Commit Graph

3600 Commits

Author SHA1 Message Date
psychedelicious
4cdca45228 feat(api): add route to clear invocation cache 2023-09-20 22:53:25 +10:00
psychedelicious
c1aa2b82eb feat(nodes): default node_cache_size in MemoryInvocationCache to 0 (fully disabled) 2023-09-20 18:40:24 +10:00
psychedelicious
0a09f84b07 feat(backend): selective invalidation for invocation cache
This change enhances the invocation cache logic to delete cache entries when the resources to which they refer are deleted.

For example, a cached output may refer to "some_image.png". If that image is deleted, and this particular cache entry is later retrieved by a node, that node's successors will receive references to the now non-existent "some_image.png". When they attempt to use that image, they will fail.

To resolve this, we need to invalidate the cache when the resources to which it refers are deleted. Two options:
- Invalidate the whole cache on every image/latents/etc delete
- Selectively invalidate cache entries when their resources are deleted

Node outputs can be any shape, with any number of resource references in arbitrarily nested pydantic models. Traversing that structure to identify resources is not trivial.

But invalidating the whole cache is a bit heavy-handed. It would be nice to be more selective.

Simple solution:
- Invocation outputs' resource references are always string identifiers - like the image's or latents' name
- Invocation outputs can be stringified, which includes said identifiers
- When the invocation is cached, we store the stringified output alongside the "live" output classes
- When a resource is deleted, pass its identifier to the cache service, which can then invalidate any cache entries that refer to it

The images and latents storage services have been outfitted with `on_deleted()` callbacks, and the cache service registers itself to handle those events. This logic was copied from `ItemStorageABC`.

`on_changed()` callback are also added to the images and latents services, though these are not currently used. Just following the existing pattern.
2023-09-20 18:26:47 +10:00
psychedelicious
b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00
Ryan Dick
8b44d83859 yarn build 2023-09-19 14:03:22 -04:00
Kent Keirsey
0b6315de71
Merge branch 'main' into feat/ip-adapter 2023-09-19 13:49:20 -04:00
Ryan Dick
92b49e45bb Address flake8 error. 2023-09-18 16:33:16 -04:00
Ryan Dick
b05b8ef677 Switch to using torch 2.0 attention for IP-Adapter (more memory-efficient). 2023-09-18 16:30:53 -04:00
Ryan Dick
382e2139bd Clear incompatible IP-Adapter when base model changes in the Linear UI. 2023-09-18 12:57:23 -04:00
psychedelicious
1869874433 chore(ui): lint 2023-09-18 16:01:20 +10:00
psychedelicious
94f16b1c69 feat(ui): provide feedback when recalling invalid lora 2023-09-18 16:01:20 +10:00
psychedelicious
cc0482ae8b feat(ui): simplify lora recall check 2023-09-18 16:01:20 +10:00
Mary Hipp
fdf9833c39 add toast 2023-09-18 16:01:20 +10:00
Mary Hipp
5a961bb58e first pass to recall LoRAs 2023-09-18 16:01:20 +10:00
blessedcoolant
2a3909da94 isort: fix issues 2023-09-17 12:14:58 +12:00
blessedcoolant
e0dddbd38e chore: fix isort issues 2023-09-17 12:13:03 +12:00
blessedcoolant
231b7a5000 fix: Upload not working correctly on the ip Adapter image upload 2023-09-17 12:08:35 +12:00
blessedcoolant
b7773c9962 chore: black & lint fixes 2023-09-17 12:00:21 +12:00
blessedcoolant
11c501fc80 fix: Upload issue with the ip adapter image uploader 2023-09-17 11:58:15 +12:00
blessedcoolant
7be5743011 feat: Add IP Adapter Begin & End Percent to Linear UI 2023-09-17 11:53:05 +12:00
user1
c48e648cbb Added per-step setting of IP-Adapter weights (for param easing, etc.) 2023-09-16 12:36:16 -07:00
user1
29b4ddcc7f Merge branch 'feat/ip-adapter' of github.com:invoke-ai/InvokeAI into feat/ip-adapter 2023-09-16 09:32:41 -07:00
user1
7ee13879e3 Added check in IP-Adapter to avoid begin/end step percent handling if use of IP-Adapter is already turned off due to potential clash with other cross attention control. 2023-09-16 09:29:50 -07:00
user1
ced297ed21 Initial implementation of IP-Adapter "begin_step_percent" and "end_step_percent" for controlling on which steps IP-Adapter is applied in the denoising loop. 2023-09-16 08:24:12 -07:00
blessedcoolant
3e813ead1f chore: extract the adapter info initial state 2023-09-16 10:59:19 -04:00
blessedcoolant
820ec08e9a feat: Update Control Adapter Collapse active status to reflect IP Adapter 2023-09-16 10:59:19 -04:00
blessedcoolant
4dd289b337 feat: Handle IP Adapter Image being reset on being deleted. 2023-09-16 10:59:19 -04:00
blessedcoolant
b60b1e359e fix: Decrease the size of the IP Adapter Image Reset Button 2023-09-16 10:59:19 -04:00
blessedcoolant
208286e97a wip: Improve the IP Adapter UI 2023-09-16 10:59:19 -04:00
blessedcoolant
f7b64304ae wip: Add IP Adapter To Linear UI 2023-09-16 10:59:19 -04:00
blessedcoolant
834751e877 Merge branch 'main' into feat/ip-adapter 2023-09-16 07:06:46 +12:00
blessedcoolant
682d6998bc
Merge branch 'main' into moretranslation 2023-09-16 06:52:24 +12:00
Kent Keirsey
b75c56768d Unmasked default 2023-09-15 13:52:11 -04:00
Ryan Dick
343df03a92 isort 2023-09-15 13:18:00 -04:00
Ryan Dick
b57acb7353 Merge branch 'main' into feat/ip-adapter 2023-09-15 13:15:25 -04:00
Sergey Borisov
ff3150a818 Update lora hotfix to new diffusers version(scale argument added) 2023-09-15 12:19:01 -04:00
mickr777
273271f091 Merge branch 'moretranslation' of https://github.com/mickr777/InvokeAI into moretranslation 2023-09-15 14:14:04 +10:00
mickr777
54dc912c83 Revert some test Changes 2023-09-15 14:13:54 +10:00
mickr777
571f50adf7
Merge branch 'main' into moretranslation 2023-09-15 14:06:26 +10:00
mickr777
368bd6f778 Prettier Fixes 2023-09-15 14:04:28 +10:00
mickr777
7481251127 More Translations and Fixes 2023-09-15 13:58:48 +10:00
Ryan Dick
16664da5b6 black 2023-09-14 23:49:02 -04:00
Ryan Dick
c104807201 Update list of supported IP-Adapters. 2023-09-14 23:43:19 -04:00
Ryan Dick
990ce9a1da Lookup IP-Adapter linked image encoder from disk instead of storing in model config metadata. 2023-09-14 23:06:57 -04:00
psychedelicious
604fc006b1 fix(ui): construct openapi url from window.location.origin 2023-09-14 23:06:39 -04:00
psychedelicious
704e016f05 feat(ui): disable immutable redux check
The immutable and serializable checks for redux can cause substantial performance issues. The immutable check in particular is pretty heavy. It's only run in dev mode, but this and really slow down the already-slower performance of dev mode.

