- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
This fixes a weird issue where the list images method needed to handle `None` for its `limit` and `offset` arguments, in order to get a count of all intermediates.
On our local installs this will be a very minor change. For those running on remote servers, load times should be slightly improved.
It's a small change but I think correct.
This should prevent `index.html` from *ever* being cached, so UIs will never be out of date.
Minor organisation to accomodate this.
Deleting old unused files from the early days
Also, the PREVIOUS commit (@8d3885d, which was already pushed to github repo) was wrongly commented, but too late to fix without a force push or other mucking that I'm reluctant to do. That commit is actually the one that has all the changes to diffusers_pipeline.py to use additional arg down_intrablock_additional_residuals (introduced in diffusers PR https://github.com/huggingface/diffusers/pull/5362) to detangle T2I-Adapter from ControlNet inputs to main UNet.
Upgrade pydantic and fastapi to latest.
- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1
**Big Changes**
There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.
**Invocations**
The biggest change relates to invocation creation, instantiation and validation.
Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.
Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.
With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.
This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.
In the end, this implementation is cleaner.
**Invocation Fields**
In pydantic v2, you can no longer directly add or remove fields from a model.
Previously, we did this to add the `type` field to invocations.
**Invocation Decorators**
With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.
A similar technique is used for `invocation_output()`.
**Minor Changes**
There are a number of minor changes around the pydantic v2 models API.
**Protected `model_` Namespace**
All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".
Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.
```py
class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
```
**Model Serialization**
Pydantic models no longer have `Model.dict()` or `Model.json()`.
Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.
**Model Deserialization**
Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.
Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.
```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```
**Field Customisation**
Pydantic `Field`s no longer accept arbitrary args.
Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.
**Schema Customisation**
FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.
This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised
The specific aren't important, but this does present additional surface area for bugs.
**Performance Improvements**
Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.
I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
There's a bug in chrome that screws with headers on fetch requests and 307 responses. This causes images to fail to copy in the commercial environment.
This change attempts to get around this by copying images in a different way (similar to how the canvas works). When the user requests a copy we:
- create an `<img />` element
- set `crossOrigin` if needed
- add an onload handler:
- create a canvas element
- draw image onto it
- export canvas to blob
This is wrapped in a promise which resolves to the blob, which can then be copied to clipboard.
---
A customized version of Konva's `useImage` hook is also included, which returns the image blob in addition to the `<img />` element. Unfortunately, this hook is not suitable for use across the app, because it does all the image fetching up front, regardless of whether we actually want to copy the image.
In other words, we'd have to fetch the whole image file even if the user is just skipping through image metadata, in order to have the blob to copy. The callback approach means we only fetch the image when the user clicks copy. The hook is thus currently unused.
Facetools nodes were cutting off faces that extended beyond chunk boundaries in some cases. All faces found are considered and are coalesced rather than pruned, meaning that you should not see half a face any more.
- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
Currently translated at 91.4% (1112 of 1216 strings)
translationBot(ui): update translation (Italian)
Currently translated at 90.4% (1100 of 1216 strings)
translationBot(ui): update translation (Italian)
Currently translated at 90.4% (1100 of 1216 strings)
Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
`mallinfo2` is not available on `glibc` < 2.33.
On these systems, we successfully load the library but get an `AttributeError` on attempting to access `mallinfo2`.
I'm not sure if the old `mallinfo` will work, and not sure how to install it safely to test, so for now we just handle the `AttributeError`.
This means the enhanced memory snapshot logic will be skipped for these systems, which isn't a big deal.
* added HrfScale type with initial value
* working
* working
* working
* working
* working
* added addHrfToGraph
* continueing to implement this
* working on this
* comments
* working
* made hrf into its own collapse
* working on adding strength slider
* working
* working
* refactoring
* working
* change of this working: 0
* removed onnx support since apparently its not used
* working
* made scale integer
* trying out psycicpebbles idea
* working
* working on this
* working
* added toggle
* comments
* self review
* fixing things
* remove 'any' type
* fixing typing
* changed initial strength value to 3 (large values cause issues)
* set denoising start to be 1 - strength to resemble image to image
* set initial value
* added image to image
* pr1
* pr2
* updating to resolution finding
* working
* working
* working
* working
* working
* working
* working
* working
* working
* use memo
* connect rescale hw to noise
* working
* fixed min bug
* nit
* hides elements conditionally
* style
* feat(ui): add config for HRF, disable if feature disabled or ONNX model in use
* fix(ui): use `useCallback` for HRF toggle
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* #4665 hides value of the corresponding metadata item by click on arrow
* #4787 return recall button back:)
* #4787 optional hide of metadata item, truncation and scrolling
* remove unused import
* #4787 recall parameters as separate tab in panel
* #4787 remove debug code
* fix(ui): undo changes to dist/locales/en.json
This file is autogenerated by our translation system and shouldn't be modified directly
* feat(ui): use scrollbar-enabled component for parameter recall tab
* fix(ui): revert unnecessary changes to DataViewer component
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Refactor services folder/module structure.
**Motivation**
While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.
**Services**
Services are now in their own folder with a few files:
- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc
Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.
There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.
**Shared**
Things that are used across disparate services are in `services/shared/`:
- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
**Service Dependencies**
Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.
Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.
Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.
**Database Access**
Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.
These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.
This is not a service as it's only used by sqlite services.
Currently translated at 98.0% (1186 of 1210 strings)
translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 98.0% (1179 of 1203 strings)
translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 97.9% (1175 of 1199 strings)
Co-authored-by: Surisen <zhonghx0804@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI