Commit Graph

274 Commits

Author SHA1 Message Date
Ryan Dick
d5a949e6c3 Update HF download logic to work for black-forest-labs/FLUX.1-schnell. 2024-08-21 08:59:18 -04:00
blessedcoolant
4f8a4b0f22 Merge branch 'main' into depth_anything_v2 2024-08-03 00:38:57 +05:30
Ryan Dick
b9dc3460ba Rename SegmentAnythingModel -> SegmentAnythingPipeline. 2024-08-01 09:57:47 -04:00
Ryan Dick
fca119773b Split invokeai/backend/image_util/segment_anything/ dir into grounding_dino/ and segment_anything/ 2024-07-31 12:28:47 -04:00
blessedcoolant
b4cf78a95d fix: make DA Pipeline a subclass of RawModel 2024-07-31 21:14:49 +05:30
Ryan Dick
9f448fecb7 Move invokeai/backend/grounded_sam -> invokeai/backend/image_util/grounded_sam 2024-07-31 10:00:30 -04:00
blessedcoolant
18f89ed5ed fix: Make DepthAnything work with Invoke's Model Management 2024-07-31 03:57:54 +05:30
Ryan Dick
ff6398f7d8 Add a GroundedSamInvocation for image segmentation from a text prompt (Grounding DINO + Segment Anything Model). 2024-07-30 11:12:26 -04:00
psychedelicious
102b47190f feat(ui): update qr code cnet starter model
- For SD1.5, use the new V2 version
- Add the SDXL version
2024-07-26 13:34:32 +10:00
psychedelicious
74cef38bcf fix(backend): add refiner to single-file load_classes
Fixes single-file refiner loading.
2024-07-26 05:08:01 +10:00
Lincoln Stein
633bbb4e85
[MM2] Use typed ModelRecordChanges for model_install() rather than untyped dict (#6645)
* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* remove v9 pnpm lockfile

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* remove v9 pnpm lockfile

* regenerate schema.ts

* prettified

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-23 21:41:00 +00:00
Mary Hipp
930ff559e4 add sdxl tile to starter models 2024-07-19 16:49:33 -04:00
Lincoln Stein
97a7f51721
don't use cpu state_dict for model unpatching when executing on cpu (#6631)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-18 15:34:01 -04:00
Ryan Dick
f866b49255 Add some ESRGAN and SwinIR upscale models to the starter models list. 2024-07-16 15:55:10 -04:00
Ryan Dick
81991e072b Merge branch 'main' into ryan/spandrel-upscale 2024-07-16 15:14:08 -04:00
psychedelicious
38343917f8 fix(backend): revert non-blocking device transfer
In #6490 we enabled non-blocking torch device transfers throughout the model manager's memory management code. When using this torch feature, torch attempts to wait until the tensor transfer has completed before allowing any access to the tensor. Theoretically, that should make this a safe feature to use.

This provides a small performance improvement but causes race conditions in some situations. Specific platforms/systems are affected, and complicated data dependencies can make this unsafe.

- Intermittent black images on MPS devices - reported on discord and #6545, fixed with special handling in #6549.
- Intermittent OOMs and black images on a P4000 GPU on Windows - reported in #6613, fixed in this commit.

On my system, I haven't experience any issues with generation, but targeted testing of non-blocking ops did expose a race condition when moving tensors from CUDA to CPU.

One workaround is to use torch streams with manual sync points. Our application logic is complicated enough that this would be a lot of work and feels ripe for edge cases and missed spots.

