12 @@ class InvokeAIWebServer:
|
||||
postprocessing = []
|
||||
|
||||
# 'postprocessing' is either null or an
|
||||
if 'gfpgan_strength' in parameters:
|
||||
if 'facetool_strength' in parameters:
|
||||
|
||||
postprocessing.append(
|
||||
{
|
||||
'type': 'gfpgan',
|
||||
'strength': float(parameters['gfpgan_strength']),
|
||||
'strength': float(parameters['facetool_strength']),
|
||||
}
|
||||
)
|
||||
|
||||
@ -837,7 +838,7 @@ class InvokeAIWebServer:
|
||||
elif parameters['type'] == 'gfpgan':
|
||||
postprocessing_metadata['type'] = 'gfpgan'
|
||||
postprocessing_metadata['strength'] = parameters[
|
||||
'gfpgan_strength'
|
||||
'facetool_strength'
|
||||
]
|
||||
else:
|
||||
raise TypeError(f"Invalid type: {parameters['type']}")
|
||||
|
@ -36,6 +36,8 @@ def parameters_to_command(params):
|
||||
switches.append(f'-A {params["sampler_name"]}')
|
||||
if "seamless" in params and params["seamless"] == True:
|
||||
switches.append(f"--seamless")
|
||||
if "hires_fix" in params and params["hires_fix"] == True:
|
||||
switches.append(f"--hires")
|
||||
if "init_img" in params and len(params["init_img"]) > 0:
|
||||
switches.append(f'-I {params["init_img"]}')
|
||||
if "init_mask" in params and len(params["init_mask"]) > 0:
|
||||
@ -46,8 +48,14 @@ def parameters_to_command(params):
|
||||
switches.append(f'-f {params["strength"]}')
|
||||
if "fit" in params and params["fit"] == True:
|
||||
switches.append(f"--fit")
|
||||
if "gfpgan_strength" in params and params["gfpgan_strength"]:
|
||||
if "facetool" in params:
|
||||
switches.append(f'-ft {params["facetool"]}')
|
||||
if "facetool_strength" in params and params["facetool_strength"]:
|
||||
switches.append(f'-G {params["facetool_strength"]}')
|
||||
elif "gfpgan_strength" in params and params["gfpgan_strength"]:
|
||||
switches.append(f'-G {params["gfpgan_strength"]}')
|
||||
if "codeformer_fidelity" in params:
|
||||
switches.append(f'-cf {params["codeformer_fidelity"]}')
|
||||
if "upscale" in params and params["upscale"]:
|
||||
switches.append(f'-U {params["upscale"][0]} {params["upscale"][1]}')
|
||||
if "variation_amount" in params and params["variation_amount"] > 0:
|
||||
|
@ -349,7 +349,7 @@ def handle_run_gfpgan_event(original_image, gfpgan_parameters):
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = gfpgan.process(
|
||||
image=image, strength=gfpgan_parameters["gfpgan_strength"], seed=seed
|
||||
image=image, strength=gfpgan_parameters["facetool_strength"], seed=seed
|
||||
)
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
@ -464,7 +464,7 @@ def parameters_to_post_processed_image_metadata(parameters, original_image_path,
|
||||
image["strength"] = parameters["upscale"][1]
|
||||
elif type == "gfpgan":
|
||||
image["type"] = "gfpgan"
|
||||
image["strength"] = parameters["gfpgan_strength"]
|
||||
image["strength"] = parameters["facetool_strength"]
|
||||
else:
|
||||
raise TypeError(f"Invalid type: {type}")
|
||||
|
||||
@ -493,6 +493,7 @@ def parameters_to_generated_image_metadata(parameters):
|
||||
"height",
|
||||
"extra",
|
||||
"seamless",
|
||||
"hires_fix",
|
||||
]
|
||||
|
||||
rfc_dict = {}
|
||||
@ -505,10 +506,10 @@ def parameters_to_generated_image_metadata(parameters):
|
||||
postprocessing = []
|
||||
|
||||
# 'postprocessing' is either null or an
|
||||
if "gfpgan_strength" in parameters:
|
||||
if "facetool_strength" in parameters:
|
||||
|
||||
postprocessing.append(
|
||||
{"type": "gfpgan", "strength": float(parameters["gfpgan_strength"])}
|
||||
{"type": "gfpgan", "strength": float(parameters["facetool_strength"])}
|
||||
)
|
||||
|
||||
if "upscale" in parameters:
|
||||
@ -751,7 +752,7 @@ def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
|
||||
image=image, strength=gfpgan_parameters["strength"], seed=seed
|
||||
)
|
||||
postprocessing = True
|
||||
all_parameters["gfpgan_strength"] = gfpgan_parameters["strength"]
|
||||
all_parameters["facetool_strength"] = gfpgan_parameters["strength"]
|
||||
|
||||
progress["currentStatus"] = "Saving image"
|
||||
socketio.emit("progressUpdate", progress)
|
||||
|
@ -154,7 +154,9 @@ Here are the invoke> command that apply to txt2img:
|
||||
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
|
||||
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
|
||||
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
|
||||
| --gfpgan_strength <float> | -G <float> | -G0 | Fix faces using the GFPGAN algorithm; argument indicates how hard the algorithm should try (0.0-1.0) |
|
||||
| --facetool_strength <float> | -G <float> | -G0 | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
|
||||
| --facetool <name> | -ft <name> | -ft gfpgan | Select face restoration algorithm to use: gfpgan, codeformer |
|
||||
| --codeformer_fidelity | -cf <float> | 0.75 | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
|
||||
| --save_original | -save_orig| False | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
|
||||
| --variation <float> |-v<float>| 0.0 | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with -S<seed> and -n<int> to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
|
||||
| --with_variations <pattern> | | None | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
|
@ -69,7 +69,7 @@ If you do not explicitly specify an upscaling_strength, it will default to 0.75.
