- The invokeai.db database file has now been moved into
`INVOKEAIROOT/databases`. Using plural here for possible
future with more than one database file.
- Removed a few dangling debug messages that appeared during
testing.
- Rebuilt frontend to test web.
This commit makes InvokeAI 3.0 to be installable via PyPi.org and the
installer script.
Main changes.
1. Move static web pages into `invokeai/frontend/web` and modify the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root
to launch.
2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.
3. Fix a bug in the checkpoint converter script that was identified
during testing.
4. Better error reporting when checkpoint converter fails.
5. Rebuild front end.
- Make environment variable settings case InSenSiTive:
INVOKEAI_MAX_LOADED_MODELS and InvokeAI_Max_Loaded_Models
environment variables will both set `max_loaded_models`
- Updated realesrgan to use new config system.
- Updated textual_inversion_training to use new config system.
- Discovered a race condition when InvokeAIAppConfig is created
at module load time, which makes it impossible to customize
or replace the help message produced with --help on the command
line. To fix this, moved all instances of get_invokeai_config()
from module load time to object initialization time. Makes code
cleaner, too.
- Added `--from_file` argument to `invokeai-node-cli` and changed
github action to match. CI tests will hopefully work now.
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.
Examples:
### A critical error (logging.CRITICAL)
*** A non-fatal error (logging.ERROR)
** A warning (logging.WARNING)
>> Informational message (logging.INFO)
| Debugging message (logging.DEBUG)
- New method is ModelManager.get_sub_model(model_name:str,model_part:SDModelComponent)
To use:
```
from invokeai.backend import ModelManager, SDModelComponent as sdmc
manager = ModelManager('/path/to/models.yaml')
vae = manager.get_sub_model('stable-diffusion-1.5', sdmc.vae)
```
This commit fixes bugs related to the on-the-fly conversion and loading of
legacy checkpoint models built on SD-2.0 base.
- When legacy checkpoints built on SD-2.0 models were converted
on-the-fly using --ckpt_convert, generation would crash with a
precision incompatibility error.
A long-standing issue with importing legacy checkpoints (both ckpt and
safetensors) is that the user has to identify the correct config file,
either by providing its path or by selecting which type of model the
checkpoint is (e.g. "v1 inpainting"). In addition, some users wish to
provide custom VAEs for use with the model. Currently this is done in
the WebUI by importing the model, editing it, and then typing in the
path to the VAE.
To improve the user experience, the model manager's
`heuristic_import()` method has been enhanced as follows:
1. When initially called, the caller can pass a config file path, in
which case it will be used.
2. If no config file provided, the method looks for a .yaml file in the
same directory as the model which bears the same basename. e.g.
```
my-new-model.safetensors
my-new-model.yaml
```
The yaml file is then used as the configuration file for
importation and conversion.
3. If no such file is found, then the method opens up the checkpoint
and probes it to determine whether it is V1, V1-inpaint or V2.
If it is a V1 format, then the appropriate v1-inference.yaml config
file is used. Unfortunately there are two V2 variants that cannot be
distinguished by introspection.
4. If the probe algorithm is unable to determine the model type, then its
last-ditch effort is to execute an optional callback function that can
be provided by the caller. This callback, named `config_file_callback`
receives the path to the legacy checkpoint and returns the path to the
config file to use. The CLI uses to put up a multiple choice prompt to
the user. The WebUI **could** use this to prompt the user to choose
from a radio-button selection.
5. If the config file cannot be determined, then the import is abandoned.
The user can attach a custom VAE to the imported and converted model
by copying the desired VAE into the same directory as the file to be
imported, and giving it the same basename. E.g.:
```
my-new-model.safetensors
my-new-model.vae.pt
```
For this to work, the VAE must end with ".vae.pt", ".vae.ckpt", or
".vae.safetensors". The indicated VAE will be converted into diffusers
format and stored with the converted models file, so the ".pt" file
can be deleted after conversion.
No facility is currently provided to swap a diffusers VAE at import
time, but this can be done after the fact using the WebUI and CLI's
model editing functions.
- This PR turns on pickle scanning before a legacy checkpoint file
is loaded from disk within the checkpoint_to_diffusers module.
- Also miscellaneous diagnostic message cleanup.
- When a legacy checkpoint model is loaded via --convert_ckpt and its
models.yaml stanza refers to a custom VAE path (using the 'vae:'
key), the custom VAE will be converted and used within the diffusers
model. Otherwise the VAE contained within the legacy model will be
used.
- Note that the heuristic_import() method, which imports arbitrary
legacy files on disk and URLs, will continue to default to the
the standard stabilityai/sd-vae-ft-mse VAE. This can be fixed after
the fact by editing the models.yaml stanza using the Web or CLI
UIs.
- Fixes issue #2917
Prior to this commit, all models would be loaded with the extremely unsafe `torch.load` method, except those with the exact extension `.safetensors`. Even a change in casing (eg. `saFetensors`, `Safetensors`, etc) would cause the file to be loaded with torch.load instead of the much safer `safetensors.toch.load_file`.
If a malicious actor renamed an infected `.ckpt` to something like `.SafeTensors` or `.SAFETENSORS` an unsuspecting user would think they are loading a safe .safetensor, but would in fact be parsing an unsafe pickle file, and executing an attacker's payload. This commit fixes this vulnerability by reversing the loading-method decision logic to only use the unsafe `torch.load` when the file extension is exactly `.ckpt`.