Commit Graph

122 Commits

Author SHA1 Message Date
Ryan Dick
635d2f480d ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
70c278c810 Remove dependency on flux config files 2024-08-26 20:17:50 -04:00
Ryan Dick
83f82c5ddf Switch the CLIP-L start model to use our hosted version - which is much smaller. 2024-08-26 20:17:50 -04:00
Brandon Rising
101de8c25d Update t5 encoder formats to accurately reflect the quantization strategy and data type 2024-08-26 20:17:50 -04:00
Ryan Dick
75d8ac378c Update the T5 8-bit quantized starter model to use the BnB LLM.int8() variant. 2024-08-26 20:17:50 -04:00
Brandon Rising
1047584b3e Only import bnb quantize file if bitsandbytes is installed 2024-08-26 20:17:50 -04:00
Ryan Dick
a0bf20bcee Run FLUX VAE decoding in the user's preferred dtype rather than float32. Tested, and seems to work well at float16. 2024-08-26 20:17:50 -04:00
Ryan Dick
1c1f2c6664 Add comment about incorrect T5 Tokenizer size calculation. 2024-08-26 20:17:50 -04:00
Brandon Rising
c27d59baf7 Run ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
72398350b4 More flux loader cleanup 2024-08-26 20:17:50 -04:00
Brandon Rising
df9445c351 Various styling and exception type updates 2024-08-26 20:17:50 -04:00
Brandon Rising
87b7a2e39b Switch inheritance class of flux model loaders 2024-08-26 20:17:50 -04:00
Brandon Rising
57168d719b Fix styling/lint 2024-08-26 20:17:50 -04:00
Brandon Rising
dee6d2c98e Fix support for 8b quantized t5 encoders, update exception messages in flux loaders 2024-08-26 20:17:50 -04:00
Ryan Dick
0c5e11f521 Fix FLUX output image clamping. And a few other minor fixes to make inference work with the full bfloat16 FLUX transformer model. 2024-08-26 20:17:50 -04:00
Brandon Rising
a63f842a13 Select dev/schnell based on state dict, use correct max seq len based on dev/schnell, and shift in inference, separate vae flux params into separate config 2024-08-26 20:17:50 -04:00
Brandon Rising
4bd7fda694 Install sub directories with folders correctly, ensure consistent dtype of tensors in flux pipeline and vae 2024-08-26 20:17:50 -04:00
Brandon Rising
81f0886d6f Working inference node with quantized bnb nf4 checkpoint 2024-08-26 20:17:50 -04:00
Brandon Rising
1bd90e0fd4 Run ruff, setup initial text to image node 2024-08-26 20:17:50 -04:00
Brandon Rising
436f18ff55 Add backend functions and classes for Flux implementation, Update the way flux encoders/tokenizers are loaded for prompt encoding, Update way flux vae is loaded 2024-08-26 20:17:50 -04:00
Brandon Rising
9ed53af520 Run Ruff 2024-08-26 20:17:50 -04:00
Brandon Rising
56fda669fd Manage quantization of models within the loader 2024-08-26 20:17:50 -04:00
blessedcoolant
4f8a4b0f22 Merge branch 'main' into depth_anything_v2 2024-08-03 00:38:57 +05:30
Ryan Dick
b9dc3460ba Rename SegmentAnythingModel -> SegmentAnythingPipeline. 2024-08-01 09:57:47 -04:00
Ryan Dick
fca119773b Split invokeai/backend/image_util/segment_anything/ dir into grounding_dino/ and segment_anything/ 2024-07-31 12:28:47 -04:00
Ryan Dick
9f448fecb7 Move invokeai/backend/grounded_sam -> invokeai/backend/image_util/grounded_sam 2024-07-31 10:00:30 -04:00
blessedcoolant
18f89ed5ed fix: Make DepthAnything work with Invoke's Model Management 2024-07-31 03:57:54 +05:30
Ryan Dick
ff6398f7d8 Add a GroundedSamInvocation for image segmentation from a text prompt (Grounding DINO + Segment Anything Model). 2024-07-30 11:12:26 -04:00
psychedelicious
74cef38bcf fix(backend): add refiner to single-file load_classes
Fixes single-file refiner loading.
2024-07-26 05:08:01 +10:00
Lincoln Stein
97a7f51721
don't use cpu state_dict for model unpatching when executing on cpu (#6631)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-18 15:34:01 -04:00
Ryan Dick
81991e072b Merge branch 'main' into ryan/spandrel-upscale 2024-07-16 15:14:08 -04:00
psychedelicious
38343917f8 fix(backend): revert non-blocking device transfer
In #6490 we enabled non-blocking torch device transfers throughout the model manager's memory management code. When using this torch feature, torch attempts to wait until the tensor transfer has completed before allowing any access to the tensor. Theoretically, that should make this a safe feature to use.

