This introduces the core functionality for batch operations on images and multiple selection in the gallery/batch manager.
A number of other substantial changes are included:
- `imagesSlice` is consolidated into `gallerySlice`, allowing for simpler selection of filtered images
- `batchSlice` is added to manage the batch
- The wonky context pattern for image deletion has been changed, much simpler now using a `imageDeletionSlice` and redux listeners; this needs to be implemented still for the other image modals
- Minimum gallery size in px implemented as a hook
- Many style fixes & several bug fixes
TODO:
- The UI and UX need to be figured out, especially for controlnet
- Batch processing is not hooked up; generation does not do anything with batch
- Routes to support batch image operations, specifically delete and add/remove to/from boards
@blessedcoolant it looks like with the new theme buttons not being
transparent the progress bar was completely hidden, I moved to be on
top, however it was not transparent so it hid the invoke text, after
trying for a while couldn't get it to be transparent, so I just made the
height 15%,
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width
and this was sometimes happening during window resize)
- Set min size for floating gallery panel
- Correct the default pinned width (it cannot be less than the min width and this was sometimes happening during window resize)
Add `useMinimumPanelSize()` hook to provide minimum resizable panel sizes (in pixels).
The library we are using for the gallery panel uses percentages only. To provide a minimum size in pixels, we need to do some math to calculate the percentage of window size that corresponds to the desired min width in pixels.
The node polyfills needed to run the `swagger-parser` library (used to
dereference the OpenAPI schema) cause the canvas tab to immediately
crash when the package build is used in another react application.
I'm sure this is fixable but it's not clear what is causing the issue
and troubleshooting is very time consuming.
Selectively rolling back the implementation of `swagger-parser`.
The node polyfills needed to run the `swagger-parser` library (used to dereference the OpenAPI schema) cause the canvas tab to immediately crash when the package build is used in another react application.
I'm sure this is fixable but it's not clear what is causing the issue and troubleshooting is very time consuming.
Selectively rolling back the implementation of `swagger-parser`.
[feat(ui): remove themes, add hand-crafted dark and light
modes](032c7e68d0)
[032c7e6](032c7e68d0)
Themes are very fun but due to the differences in perceived saturation
and lightness across the
the color spectrum, it's impossible to have have multiple themes that
look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK
themes (well, 3, because the
light theme was pretty bad).
I've removed the themes and added color mode support. There is now a
single dark and light mode,
each with their own color palette and the classic grey / purple / yellow
invoke colors that
@blessedcoolant first designed.
I've re-styled almost everything except the model manager and lightbox,
which I keep forgetting
to work on.
One new concept is the Chakra `layerStyle`. This lets us define "layers"
- think body, first layer,
second layer, etc - that can be applied on various components. By
defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
Themes are very fun but due to the differences in perceived saturation and lightness across the
the color spectrum, it's impossible to have have multiple themes that look great without hand-
crafting *every* shade for *every* theme. We've ended up with 4 OK themes (well, 3, because the
light theme was pretty bad).
I've removed the themes and added color mode support. There is now a single dark and light mode,
each with their own color palette and the classic grey / purple / yellow invoke colors that
@blessedcoolant first designed.
I've re-styled almost everything except the model manager and lightbox, which I keep forgetting
to work on.
One new concept is the Chakra `layerStyle`. This lets us define "layers" - think body, first layer,
second layer, etc - that can be applied on various components. By defining layers, we can be more
consistent about the z-axis and its relationship to color and lightness.
The TS Language Server slows down immensely with our translation JSON, which is used to provide kinda-type-safe translation keys. I say "kinda", because you don't get autocomplete - you only get red squigglies when the key is incorrect.
To improve the performance, we can opt out of this process entirely, at the cost of no red squigglies for translation keys. Hopefully we can resolve this in the future.
It's not clear why this became an issue only recently (like past couple weeks). We've tried rolling back the app dependencies, VSCode extensions, VSCode itself, and the TS version to before the time when the issue started, but nothing seems to improve the performance.
1. Disable `resolveJsonModule` in `tsconfig.json`
2. Ignore TS in `i18n.ts` when importing the JSON
3. Comment out the custom types in `i18.d.ts` entirely
It's possible that only `3` is needed to fix the issue.
I've tested building the app and running the build - it works fine, and translation works fine.
Rewrite lora to be applied by model patching as it gives us benefits:
1) On model execution calculates result only on model weight, while with
hooks we need to calculate on model and each lora
2) As lora now patched in model weights, there no need to store lora in
vram
Results:
Speed:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~4.92 it/s | ~4.92 it/s |
| 1 | ~3.51 it/s | ~4.89 it/s |
| 2 | ~2.76 it/s | ~4.92 it/s |
VRAM:
| loras count | hook | patch |
| --- | --- | --- |
| 0 | ~3.6 gb | ~3.6 gb |
| 1 | ~4.0 gb | ~3.6 gb |
| 2 | ~4.4 gb | ~3.7 gb |
As based on #3547 wait to merge.
# Restore invokeai-configure and invokeai-model-install
This PR updates invokeai-configure and invokeai-model-install to work
with the new model manager file layout. It addresses a naming issue for
`ModelType.Main` (was `ModelType.Pipeline`) requested by
@blessedcoolant, and adds back the feature that allows users to dump
models into an `autoimport` directory for discovery at startup time.