Commit Graph

18 Commits

Author SHA1 Message Date
Lincoln Stein
b1da13a984 minor cleanups
- change default model back to 1.4
- remove --fnformat from canonicalized dream prompt arguments
  (not needed for image reproducibility)
- add -tm to canonicalized dream prompt arguments
  (definitely needed for image reproducibility)
2022-10-26 08:29:56 -04:00
Lincoln Stein
1ae269b8e0
Merge branch 'development' into inpaint-model 2022-10-25 11:50:08 -04:00
Lincoln Stein
b101be041b add support for runwayML custom inpainting model
This is still a work in progress but seems functional. It supports
inpainting, txt2img and img2img on the ddim and k* samplers (plms
still needs work, but I know what to do).

To test this, get the file `sd-v1-5-inpainting.ckpt' from
https://huggingface.co/runwayml/stable-diffusion-inpainting and place it
at `models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt`

Launch invoke.py with --model inpainting-1.5 and proceed as usual.

Caveats:

1. The inpainting model takes about 800 Mb more memory than the standard
   1.5 model. This model will not work on 4 GB cards.

2. The inpainting model is temperamental. It wants you to describe the
   entire scene and not just the masked area to replace. So if you want
   to replace the parrot on a man's shoulder with a crow, the prompt
   "crow" may fail. Try "man with a crow on shoulder" instead. The
   symptom of a failed inpainting is that the area will be erased and
   replaced with background.

3. This has not been tested well. Please report bugs.
2022-10-25 10:45:15 -04:00
Lincoln Stein
99d23c4d81 fix merge conflicts 2022-10-25 07:30:26 -04:00
Lincoln Stein
543464182f inpainting fix per PR #1218
- This is a merge of the final version of PR #1218 "Inpainting
  Improvements"

  Various merge conflicts made it easier to commit directly.

Author: Kyle0654
Co-Author: lstein
2022-10-25 00:31:42 -04:00
Lincoln Stein
5561a95232 inpainting fix per PR #1218
- This is a merge of the final version of PR #1218 "Inpainting
  Improvements"

  Various merge conflicts made it easier to commit directly.

Author: Kyle0654
Co-Author: lstein
2022-10-23 22:52:32 -04:00
Kyle Schouviller
230527b1fb Add back model description for 1.4 2022-10-23 14:08:41 -07:00
Kyle Schouviller
bfe36c9f8b Revert unintended model changes 2022-10-23 14:08:05 -07:00
Kyle Schouviller
0c34554170 Merge branch 'inpaint-improvement' of https://github.com/Kyle0654/InvokeAI into inpaint-improvement 2022-10-23 14:02:52 -07:00
Kyle Schouviller
1264cc2d36 Switch from dilate to erode to fix inpaint edges. Default model to 1.4 instead of 1.5. 2022-10-23 14:01:06 -07:00
Lincoln Stein
7e27f189cf minor fixes to inpaint code
1. If tensors are passed to inpaint as init_image and/or init_mask, then
   the post-generation image fixup code will be skipped.

2. Post-generation image fixup will work with either a black and white "L"
   or "RGB"  mask, or an "RGBA" mask.
2022-10-23 09:33:15 -04:00
Lincoln Stein
f25c1f900f add support for loading VAE autoencoders
To add a VAE autoencoder to an existing model:

1. Download the appropriate autoencoder and put it into
   models/ldm/stable-diffusion

   Note that you MUST use a VAE that was written for the
   original CompViz Stable Diffusion codebase. For v1.4,
   that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
   that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original

2. Edit config/models.yaml to contain the following stanza, modifying `weights`
   and `vae` as required to match the weights and vae model file names. There is
   no requirement to rename the VAE file.

~~~
stable-diffusion-1.4:
  weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
  description: Stable Diffusion v1.4
  config: configs/stable-diffusion/v1-inference.yaml
  vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
  width: 512
  height: 512
~~~

3. Alternatively from within the `invoke.py` CLI, you may use the command
   `!editmodel stable-diffusion-1.4` to bring up a simple editor that will
   allow you to add the path to the VAE.

4. If you are just installing InvokeAI for the first time, you can also
   use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
   to create the configuration from scratch.

5. That's it!
2022-10-23 09:33:15 -04:00
Lincoln Stein
93cba3fba5
Kyle0654 inpaint improvement - with refactoring from PR #1221 (#1)
* Removed duplicate fix_func for MPS

* add support for loading VAE autoencoders

To add a VAE autoencoder to an existing model:

1. Download the appropriate autoencoder and put it into
   models/ldm/stable-diffusion

   Note that you MUST use a VAE that was written for the
   original CompViz Stable Diffusion codebase. For v1.4,
   that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
   that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original

2. Edit config/models.yaml to contain the following stanza, modifying `weights`
   and `vae` as required to match the weights and vae model file names. There is
   no requirement to rename the VAE file.

~~~
stable-diffusion-1.4:
  weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
  description: Stable Diffusion v1.4
  config: configs/stable-diffusion/v1-inference.yaml
  vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
  width: 512
  height: 512
~~~

3. Alternatively from within the `invoke.py` CLI, you may use the command
   `!editmodel stable-diffusion-1.4` to bring up a simple editor that will
   allow you to add the path to the VAE.

4. If you are just installing InvokeAI for the first time, you can also
   use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
   to create the configuration from scratch.

5. That's it!

* ported code refactor changes from PR #1221

- pass a PIL.Image to img2img and inpaint rather than tensor
- To support clipseg, inpaint needs to accept an "L" or "1" format
  mask. Made the appropriate change.

* minor fixes to inpaint code

1. If tensors are passed to inpaint as init_image and/or init_mask, then
   the post-generation image fixup code will be skipped.

2. Post-generation image fixup will work with either a black and white "L"
   or "RGB"  mask, or an "RGBA" mask.

Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
2022-10-22 20:09:38 -07:00
Lincoln Stein
83e6ab08aa further improvements to model loading
- code for committing config changes to models.yaml now in module
  rather than in invoke script
- model marked "default" is now loaded if model not specified on
  command line
- uncache changed models when edited, so that they reload properly
- removed liaon from models.yaml and added stable-diffusion-1.5
2022-10-21 00:28:54 -04:00
Lincoln Stein
b9e910b5f4 add mostly functional model caching module 2022-10-11 17:24:10 -04:00
Lincoln Stein
063b4a1995 add ability to specify location of config file (models.yaml) 2022-09-03 11:36:04 -04:00
David Wager
a4f69e62d7
Set sensible default for 1.4
Use the file that already exists for the majority of users for the default value.
2022-09-01 20:21:39 +01:00
David Wager
db580ccefd
Create models.yaml
models.yaml can serve as a base for expanding our support for other versions of Latent/Stable Diffusion.
Contained are parameters for default width/height, as well as where to find the config and weights for this model.
Adding a new model is as simple as adding to this file.
2022-09-01 19:02:57 +01:00