- Create `PaginatedDictResults`, a non-type-safe, non-generic version of `PaginatedResults`. (because `PaginatedResults` is a `pydantic.GenericlModel`, it requires a pydantic model as the generic type and is not suitable)
- Add `ItemStorageABC` and `SqliteItemStorage` methods to return the dict representation of items
- The existing methods are unchanged in what they output, but now they use the `dict` methods to retrieve items before parsing them
- `ImagesService` and some metadata stuff is updated to use the appropriate methods
- Sessions router updated to use the dict versions
- Client types regenerated
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No
## Description
## Related Tickets & Documents
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current
pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Related Issue #
- Closes #
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [ ] No : _please replace this line with details on why tests
have not been included_
## [optional] Are there any post deployment tasks we need to perform?
Should be removed when added in diffusers
https://github.com/huggingface/diffusers/pull/4599
## What type of PR is this? (check all applicable)
- [x] Feature
## Have you discussed this change with the InvokeAI team?
- [x] Yes
## Description
PR to add Seam Painting back to the Canvas.
## TODO Later
While the graph works as intended, it has become extremely large and
complex. I don't know if there's a simpler way to do this. Maybe there
is but there's soo many connections and visualizing the graph in my head
is extremely difficult. We might need to create some kind of tooling for
this. Coz it's going going to get crazier.
But well works for now.
## What type of PR is this? (check all applicable)
- [X] Feature
## Have you discussed this change with the InvokeAI team?
- [X] Yes
## Have you updated all relevant documentation?
- [X] Yes
## Description
This PR enhances the logging of performance statistics to include RAM
and model cache information. After each generation, the following will
be logged. The new information follows TOTAL GRAPH EXECUTION TIME.
```
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> Graph stats: 2408dbec-50d0-44a3-bbc4-427037e3f7d4
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> main_model_loader 1 0.004s 0.000G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> clip_skip 1 0.002s 0.000G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> compel 2 2.706s 0.246G
[2023-08-15 21:55:39,010]::[InvokeAI]::INFO --> rand_int 1 0.002s 0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> range_of_size 1 0.002s 0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> iterate 1 0.002s 0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> noise 1 0.003s 0.244G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> denoise_latents 1 2.429s 2.022G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> l2i 1 1.020s 1.858G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 6.171s
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM used by InvokeAI process: 4.50G (delta=0.10G)
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM used to load models: 1.99G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> VRAM in use: 0.303G
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> RAM cache statistics:
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> Model cache hits: 2
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> Model cache misses: 5
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> Models cached: 5
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> Models cleared from cache: 0
[2023-08-15 21:55:39,011]::[InvokeAI]::INFO --> Cache high water mark: 1.99/7.50G
```
There may be a memory leak in InvokeAI. I'm seeing the process memory
usage increasing by about 100 MB with each generation as shown in the
example above.
Previously the editor was using prop-drilling node data and templates to get values deep into nodes. This ended up causing very noticeable performance degradation. For example, any text entry fields were super laggy.
Refactor the whole thing to use memoized selectors via hooks. The hooks are mostly very narrow, returning only the data needed.
Data objects are never passed down, only node id and field name - sometimes the field kind ('input' or 'output').
The end result is a *much* smoother node editor with very minimal rerenders.
There is a tricky mouse event interaction between chakra's `useOutsideClick()` hook (used by chakra `<Menu />`) and reactflow. The hook doesn't work when you click the main reactflow area.
To get around this, I've used a dirty hack, copy-pasting the simple context menu component we use, and extending it slightly to respond to a global `contextMenusClosed` redux action.
- also implement pessimistic updates for starring, only changing the images that were successfully updated by backend
- some autoformat changes crept in