|
||||
|
||||
### Face Restoration
|
||||
|
||||
`-G : <gfpgan_strength>`
|
||||
`-G : <facetool_strength>`
|
||||
|
||||
This prompt argument controls the strength of the face restoration that is being
|
||||
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
|
||||
|
483
frontend/dist/assets/index.989a0ca2.js
vendored
483
frontend/dist/assets/index.989a0ca2.js
vendored
File diff suppressed because one or more lines are too long
483
frontend/dist/assets/index.ea68b5f5.js
vendored
Normal file
483
frontend/dist/assets/index.ea68b5f5.js
vendored
Normal file
File diff suppressed because one or more lines are too long
2
frontend/dist/index.html
vendored
2
frontend/dist/index.html
vendored
@ -6,7 +6,7 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
|
||||
<script type="module" crossorigin src="/assets/index.989a0ca2.js"></script>
|
||||
<script type="module" crossorigin src="/assets/index.ea68b5f5.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index.58175ea1.css">
|
||||
</head>
|
||||
|
||||
|
@ -50,6 +50,7 @@ export const PARAMETERS: { [key: string]: string } = {
|
||||
maskPath: 'Initial Image Mask',
|
||||
shouldFitToWidthHeight: 'Fit Initial Image',
|
||||
seamless: 'Seamless Tiling',
|
||||
hiresFix: 'High Resolution Optimizations',
|
||||
};
|
||||
|
||||
export const NUMPY_RAND_MIN = 0;
|
||||
|
@ -14,10 +14,13 @@ export enum Feature {
|
||||
FACE_CORRECTION,
|
||||
IMAGE_TO_IMAGE,
|
||||
}
|
||||
|
||||
/** For each tooltip in the UI, the below feature definitions & props will pull relevant information into the tooltip.
|
||||
*
|
||||
* To-do: href & GuideImages are placeholders, and are not currently utilized, but will be updated (along with the tooltip UI) as feature and UI development and we get a better idea on where things "forever homes" will be .
|
||||
*/
|
||||
export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
[Feature.PROMPT]: {
|
||||
text: 'This field will take all prompt text, including both content and stylistic terms. CLI Commands will not work in the prompt.',
|
||||
text: 'This field will take all prompt text, including both content and stylistic terms. While weights can be included in the prompt, standard CLI Commands/parameters will not work.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
@ -27,17 +30,16 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.OTHER]: {
|
||||
text: 'Additional Options',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
text: 'These options will enable alternative processing modes for Invoke. Seamless tiling will work to generate repeating patterns in the output. High Resolution Optimization performs a two-step generation cycle, and should be used at higher resolutions when you desire a more coherent image/composition. ', href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.SEED]: {
|
||||
text: 'Seed values provide an initial set of noise which guide the denoising process.',
|
||||
text: 'Seed values provide an initial set of noise which guide the denoising process, and can be randomized or populated with a seed from a previous invocation. The Threshold feature can be used to mitigate undesirable outcomes at higher CFG values (try between 0-10), and Perlin can be used to add Perlin noise into the denoising process - Both serve to add variation to your outputs. ',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.VARIATIONS]: {
|
||||
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed.',
|
||||
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed - Interesting variations on the seed are found between 0.1 and 0.3.',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
@ -47,8 +49,8 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.FACE_CORRECTION]: {
|
||||
text: 'Using GFPGAN or CodeFormer, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs.',
|
||||
href: 'link/to/docs/feature2.html',
|
||||
text: 'Using GFPGAN, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs, resulting in more appealing faces (with less respect for accuracy of the original subject).',
|
||||
href: 'link/to/docs/feature3.html',
|
||||
guideImage: 'asset/path.gif',
|
||||
},
|
||||