Much safer is to fully revert non-locking - which is what this change does.
2024-07-16 08:59:42 +10:00
Ryan Dick
650902dc29 Fix broken unit test caused by non-existent model path. 2024-07-10 13:59:17 -04:00
Ryan Dick
7b5d4935b4 Merge branch 'main' into ryan/spandrel-upscale 2024-07-09 13:47:11 -04:00
Ryan Dick
af63c538ed Demote error log to warning to models treated as having size 0. 2024-07-09 08:35:43 -04:00
Ryan Dick
0ce6ec634d Do not assign the result of SpandrelImageToImageModel.load_from_file(...) during probe to ensure that the model is immediately gc'd. 2024-07-05 14:05:12 -04:00
Ryan Dick
35f8781ea2 Fix static type errors with SCHEDULER_NAME_VALUES. And, avoid bi-directional cross-directory imports, which contribute to circular import issues. 2024-07-05 07:38:35 -07:00
Ryan Dick
36202d6d25 Delete unused duplicate libc_util.py file. The active version is at invokeai/backend/model_manager/libc_util.py. 2024-07-04 10:30:40 -04:00
Ryan Dick
1d449097cc Apply ruff rule to disallow all relative imports. 2024-07-04 09:35:37 -04:00
Ryan Dick
9da5925287 Add ruff rule to disallow relative parent imports. 2024-07-04 09:35:37 -04:00
Ryan Dick
414750a45d Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-04 09:08:25 -04:00
Ryan Dick
a405f14ea2 Fix SpandrelImageToImageModel size calculation for the model cache. 2024-07-03 16:38:16 -04:00
Ryan Dick
1ab20f43c8 Tidy spandrel model probe logic, and document the reasons behind the current implementation. 2024-07-03 16:28:21 -04:00
Ryan Dick
29c8ddfb88 WIP - A bunch of boilerplate to support Spandrel Image-to-Image models throughout the model manager and the frontend. 2024-07-03 16:28:21 -04:00
Ryan Dick
2a1514272f Set the dtype correctly for SpandrelImageToImageModels when they are loaded. 2024-07-03 16:28:21 -04:00
Ryan Dick
59ce9cf41c WIP - Begin to integrate SpandreImageToImageModel type into the model manager. 2024-07-03 16:28:21 -04:00
Ryan Dick
e6abea7bc5 (minor) Remove redundant else clause on a for-loop with no break statement. 2024-07-03 16:28:21 -04:00
Ryan Dick
c335f92345 (minor) simplify startswith(...) syntax. 2024-07-03 16:28:21 -04:00
Ryan Dick
e4813f800a Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-02 21:51:45 -04:00
Kent Keirsey
5df2a79549 Update starter models 2024-06-28 17:49:45 +10:00
Kent Keirsey
10b9088312 update controlnet starter models 2024-06-28 17:49:45 +10:00
Lincoln Stein
3e0fb45dd7
Load single-file checkpoints directly without conversion (#6510)
* use model_class.load_singlefile() instead of converting; works, but performance is poor

* adjust the convert api - not right just yet

* working, needs sql migrator update

* rename migration_11 before conflict merge with main

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* implement lightweight version-by-version config migration

* simplified config schema migration code

* associate sdxl config with sdxl VAEs

* remove use of original_config_file in load_single_file()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-27 17:31:28 -04:00
Ryan Dick
14775cc9c4 ruff format 2024-06-27 09:45:13 -04:00
psychedelicious
c7562dd6c0
fix(backend): mps should not use non_blocking
We can get black outputs when moving tensors from CPU to MPS. It appears MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility takes a torch device and returns the flag to be used for non_blocking when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

Fixes: #6545
2024-06-27 19:15:23 +10:00
Lincoln Stein
b03073d888
[MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
Ryan Dick
8e47e005a7 Tidy SilenceWarnings context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a decorator
- Remove duplicate implementation
- Check the initial verbosity on __enter__() rather than __init__()
2024-06-18 15:06:22 -04:00
Brandon Rising
41a6bb45f3 Initial functionality 2024-06-18 10:38:29 -04:00
Lincoln Stein
a3cb5da130
Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
psychedelicious
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
Lincoln Stein
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
Lincoln Stein
2871676f79
LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
psychedelicious
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00
Lincoln Stein
2276f327e5
Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-02 09:45:31 -04:00
Lincoln Stein
21a60af881
when unlocking models, offload_unlocked_models should prune to vram limit only (#6450)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-29 03:01:21 +00:00
Lincoln Stein
34e1eb19f9 merge with main and resolve conflicts 2024-05-27 22:20:34 -04:00
Lincoln Stein
532f82cb97
Optimize RAM to VRAM transfer (#6312)
* avoid copying model back from cuda to cpu

* handle models that don't have state dicts

* add assertions that models need a `device()` method

* do not rely on torch.nn.Module having the device() method

* apply all patches after model is on the execution device

* fix model patching in latents too

* log patched tokenizer

* closes #6375

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-24 17:06:09 +00:00