- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation
resolve conflict with seamless.py
- Rename old "model_management" directory to "model_management_OLD" in order to catch
dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
a finalizer to the queue and installer fixtures that will stop the
services and release threads.
- ModelMetadataStoreService is now injected into ModelRecordStoreService
(these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
- Replace legacy model manager service with the v2 manager.
- Update invocations to use new load interface.
- Fixed many but not all type checking errors in the invocations. Most
were unrelated to model manager
- Updated routes. All the new routes live under the route tag
`model_manager_v2`. To avoid confusion with the old routes,
they have the URL prefix `/api/v2/models`. The old routes
have been de-registered.
- Added a pytest for the loader.
- Updated documentation in contributing/MODEL_MANAGER.md
The change to memory session storage brings a subtle behaviour change.
Previously, we serialized and deserialized everything (e.g. field state, invocation outputs, etc) constantly. The meant we were effectively working with deep-copied objects at all time. We could mutate objects freely without worrying about other references to the object.
With memory storage, objects are now passed around by reference, and we cannot handle them in the same way.
This is problematic for nodes that mutate their own inputs. There are two ways this causes a problem:
- An output is used as input for multiple nodes. If the first node mutates the output object while `invoke`ing, the next node will get the mutated object.
- The invocation cache stores live python objects. When a node mutates an output pulled from the cache, the next node that uses the cached object will get the mutated object.
The solution is to deep-copy a node's inputs as they are set, effectively reproducing the same behaviour as we had with the SQLite session storage. Nodes can safely mutate their inputs and those changes never leave the node's scope.
Closes #5665
- Implement new model loader and modify invocations and embeddings
- Finish implementation loaders for all models currently supported by
InvokeAI.
- Move lora, textual_inversion, and model patching support into
backend/embeddings.
- Restore support for model cache statistics collection (a little ugly,
needs work).
- Fixed up invocations that load and patch models.
- Move seamless and silencewarnings utils into better location
The stats service was logging error messages when attempting to retrieve stats for a graph that it wasn't tracking. This was rather noisy.
Instead of logging these errors within the service, we now will just raise the error and let the consumer of the service decide whether or not to log. Our usage of the service at this time is to suppress errors - we don't want to log anything to the console.
Note: With the improvements in the previous two commits, we shouldn't get these errors moving forward, but I still think this change is correct.
When an invocation is canceled, we consider the graph canceled. Log its graph's stats before resetting its graph's stats. No reason to not log these stats.
We also should stop the profiler at this point, because this graph is finished. If we don't stop it manually, it will stop itself and write the profile to disk when it is next started, but the resultant profile will include more than just its target graph.
Now we get both stats and profiles for canceled graphs.
When an invocation errored, we clear the stats for the whole graph. Later on, we check the graph for errors and see the failed invocation, and we consider the graph failed. We then attempts to log the stats for the failed graph.
Except now the failed graph has no stats, and the stats raises an error.
The user sees, in the terminal:
- An invocation error
- A stats error (scary!)
- No stats for the failed graph (uninformative!)
What the user should see:
- An invocation error
- Graph stats
The fix is simple - don't reset the graph stats when an invocation has an error.
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
to empty version rather than raising an error.
- `ItemStorageMemory.get` now throws an `ItemNotFoundError` when the requested `item_id` is not found.
- Update docstrings in ABC and tests.
The new memory item storage implementation implemented the `get` method incorrectly, by returning `None` if the item didn't exist.
The ABC typed `get` as returning `T`, while the SQLite implementation typed `get` as returning `Optional[T]`. The SQLite implementation was referenced when writing the memory implementation.
This mismatched typing is a violation of the Liskov substitution principle, because the signature of the implementation of `get` in the implementation is wider than the abstract class's definition. Using `pyright` in strict mode catches this.
In `invocation_stats_default`, this introduced an error. The `_prune_stats` method calls `get`, expecting the method to throw if the item is not found. If the graph is no longer stored in the bounded item storage, we will call `is_complete()` on `None`, causing the error.
Note: This error condition never arose the SQLite implementation because it parsed the item with pydantic before returning it, which would throw if the item was not found. It implicitly threw, while the memory implementation did not.
* Port the command-line tools to use model_manager2
1.Reimplement the following:
- invokeai-model-install
- invokeai-merge
- invokeai-ti
To avoid breaking the original modeal manager, the udpated tools
have been renamed invokeai-model-install2 and invokeai-merge2. The
textual inversion training script should continue to work with
existing installations. The "starter" models now live in
`invokeai/configs/INITIAL_MODELS2.yaml`.
When the full model manager 2 is in place and working, I'll rename
these files and commands.
2. Add the `merge` route to the web API. This will merge two or three models,
resulting a new one.
- Note that because the model installer selectively installs the `fp16` variant
of models (rather than both 16- and 32-bit versions as previous),
the diffusers merge script will choke on any huggingface diffuserse models
that were downloaded with the new installer. Previously-downloaded models
should continue to merge correctly. I have a PR
upstream https://github.com/huggingface/diffusers/pull/6670 to fix
this.
3. (more important!)
During implementation of the CLI tools, found and fixed a number of small
runtime bugs in the model_manager2 implementation:
- During model database migration, if a registered models file was
not found on disk, the migration would be aborted. Now the
offending model is skipped with a log warning.
- Caught and fixed a condition in which the installer would download the
entire diffusers repo when the user provided a single `.safetensors`
file URL.
- Caught and fixed a condition in which the installer would raise an
exception and stop the app when a request for an unknown model's metadata
was passed to Civitai. Now an error is logged and the installer continues.
- Replaced the LoWRA starter LoRA with FlatColor. The former has been removed
from Civitai.
* fix ruff issue
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Initially I wanted to show how many sessions were being deleted. In hindsight, this is not great:
- It requires extra logic in the migrator, which should be as simple as possible.
- It may be alarming to see "Clearing 224591 old sessions".
The app still reports on freed space during the DB startup logic.