[Feature.IMAGE_TO_IMAGE]: {
|
||||
|
1
frontend/src/app/invokeai.d.ts
vendored
1
frontend/src/app/invokeai.d.ts
vendored
@ -55,6 +55,7 @@ export declare type CommonGeneratedImageMetadata = {
|
||||
width: number;
|
||||
height: number;
|
||||
seamless: boolean;
|
||||
hires_fix: boolean;
|
||||
extra: null | Record<string, never>; // Pending development of RFC #266
|
||||
};
|
||||
|
||||
|
@ -76,7 +76,7 @@ const makeSocketIOEmitters = (
|
||||
const { gfpganStrength } = getState().options;
|
||||
|
||||
const gfpganParameters = {
|
||||
gfpgan_strength: gfpganStrength,
|
||||
facetool_strength: gfpganStrength,
|
||||
};
|
||||
socketio.emit('runPostprocessing', imageToProcess, {
|
||||
type: 'gfpgan',
|
||||
|
@ -29,6 +29,7 @@ export const frontendToBackendParameters = (
|
||||
sampler,
|
||||
seed,
|
||||
seamless,
|
||||
hiresFix,
|
||||
shouldUseInitImage,
|
||||
img2imgStrength,
|
||||
initialImagePath,
|
||||
@ -59,6 +60,7 @@ export const frontendToBackendParameters = (
|
||||
sampler_name: sampler,
|
||||
seed,
|
||||
seamless,
|
||||
hires_fix: hiresFix,
|
||||
progress_images: shouldDisplayInProgress,
|
||||
};
|
||||
|
||||
@ -123,10 +125,11 @@ export const backendToFrontendParameters = (parameters: {
|
||||
sampler_name,
|
||||
seed,
|
||||
seamless,
|
||||
hires_fix,
|
||||
progress_images,
|
||||
variation_amount,
|
||||
with_variations,
|
||||
gfpgan_strength,
|
||||
facetool_strength,
|
||||
upscale,
|
||||
init_img,
|
||||
init_mask,
|
||||
@ -151,9 +154,9 @@ export const backendToFrontendParameters = (parameters: {
|
||||
}
|
||||
}
|
||||
|
||||
if (gfpgan_strength > 0) {
|
||||
if (facetool_strength > 0) {
|
||||
options.shouldRunGFPGAN = true;
|
||||
options.gfpganStrength = gfpgan_strength;
|
||||
options.gfpganStrength = facetool_strength;
|
||||
}
|
||||
|
||||
if (upscale) {
|
||||
@ -185,6 +188,7 @@ export const backendToFrontendParameters = (parameters: {
|
||||
options.sampler = sampler_name;
|
||||
options.seed = seed;
|
||||
options.seamless = seamless;
|
||||
options.hiresFix = hires_fix;
|
||||
}
|
||||
|
||||
return options;
|
||||
|
@ -16,11 +16,13 @@ import {
|
||||
setCfgScale,
|
||||
setGfpganStrength,
|
||||
setHeight,
|
||||
setHiresFix,
|
||||
setImg2imgStrength,
|
||||
setInitialImagePath,
|
||||
setMaskPath,
|
||||
setPrompt,
|
||||
setSampler,
|
||||
setSeamless,
|
||||
setSeed,
|
||||
setSeedWeights,
|
||||
setShouldFitToWidthHeight,
|
||||
@ -116,6 +118,7 @@ const ImageMetadataViewer = memo(
|
||||
steps,
|
||||
cfg_scale,
|
||||
seamless,
|
||||
hires_fix,
|
||||
width,
|
||||
height,
|
||||
strength,
|
||||
@ -214,7 +217,14 @@ const ImageMetadataViewer = memo(
|
||||
<MetadataItem
|
||||
label="Seamless"
|
||||
value={seamless}
|
||||
onClick={() => dispatch(setWidth(seamless))}
|
||||
onClick={() => dispatch(setSeamless(seamless))}
|
||||
/>
|
||||
)}
|
||||
{hires_fix && (
|
||||
<MetadataItem
|
||||
label="High Resolution Optimization"
|
||||
value={hires_fix}
|
||||
onClick={() => dispatch(setHiresFix(hires_fix))}
|
||||
/>
|
||||
)}
|
||||
{width && (
|
||||
|
32
frontend/src/features/options/HiresOptions.tsx
Normal file
32
frontend/src/features/options/HiresOptions.tsx
Normal file
@ -0,0 +1,32 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setHiresFix } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
/**
|
||||
* Image output options. Includes width, height, seamless tiling.
|
||||
*/
|
||||
const HiresOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const hiresFix = useAppSelector((state: RootState) => state.options.hiresFix);
|
||||
|
||||
const handleChangeHiresFix = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setHiresFix(e.target.checked));
|
||||
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="High Res Optimization"
|
||||
fontSize={'md'}
|
||||
isChecked={hiresFix}
|
||||
onChange={handleChangeHiresFix}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default HiresOptions;
|
@ -1,29 +1,14 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setSeamless } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
/**
|
||||
* Image output options. Includes width, height, seamless tiling.
