Commit Graph

42 Commits

Author SHA1 Message Date
Brandon Rising
35d5ef9118 Emit step completions 2023-07-18 12:35:07 -04:00
Lincoln Stein
10d3bccf32
Mac MPS FP16 fixes (#3641)
This PR is to allow FP16 precision to work on Macs with MPS. In
addition, it centralizes the torch fixes/workarounds required for MPS
into a new backend utility `mps_fixes.py`. This is conditionally
imported in `api_app.py`/`cli_app.py`.

Many MANY thanks to @StAlKeR7779 for patiently working to debug and fix
these issues.
2023-07-07 17:43:23 -04:00
gogurtenjoyer
233869b56a Mac MPS FP16 fixes
This PR is to allow FP16 precision to work on Macs with MPS. In addition, it centralizes the torch fixes/workarounds
required for MPS into a new backend utility file `mps_fixes.py`. This is conditionally imported in `api_app.py`/`cli_app.py`.

Many MANY thanks to StAlKeR7779 for patiently working to debug and fix these issues.
2023-07-04 18:10:53 -04:00
Lincoln Stein
ac9ec4e75a restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:57:40 -04:00
Lincoln Stein
2465c7987b Revert "restore 3.9 compatibility by replacing | with Union[]"
This reverts commit 76bafeb99e.
2023-07-03 10:56:41 -04:00
Lincoln Stein
76bafeb99e restore 3.9 compatibility by replacing | with Union[] 2023-07-03 10:55:04 -04:00
Sergey Borisov
a01998d095 Remove more old logic 2023-06-19 15:57:28 +10:00
Sergey Borisov
7b35162b9e Remove old logic except for inpaint, add support for lora and ti to inpaint node 2023-06-19 15:57:28 +10:00
Lincoln Stein
98773b20ac merge with main 2023-06-01 18:09:49 -04:00
user1
a91dee87d0 Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving. 2023-05-26 21:44:00 -04:00
Lincoln Stein
baf5451fa0
Merge branch 'main' into lstein/new-model-manager 2023-05-13 22:01:34 -04:00
blessedcoolant
8a836247c8 Add DPMPP Single, Euler Karras and DPMPP2 Multi Karras Schedulers 2023-05-12 02:23:33 +12:00
blessedcoolant
9a383e456d Codesplit SCHEDULER_MAP for reusage 2023-05-12 00:40:03 +12:00
blessedcoolant
3ffff023b2 Add missing key to scheduler_map
It was breaking coz the sampler was not being reset. So needs a key on each. Will simplify this later.
2023-05-12 00:08:50 +12:00
blessedcoolant
d1029138d2 Default to DDIM if scheduler is missing 2023-05-11 22:54:35 +12:00
blessedcoolant
06b5800d28 Add UniPC Scheduler 2023-05-11 22:43:18 +12:00
Lincoln Stein
8ad8c5c67a resolve conflicts with main 2023-05-11 00:19:20 -04:00
psychedelicious
206e6b1730 feat(nodes): wip inpaint node 2023-05-11 11:55:51 +10:00
Lincoln Stein
e0214a32bc mostly ported to new manager API; needs testing 2023-05-06 00:44:12 -04:00
Lincoln Stein
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
Lincoln Stein
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
psychedelicious
5fe38f7c88 fix(backend): simple typing fixes 2023-03-26 17:07:03 +11:00
Lincoln Stein
f329fddab9 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-24 09:32:47 +11:00
psychedelicious
b194180f76 feat(backend): make fast latents method static 2023-03-16 20:03:08 +11:00
JPPhoto
b980e563b9 Fix bug #2931 2023-03-13 08:11:09 -05:00
Lincoln Stein
d612f11c11 initialize InvokeAIGenerator object with model, not manager 2023-03-11 09:06:46 -05:00
Lincoln Stein
250b0ab182 add seamless tiling support 2023-03-11 08:33:23 -05:00
Lincoln Stein
675dd12b6c add attention map images to output object 2023-03-11 08:07:01 -05:00
Lincoln Stein
7e76eea059 add embiggen, remove complicated constructor 2023-03-11 07:50:39 -05:00
Lincoln Stein
95954188b2 remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:

```
from invokeai.backend.generator import (
    InvokeAIGeneratorBasicParams,
    Txt2Img,
    Img2Img,
    Inpaint,
)
    params = InvokeAIGeneratorBasicParams(
        model_name = 'stable-diffusion-1.5',
        steps = 30,
        scheduler = 'k_lms',
        cfg_scale = 8.0,
        height = 640,
        width = 640
        )
    print ('=== TXT2IMG TEST ===')
    txt2img = Txt2Img(manager, params)
    outputs = txt2img.generate(prompt='banana sushi', iterations=2)

    for i in outputs:
        print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```

The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:

```
    outputs = Txt2Img(manager).generate(prompt='banana sushi',
                                        steps=50,
					scheduler='k_heun',
					model_name='stable-diffusion-2.1'
					)
```
2023-03-10 19:33:04 -05:00
Lincoln Stein
c11e823ff3 remove unused _wrap_results 2023-03-09 16:30:06 -05:00
Lincoln Stein
cde0b6ae8d
Merge branch 'main' into refactor/nodes-on-generator 2023-03-09 01:52:45 -05:00
Lincoln Stein
b679a6ba37 model manager defaults to consistent values of device and precision 2023-03-09 01:09:54 -05:00
Lincoln Stein
5d37fa6e36 node-based txt2img working without generate 2023-03-09 00:18:29 -05:00
Jonathan
2db180d909
Make img2img strength 1 behave the same as txt2img (#2895)
* Fix img2img and inpainting code so a strength of 1 behaves the same as txt2img.

* Make generated images identical to their txt2img counterparts when strength is 1.
2023-03-08 22:50:16 +01:00
Lincoln Stein
87789c1de8 add InvokeAIGenerator and InvokeAIGeneratorFactory classes 2023-03-07 23:52:53 -05:00
Kevin Turner
c703b60986 remove legacy ldm code 2023-03-04 18:16:59 -08:00
Lincoln Stein
60a98cacef all vestiges of ldm.invoke removed 2023-03-03 01:02:00 -05:00
Lincoln Stein
6a990565ff all files migrated; tweaks needed 2023-03-03 00:02:15 -05:00
Lincoln Stein
3f0b0f3250 almost all of backend migrated; restoration next 2023-03-02 13:28:17 -05:00
Lincoln Stein
850d1ee984 move models and modules under invokeai/backend/ldm 2023-03-01 18:24:18 -05:00
Lincoln Stein
5b6c61fc75 move models and generator into backend 2023-02-28 08:32:11 -05:00