The most important one for us is serializable, which has far less of a performance impact.

The immutable check is largely redundant because we use immer-backed RTK for everything and immer gives us confidence there.

Disable the immutable check, leaving serializable in.
2023-09-14 22:02:29 -04:00
mickr777
a1ef079d1f
Merge branch 'main' into moretranslation 2023-09-15 11:34:48 +10:00
psychedelicious
34a09cb4ca fix(ui): fix send to canvas crash
A few weeks back, we changed how the canvas scales in response to changes in window/panel size.

This introduced a bug where if we the user hadn't already clicked the canvas tab once to initialize the stage elements, the stage's dimensions were zero, then the calculation of the stage's scale ends up zero, then something is divided by that zero and Konva dies.

This is only a problem on Chromium browsers - somehow Firefox handles it gracefully.

Now, when calculating the stage scale, never return a 0 - if it's a zero, return 1 instead. This is enough to fix the crash, but the image ends up centered on the top-left corner of the stage (the origin of the canvas).

Because the canvas elements are not initialized at this point (we haven't switched tabs yet), the stage dimensions fall back to (0,0). This means the center of the stage is also (0,0) - so the image is centered on (0,0), the top-left corner of the stage.

To fix this, we need to ensure we:
- Change to the canvas tab before actually setting the image, so the stage elements are able to initialize
- Use `flushSync` to flush DOM updates for this tab change so we actually have DOM elements to work with
- Update the stage dimensions once on first load of it (so in the effect that sets up the resize observer, we update the stage dimensions)

The result now is the expected behaviour - images sent to canvas do not crash and end up in the center of the canvas.
2023-09-15 11:05:53 +10:00
Ryan Dick
18095ecc44 yarn build 2023-09-14 16:56:51 -04:00
Ryan Dick
fe19f11abf Bump DenoiseLatentsInvocation minor version. 2023-09-14 16:54:07 -04:00