|
||||
*/
|
||||
import HiresOptions from './HiresOptions';
|
||||
import SeamlessOptions from './SeamlessOptions';
|
||||
|
||||
const OutputOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const seamless = useAppSelector((state: RootState) => state.options.seamless);
|
||||
|
||||
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setSeamless(e.target.checked));
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="Seamless tiling"
|
||||
fontSize={'md'}
|
||||
isChecked={seamless}
|
||||
onChange={handleChangeSeamless}
|
||||
/>
|
||||
<SeamlessOptions />
|
||||
<HiresOptions />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
28
frontend/src/features/options/SeamlessOptions.tsx
Normal file
28
frontend/src/features/options/SeamlessOptions.tsx
Normal file
@ -0,0 +1,28 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { RootState } from '../../app/store';
|
||||
import { useAppDispatch, useAppSelector } from '../../app/store';
|
||||
import { setSeamless } from './optionsSlice';
|
||||
import { ChangeEvent } from 'react';
|
||||
import IAISwitch from '../../common/components/IAISwitch';
|
||||
|
||||
const SeamlessOptions = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const seamless = useAppSelector((state: RootState) => state.options.seamless);
|
||||
|
||||
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setSeamless(e.target.checked));
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction={'column'}>
|
||||
<IAISwitch
|
||||
label="Seamless tiling"
|
||||
fontSize={'md'}
|
||||
isChecked={seamless}
|
||||
onChange={handleChangeSeamless}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default SeamlessOptions;
|
@ -25,6 +25,7 @@ export interface OptionsState {
|
||||
initialImagePath: string | null;
|
||||
maskPath: string;
|
||||
seamless: boolean;
|
||||
hiresFix: boolean;
|
||||
shouldFitToWidthHeight: boolean;
|
||||
shouldGenerateVariations: boolean;
|
||||
variationAmount: number;
|
||||
@ -50,6 +51,7 @@ const initialOptionsState: OptionsState = {
|
||||
perlin: 0,
|
||||
seed: 0,
|
||||
seamless: false,
|
||||
hiresFix: false,
|
||||
shouldUseInitImage: false,
|
||||
img2imgStrength: 0.75,
|
||||
initialImagePath: null,
|
||||
@ -138,6 +140,9 @@ export const optionsSlice = createSlice({
|
||||
setSeamless: (state, action: PayloadAction<boolean>) => {
|
||||
state.seamless = action.payload;
|
||||
},
|
||||
setHiresFix: (state, action: PayloadAction<boolean>) => {
|
||||
state.hiresFix = action.payload;
|
||||
},
|
||||
setShouldFitToWidthHeight: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldFitToWidthHeight = action.payload;
|
||||
},
|
||||
@ -180,6 +185,7 @@ export const optionsSlice = createSlice({
|
||||
threshold,
|
||||
perlin,
|
||||
seamless,
|
||||
hires_fix,
|
||||
width,
|
||||
height,
|
||||
strength,
|
||||
@ -256,6 +262,7 @@ export const optionsSlice = createSlice({
|
||||
if (perlin) state.perlin = perlin;
|
||||
if (typeof perlin === 'undefined') state.perlin = 0;
|
||||
if (typeof seamless === 'boolean') state.seamless = seamless;
|
||||
if (typeof hires_fix === 'boolean') state.hiresFix = hires_fix;
|
||||
if (width) state.width = width;
|
||||
if (height) state.height = height;
|
||||
},
|
||||
@ -301,6 +308,7 @@ export const {
|
||||
setSampler,
|
||||
setSeed,
|
||||
setSeamless,
|
||||
setHiresFix,
|
||||
setImg2imgStrength,
|
||||
setGfpganStrength,
|
||||
setUpscalingLevel,
|
||||
|
@ -35,6 +35,24 @@ from ldm.invoke.devices import choose_torch_device, choose_precision
|
||||
from ldm.invoke.conditioning import get_uc_and_c
|
||||
from ldm.invoke.model_cache import ModelCache
|
||||
|
||||
def fix_func(orig):
|
||||
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
def new_func(*args, **kw):
|
||||
device = kw.get("device", "mps")
|
||||
kw["device"]="cpu"
|
||||
return orig(*args, **kw).to(device)
|
||||
return new_func
|
||||
return orig
|
||||
|
||||
torch.rand = fix_func(torch.rand)
|
||||
torch.rand_like = fix_func(torch.rand_like)
|
||||
torch.randn = fix_func(torch.randn)
|
||||
torch.randn_like = fix_func(torch.randn_like)
|
||||
torch.randint = fix_func(torch.randint)
|
||||
torch.randint_like = fix_func(torch.randint_like)
|
||||
torch.bernoulli = fix_func(torch.bernoulli)
|
||||
torch.multinomial = fix_func(torch.multinomial)
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
Example Usage:
|
||||
@ -137,6 +155,7 @@ class Generate:
|
||||
self.precision = precision
|
||||
self.strength = 0.75
|
||||
self.seamless = False
|
||||
self.hires_fix = False
|
||||
self.embedding_path = embedding_path
|
||||
self.model = None # empty for now
|
||||
self.model_hash = None
|
||||
@ -156,6 +175,7 @@ class Generate:
|
||||
# device to Generate(). However the device was then ignored, so
|
||||
# it wasn't actually doing anything. This logic could be reinstated.
|
||||
device_type = choose_torch_device()
|
||||
print(f'>> Using device_type {device_type}')
|
||||
self.device = torch.device(device_type)
|
||||
if full_precision:
|
||||
if self.precision != 'auto':
|
||||
@ -236,7 +256,7 @@ class Generate:
|
||||
embiggen_tiles = None,
|
||||
# these are specific to GFPGAN/ESRGAN
|
||||
facetool = None,
|
||||
gfpgan_strength = 0,
|
||||
facetool_strength = 0,
|
||||
codeformer_fidelity = None,
|
||||
save_original = False,
|
||||
upscale = None,
|
||||
@ -256,9 +276,10 @@ class Generate:
|
||||
height // height of image, in multiples of 64 (512)
|
||||
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
|
||||
seamless // whether the generated image should tile
|
||||
hires_fix // whether the Hires Fix should be applied during generation
|
||||
init_img // path to an initial image
|
||||
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
facetool_strength // strength for GFPGAN/CodeFormer. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
||||
step_callback // a function or method that will be called each step
|
||||
image_callback // a function or method that will be called each time an image is generated
|
||||
@ -289,6 +310,7 @@ class Generate:
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
seamless = seamless or self.seamless
|
||||
hires_fix = hires_fix or self.hires_fix
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
iterations = iterations or self.iterations
|
||||
@ -405,11 +427,11 @@ class Generate:
|
||||
reference_image_path = init_color,
|
||||
image_callback = image_callback)
|
||||
|
||||
if upscale is not None or gfpgan_strength > 0:
|
||||
if upscale is not None or facetool_strength > 0:
|
||||
self.upscale_and_reconstruct(results,
|
||||
upscale = upscale,
|
||||
facetool = facetool,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
codeformer_fidelity = codeformer_fidelity,
|
||||
save_original = save_original,
|
||||
image_callback = image_callback)
|
||||
@ -452,7 +474,7 @@ class Generate:
|
||||
self,
|
||||
image_path,
|
||||
tool = 'gfpgan', # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
|
||||
gfpgan_strength = 0.0,
|
||||
facetool_strength = 0.0,
|
||||
codeformer_fidelity = 0.75,
|
||||
upscale = None,
|
||||
out_direction = None,
|
||||
@ -499,11 +521,11 @@ class Generate:
|
||||
facetool = 'codeformer'
|
||||
elif tool == 'upscale':
|
||||
facetool = 'gfpgan' # but won't be run
|
||||
gfpgan_strength = 0
|
||||
facetool_strength = 0
|
||||
return self.upscale_and_reconstruct(
|
||||
[[image,seed]],
|
||||
facetool = facetool,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
codeformer_fidelity = codeformer_fidelity,
|
||||
save_original = save_original,
|
||||
upscale = upscale,
|
||||
|
@ -242,9 +242,13 @@ class Args(object):
|
||||
else:
|
||||
switches.append(f'-A {a["sampler_name"]}')
|
||||
|
||||
# gfpgan-specific parameters
|
||||
if a['gfpgan_strength']:
|
||||
switches.append(f'-G {a["gfpgan_strength"]}')
|
||||
# facetool-specific parameters
|
||||
if a['facetool']:
|
||||
switches.append(f'-ft {a["facetool"]}')
|
||||
if a['facetool_strength']:
|
||||
switches.append(f'-G {a["facetool_strength"]}')
|
||||
if a['codeformer_fidelity']:
|
||||
switches.append(f'-cf {a["codeformer_fidelity"]}')
|
||||
|
||||
if a['outcrop']:
|
||||
switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}')
|
||||
@ -636,6 +640,13 @@ class Args(object):
|
||||
dest='hires_fix',
|
||||
help='Create hires image using img2img to prevent duplicated objects'
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--save_intermediates',
|
||||
type=int,
|
||||
default=0,
|
||||
dest='save_intermediates',
|
||||
help='Save every nth intermediate image into an "intermediates" directory within the output directory'
|
||||
)
|
||||
img2img_group.add_argument(
|
||||
'-I',
|
||||
'--init_img',
|
||||
@ -692,6 +703,7 @@ class Args(object):
|
||||
)
|
||||
postprocessing_group.add_argument(
|
||||
'-G',
|
||||
'--facetool_strength',
|
||||
'--gfpgan_strength',
|
||||
type=float,
|
||||
help='The strength at which to apply the face restoration to the result.',
|
||||
|
@ -33,6 +33,7 @@ COMMANDS = (
|
||||
'--perlin',
|
||||
'--grid','-g',
|
||||
'--individual','-i',
|
||||
'--save_intermediates',
|
||||
'--init_img','-I',
|
||||
'--init_mask','-M',
|
||||
'--init_color',
|
||||