This provides a small performance improvement but causes race conditions in some situations. Specific platforms/systems are affected, and complicated data dependencies can make this unsafe.

- Intermittent black images on MPS devices - reported on discord and #6545, fixed with special handling in #6549.
- Intermittent OOMs and black images on a P4000 GPU on Windows - reported in #6613, fixed in this commit.

On my system, I haven't experience any issues with generation, but targeted testing of non-blocking ops did expose a race condition when moving tensors from CUDA to CPU.

One workaround is to use torch streams with manual sync points. Our application logic is complicated enough that this would be a lot of work and feels ripe for edge cases and missed spots.

Much safer is to fully revert non-locking - which is what this change does.
2024-07-16 08:59:42 +10:00
Ryan Dick
7b5d4935b4 Merge branch 'main' into ryan/spandrel-upscale 2024-07-09 13:47:11 -04:00
Ryan Dick
af63c538ed Demote error log to warning to models treated as having size 0. 2024-07-09 08:35:43 -04:00
Ryan Dick
1d449097cc Apply ruff rule to disallow all relative imports. 2024-07-04 09:35:37 -04:00
Ryan Dick
9da5925287 Add ruff rule to disallow relative parent imports. 2024-07-04 09:35:37 -04:00
Ryan Dick
414750a45d Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-04 09:08:25 -04:00
Ryan Dick
a405f14ea2 Fix SpandrelImageToImageModel size calculation for the model cache. 2024-07-03 16:38:16 -04:00
Ryan Dick
2a1514272f Set the dtype correctly for SpandrelImageToImageModels when they are loaded. 2024-07-03 16:28:21 -04:00
Ryan Dick
59ce9cf41c WIP - Begin to integrate SpandreImageToImageModel type into the model manager. 2024-07-03 16:28:21 -04:00
Ryan Dick
e4813f800a Update calc_model_size_by_data(...) to handle all expected model types, and to log an error if an unexpected model type is received. 2024-07-02 21:51:45 -04:00
Lincoln Stein
3e0fb45dd7
Load single-file checkpoints directly without conversion (#6510)
* use model_class.load_singlefile() instead of converting; works, but performance is poor

* adjust the convert api - not right just yet

* working, needs sql migrator update

* rename migration_11 before conflict merge with main

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* implement lightweight version-by-version config migration

* simplified config schema migration code

* associate sdxl config with sdxl VAEs

* remove use of original_config_file in load_single_file()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-27 17:31:28 -04:00
Ryan Dick
14775cc9c4 ruff format 2024-06-27 09:45:13 -04:00
psychedelicious
c7562dd6c0
fix(backend): mps should not use non_blocking
We can get black outputs when moving tensors from CPU to MPS. It appears MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility takes a torch device and returns the flag to be used for non_blocking when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

Fixes: #6545
2024-06-27 19:15:23 +10:00
Lincoln Stein
b03073d888
[MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
Lincoln Stein
a3cb5da130
Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
psychedelicious
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
Lincoln Stein
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
Lincoln Stein
2871676f79
LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
psychedelicious
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00