- If CLI asked to convert the currently loaded model, the model would crash
on the first rendering. CLI will now refuse to convert a model loaded
in memory (probably a good idea in any case).
- CLI will offer the `v1-inpainting-inference.yaml` as the configuration
file when importing an inpainting a .ckpt or .safetensors file that
has "inpainting" in the name. Otherwise it offers `v1-inference.yaml`
as the default.
- The following were supposed to be equivalent, but the latter crashes:
```
invoke> banana sushi
invoke> --prompt="banana sushi"
```
This PR fixes the problem.
- Fixes#2548
Previously conversions of .ckpt and .safetensors files to diffusers
models were failing with channel mismatch errors. This is corrected
with this PR.
- The model_manager convert_and_import() method now accepts the path
to the checkpoint file's configuration file, using the parameter
`original_config_file`. For inpainting files this should be set to
the full path to `v1-inpainting-inference.yaml`.
- If no configuration file is provided in the call, then the presence
of an inpainting file will be inferred at the
`ldm.ckpt_to_diffuser.convert_ckpt_to_diffUser()` level by looking
for the string "inpaint" in the path. AUTO1111 does something
similar to this, but it is brittle and not recommended.
- This PR also changes the model manager model_names() method to return
the model names in case folded sort order.
- Issue is that if insufficient diffusers models are defined in
models.yaml the frontend would ungraciously crash.
- Now it emits appropriate error messages telling user what the problem
is.
- This fixes an edge case crash when the textual inversion frontend
tried to display the list of models and no default model defined
in models.yaml
Co-authored-by: Jonathan <34005131+JPPhoto@users.noreply.github.com>
This allows the --log_tokenization option to be used as a command line argument (or from invokeai.init), making it possible to view tokenization information in the terminal when using the web interface.
- Rename configure_invokeai.py to invokeai_configure.py to be
consistent with installed script name
- Remove warning message about half-precision models not being
available during the model download process.
- adjust estimated file size reported by configure
- guesstimate disk space needed for "all" models
- fix up the "latest" tag to be named 'v2.3-latest'
`torch` wasn't seeing the environment variable. I suspect this is because it was imported before the variable was set, so was running with a different environment.
Many `torch` ops are supported on MPS so this wasn't noticed immediately, but some samplers like k_dpm_2 still use unsupported operations and need this fallback.