@ -43,7 +44,9 @@ COMMANDS = (
|
||||
'--embedding_path',
|
||||
'--device',
|
||||
'--grid','-g',
|
||||
'--gfpgan_strength','-G',
|
||||
'--facetool','-ft',
|
||||
'--facetool_strength','-G',
|
||||
'--codeformer_fidelity','-cf',
|
||||
'--upscale','-U',
|
||||
'-save_orig','--save_original',
|
||||
'--skip_normalize','-x',
|
||||
|
@ -31,12 +31,13 @@ def build_opt(post_data, seed, gfpgan_model_exists):
|
||||
setattr(opt, 'embiggen', None)
|
||||
setattr(opt, 'embiggen_tiles', None)
|
||||
|
||||
setattr(opt, 'gfpgan_strength', float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0)
|
||||
setattr(opt, 'facetool_strength', float(post_data['facetool_strength']) if gfpgan_model_exists else 0)
|
||||
setattr(opt, 'upscale', [int(post_data['upscale_level']), float(post_data['upscale_strength'])] if post_data['upscale_level'] != '' else None)
|
||||
setattr(opt, 'progress_images', 'progress_images' in post_data)
|
||||
setattr(opt, 'seed', None if int(post_data['seed']) == -1 else int(post_data['seed']))
|
||||
setattr(opt, 'threshold', float(post_data['threshold']))
|
||||
setattr(opt, 'perlin', float(post_data['perlin']))
|
||||
setattr(opt, 'hires_fix', 'hires_fix' in post_data)
|
||||
setattr(opt, 'variation_amount', float(post_data['variation_amount']) if int(post_data['seed']) != -1 else 0)
|
||||
setattr(opt, 'with_variations', [])
|
||||
setattr(opt, 'embiggen', None)
|
||||
@ -196,7 +197,7 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
) + '\n',"utf-8"))
|
||||
|
||||
# control state of the "postprocessing..." message
|
||||
upscaling_requested = opt.upscale or opt.gfpgan_strength > 0
|
||||
upscaling_requested = opt.upscale or opt.facetool_strength > 0
|
||||
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
if upscaled:
|
||||
|
@ -98,7 +98,8 @@ class KSampler(Sampler):
|
||||
rho=7.,
|
||||
device=self.device,
|
||||
)
|
||||
self.sigmas = self.karras_sigmas
|
||||
self.sigmas = self.model_sigmas
|
||||
#self.sigmas = self.karras_sigmas
|
||||
|
||||
# ALERT: We are completely overriding the sample() method in the base class, which
|
||||
# means that inpainting will not work. To get this to work we need to be able to
|
||||
|
@ -140,7 +140,7 @@ class Sampler(object):
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
img_callback=None, # TODO: this is very confusing because it is called "step_callback" elsewhere. Change.
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
|
@ -49,9 +49,15 @@ class Upsample(nn.Module):
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
cpu_m1_cond = True if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() and \
|
||||
x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] % 2**27 == 0 else False
|
||||
if cpu_m1_cond:
|
||||
x = x.to('cpu') # send to cpu
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
if cpu_m1_cond:
|
||||
x = x.to('mps') # return to mps
|
||||
return x
|
||||
|
||||
|
||||
@ -117,6 +123,14 @@ class ResnetBlock(nn.Module):
|
||||
padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
||||
x_size = x.size()
|
||||
if (x_size[0] * x_size[1] * x_size[2] * x_size[3]) % 2**29 == 0:
|
||||
self.to('cpu')
|
||||
x = x.to('cpu')
|
||||
else:
|
||||
self.to('mps')
|
||||
x = x.to('mps')
|
||||
h = self.norm1(x)
|
||||
h = silu(h)
|
||||
h = self.conv1(h)
|
||||
|
@ -6,7 +6,7 @@
|
||||
"id": "ycYWcsEKc6w7"
|
||||
},
|
||||
"source": [
|
||||
"# Stable Diffusion AI Notebook (Release 1.14)\n",
|
||||
"# Stable Diffusion AI Notebook (Release 2.0.0)\n",
|
||||
"\n",
|
||||
"<img src=\"https://user-images.githubusercontent.com/60411196/186547976-d9de378a-9de8-4201-9c25-c057a9c59bad.jpeg\" alt=\"stable-diffusion-ai\" width=\"170px\"/> <br>\n",
|
||||
"#### Instructions:\n",
|
||||
@ -58,8 +58,8 @@
|
||||
"from os.path import exists\n",
|
||||
"\n",
|
||||
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
|
||||
"%cd /content/stable-diffusion/\n",
|
||||
"!git checkout --quiet tags/release-1.14.1"
|
||||
"%cd /content/InvokeAI/\n",
|
||||
"!git checkout --quiet tags/v2.0.0"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -79,6 +79,7 @@
|
||||
"!pip install colab-xterm\n",
|
||||
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
|
||||
"!pip install clean-fid torchtext\n",
|
||||
"!pip install transformers\n",
|
||||
"gc.collect()"
|
||||
]
|
||||
},
|
||||
@ -106,7 +107,7 @@
|
||||
"source": [
|
||||
"#@title 5. Load small ML models required\n",
|
||||
"import gc\n",
|
||||
"%cd /content/stable-diffusion/\n",
|
||||
"%cd /content/InvokeAI/\n",
|
||||
"!python scripts/preload_models.py\n",
|
||||
"gc.collect()"
|
||||
]
|
||||
@ -171,18 +172,18 @@
|
||||
"import os \n",
|
||||
"\n",
|
||||
"# Folder creation if it doesn't exist\n",
|
||||
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1\"):\n",
|
||||
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
|
||||
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
|
||||
"else:\n",
|
||||
" %mkdir /content/stable-diffusion/models/ldm/stable-diffusion-v1\n",
|
||||
" %mkdir /content/InvokeAI/models/ldm/stable-diffusion-v1\n",
|
||||
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
|
||||
"\n",
|
||||
"# Symbolic link if it doesn't exist\n",
|
||||
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
|
||||
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
|
||||
" print(\"❗ Symlink already created\")\n",
|
||||
"else: \n",
|
||||
" src = model_path\n",
|
||||
" dst = '/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt'\n",
|
||||
" dst = '/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt'\n",
|
||||
" os.symlink(src, dst) \n",
|
||||
" print(\"✅ Symbolic link created successfully\")"
|
||||
]
|
||||
@ -207,7 +208,7 @@
|
||||
"source": [
|
||||
"#@title 9. Run Terminal and Execute Dream bot\n",
|
||||
"#@markdown <font color=\"blue\">Steps:</font> <br>\n",
|
||||
"#@markdown 1. Execute command `python scripts/dream.py` to run dream bot.<br>\n",
|
||||
"#@markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
|
||||
"#@markdown 2. After initialized you'll see `Dream>` line.<br>\n",
|
||||
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
|
||||
"#@markdown 4. To quit Dream bot use: `q` command.<br>\n",
|
||||
@ -233,7 +234,7 @@
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"images = []\n",
|
||||
"for img_path in sorted(glob.glob('/content/stable-diffusion/outputs/img-samples/*.png'), reverse=True):\n",
|
||||
"for img_path in sorted(glob.glob('/content/InvokeAI/outputs/img-samples/*.png'), reverse=True):\n",
|
||||
" images.append(mpimg.imread(img_path))\n",
|
||||
"\n",
|
||||
"images = images[:15] \n",
|
||||
|
@ -1,12 +1,11 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
||||
|
||||
import sys
|
||||
import os.path
|
||||
|
||||
script_path = sys.argv[0]
|
||||
script_args = sys.argv[1:]
|
||||
script_dir,script_name = os.path.split(script_path)
|
||||
script_dest = os.path.join(script_dir,'invoke.py')
|
||||
os.execlp('python3','python3',script_dest,*script_args)
|
||||
import warnings
|
||||
import invoke
|
||||
|
||||
if __name__ == '__main__':
|
||||
warnings.warn("dream.py is being deprecated, please run invoke.py for the "
|
||||
"new UI/API or legacy_api.py for the old API",
|
||||
DeprecationWarning)
|
||||
invoke.main()
|
||||
|
@ -236,6 +236,7 @@ def main_loop(gen, opt, infile):
|
||||
grid_images = dict() # seed -> Image, only used if `opt.grid`
|
||||
prior_variations = opt.with_variations or []
|
||||
prefix = file_writer.unique_prefix()
|
||||
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
|
||||
|
||||
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None):
|
||||
# note the seed is the seed of the current image
|
||||
@ -297,6 +298,7 @@ def main_loop(gen, opt, infile):
|
||||
opt.last_operation='generate'
|
||||
gen.prompt2image(
|
||||
image_callback=image_writer,
|
||||
step_callback=step_callback,
|
||||
catch_interrupts=catch_ctrl_c,
|
||||
**vars(opt)
|
||||
)
|
||||
@ -494,7 +496,7 @@ def do_postprocess (gen, opt, callback):
|
||||
file_path = os.path.join(opt.outdir,file_path)
|
||||
|
||||
tool=None
|
||||
if opt.gfpgan_strength > 0:
|
||||
if opt.facetool_strength > 0:
|
||||
tool = opt.facetool
|
||||
elif opt.embiggen:
|
||||
tool = 'embiggen'
|
||||
@ -510,7 +512,7 @@ def do_postprocess (gen, opt, callback):
|
||||
gen.apply_postprocessor(
|
||||
image_path = file_path,
|
||||
tool = tool,
|
||||
gfpgan_strength = opt.gfpgan_strength,
|
||||
facetool_strength = opt.facetool_strength,
|
||||
codeformer_fidelity = opt.codeformer_fidelity,
|
||||
save_original = opt.save_original,
|
||||
upscale = opt.upscale,
|
||||
@ -666,6 +668,17 @@ def load_face_restoration(opt):
|
||||
return gfpgan,codeformer,esrgan
|
||||
|
||||
|
||||
def make_step_callback(gen, opt, prefix):
|
||||
destination = os.path.join(opt.outdir,'intermediates',prefix)
|
||||
os.makedirs(destination,exist_ok=True)
|
||||
print(f'>> Intermediate images will be written into {destination}')
|
||||
def callback(img, step):
|
||||
if step % opt.save_intermediates == 0 or step == opt.steps-1:
|
||||
filename = os.path.join(destination,f'{step:04}.png')
|
||||
image = gen.sample_to_image(img)
|
||||
image.save(filename,'PNG')
|
||||
return callback
|
||||
|
||||
def retrieve_dream_command(opt,file_path,completer):
|
||||
'''
|
||||
Given a full or partial path to a previously-generated image file,
|
||||
|
@ -35,13 +35,14 @@ class DreamBase():
|
||||
perlin: float = 0.0
|
||||
sampler_name: string = 'klms'
|
||||
seamless: bool = False
|
||||
hires_fix: bool = False
|
||||
model: str = None # The model to use (currently unused)
|
||||
embeddings = None # The embeddings to use (currently unused)
|
||||
progress_images: bool = False
|
||||
|
||||
# GFPGAN
|
||||
enable_gfpgan: bool
|
||||
gfpgan_strength: float = 0
|
||||
facetool_strength: float = 0
|
||||
|
||||
# Upscale
|
||||
enable_upscale: bool
|
||||
@ -91,12 +92,13 @@ class DreamBase():
|
||||
# model: str = None # The model to use (currently unused)
|
||||
# embeddings = None # The embeddings to use (currently unused)
|
||||
self.seamless = 'seamless' in j
|
||||
self.hires_fix = 'hires_fix' in j
|
||||
self.progress_images = 'progress_images' in j
|
||||
|
||||
# GFPGAN
|
||||
self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan'))
|
||||
if self.enable_gfpgan:
|
||||
self.gfpgan_strength = float(j.get('gfpgan_strength'))
|
||||
self.facetool_strength = float(j.get('facetool_strength'))
|
||||
|
||||
# Upscale
|
||||
self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale'))
|
||||
|
@ -334,11 +334,11 @@ class GeneratorService:
|
||||
# TODO: Support no generation (just upscaling/gfpgan)
|
||||
|
||||
upscale = None if not jobRequest.enable_upscale else jobRequest.upscale
|
||||
gfpgan_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.gfpgan_strength
|
||||
facetool_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.facetool_strength
|
||||
|
||||
if not jobRequest.enable_generate:
|
||||
# If not generating, check if we're upscaling or running gfpgan
|
||||
if not upscale and not gfpgan_strength:
|
||||
if not upscale and not facetool_strength:
|
||||
# Invalid settings (TODO: Add message to help user)
|
||||
raise CanceledException()
|
||||
|
||||
@ -347,7 +347,7 @@ class GeneratorService:
|
||||
self.__model.upscale_and_reconstruct(
|
||||
image_list = [[image,0]],
|
||||
upscale = upscale,
|
||||
strength = gfpgan_strength,
|
||||
strength = facetool_strength,
|
||||
save_original = False,
|
||||
image_callback = lambda image, seed, upscaled=False: self.__on_image_result(jobRequest, image, seed, upscaled))
|
||||
|
||||
@ -371,10 +371,11 @@ class GeneratorService:
|
||||
steps = jobRequest.steps,
|
||||
variation_amount = jobRequest.variation_amount,
|
||||
with_variations = jobRequest.with_variations,
|
||||
gfpgan_strength = gfpgan_strength,
|
||||
facetool_strength = facetool_strength,
|
||||
upscale = upscale,
|
||||
sampler_name = jobRequest.sampler_name,
|
||||
seamless = jobRequest.seamless,
|
||||
hires_fix = jobRequest.hires_fix,
|
||||
embiggen = jobRequest.embiggen,
|
||||
embiggen_tiles = jobRequest.embiggen_tiles,
|
||||
step_callback = lambda sample, step: self.__on_progress(jobRequest, sample, step),
|
||||
|
@ -144,8 +144,8 @@
|
||||
<input type="checkbox" name="enable_gfpgan" id="enable_gfpgan">
|
||||
<label for="enable_gfpgan">Enable gfpgan</label>
|
||||
</legend>
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength:</label>
|
||||
<input value="0.8" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.05">
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength:</label>
|
||||
<input value="0.8" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.05">
|
||||
</fieldset>
|
||||
<fieldset id="upscale">
|
||||
<legend>
|
||||
|
@ -100,8 +100,8 @@
|
||||
</fieldset>
|
||||
<fieldset id="gfpgan">
|
||||
<div class="section-header">Post-processing options</div>
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength (0 to disable):</label>
|
||||
<input value="0.0" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.1">
|
||||
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength (0 to disable):</label>
|
||||
<input value="0.0" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.1">
|
||||
<label title="Upscaling to perform using ESRGAN." for="upscale_level">Upscaling Level</label>
|
||||
<select id="upscale_level" name="upscale_level" value="">
|
||||
<option value="" selected>None</option>
|
||||
|
Loading…
Reference in New Issue
Block a user