Commit Graph

39 Commits

Author SHA1 Message Date
Lincoln Stein
0b529f0c57 enable outcropping of random JPG/PNG images
- Works best with runwayML inpainting model
- Numerous code changes required to propagate seed to final metadata.
  Original code predicated on the image being generated within InvokeAI.
2022-11-11 02:57:46 +00:00
Lincoln Stein
6f9f848345 enhance outcropping with ability to direct contents of new regions
- When outcropping an image you can now add a `--new_prompt` option, to specify
  a new prompt to be used instead of the original one used to generate the image.

- Similarly you can provide a new seed using `--seed` (or `-S`). A seed of zero
  will pick one randomly.

- This PR also fixes the crash that happened when trying to outcrop an image
  that does not contain InvokeAI metadata.
2022-11-11 02:56:51 +00:00
Lincoln Stein
116415b3fc fix invoke.py crash if no models.yaml file present
- Script will now offer the user the ability to create a
  minimal models.yaml and then gracefully exit.
- Closes #1420
2022-11-11 02:55:54 +00:00
Lincoln Stein
1450779146 update branch for installer to pull against 2022-11-08 12:56:36 +00:00
Lincoln Stein
89da42ad79 Merge branch 'pin-options-panel' of https://github.com/psychedelicious/stable-diffusion into psychedelicious-pin-options-panel
- from PR #1301
2022-10-31 09:37:13 -04:00
Damian at mba
ced9c83e96 various prompting fixes 2022-10-31 09:34:56 -04:00
Lincoln Stein
dc556cb1a7 add max_load_models parameter for model cache control
- ldm.generate.Generator() now takes an argument named `max_load_models`.
  This is an integer that limits the model cache size. When the cache
  reaches the limit, it will start purging older models from cache.

- CLI takes an argument --max_load_models, default to 2. This will keep
  one model in GPU and the other in CPU and switch back and forth
  quickly.

- To not cache models at all, pass --max_load_models=1
2022-10-31 08:55:53 -04:00
Lincoln Stein
0c8f0e3386 add max_load_models parameter for model cache control
- ldm.generate.Generator() now takes an argument named `max_load_models`.
  This is an integer that limits the model cache size. When the cache
  reaches the limit, it will start purging older models from cache.

- CLI takes an argument --max_load_models, default to 2. This will keep
  one model in GPU and the other in CPU and switch back and forth
  quickly.

- To not cache models at all, pass --max_load_models=1
2022-10-31 08:53:16 -04:00
Lincoln Stein
61ff90d1fd added files needed for preflight checks 2022-10-30 18:30:22 -04:00
Lincoln Stein
fe7ab6e480 fix crash in !del_model command 2022-10-28 11:20:04 -04:00
Lincoln Stein
aa785c3ef1 ready for merge after documentation added 2022-10-27 11:55:00 -04:00
Lincoln Stein
799dc6d0df acceptable integration of new prompting system and inpainting
This was a difficult merge because both PR #1108 and #1243 made
changes to obscure parts of the diffusion code.

- prompt weighting, merging and cross-attention working
  - cross-attention does not work with runwayML inpainting
    model, but weighting and merging are tested and working
- CLI command parsing code rewritten in order to get embedded
  quotes right
- --hires now works with runwayML inpainting
- --embiggen does not work with runwayML and will give an error
- Added an --invert option to invert masks applied to inpainting
- Updated documentation
2022-10-27 01:51:35 -04:00
Lincoln Stein
8d5a225011 allow for empty prompts (useful for inpaint removal) 2022-10-25 17:26:00 -04:00
Lincoln Stein
99d23c4d81 fix merge conflicts 2022-10-25 07:30:26 -04:00
Lincoln Stein
9bef643bf5 fix a few more metadata bugs
- facetool and upscale arguments now written into metadata
- cleaned up handling of !fetch command
2022-10-25 00:31:43 -04:00
Lincoln Stein
f6b31d51e0 fix incorrect handling of single quotes in prompts 2022-10-25 00:31:43 -04:00
Lincoln Stein
b159b2fe42 add support for safety checker (NSFW filter)
Now you can activate the Hugging Face `diffusers` library safety check
for NSFW and other potentially disturbing imagery.

To turn on the safety check, pass --safety_checker at the command
line. For developers, the flag is `safety_checker=True` passed to
ldm.generate.Generate(). Once the safety checker is turned on, it
cannot be turned off unless you reinitialize a new Generate object.

When the safety checker is active, suspect images will be blurred and
a warning icon is added. There is also a warning message printed in
the CLI, but it can be a little hard to see because of its positioning
in the output stream.

There is a slight but noticeable delay when the safety checker runs.

Note that invisible watermarking is *not* currently implemented. The
watermark code distributed by the CompViz distribution uses a library
that does not seem to be able to retrieve the watermarks it creates,
and it does not appear that Hugging Face `diffusers` or other SD
distributions are doing any watermarking.
2022-10-23 22:26:18 -04:00
Lincoln Stein
f25c1f900f add support for loading VAE autoencoders
To add a VAE autoencoder to an existing model:

1. Download the appropriate autoencoder and put it into
   models/ldm/stable-diffusion

   Note that you MUST use a VAE that was written for the
   original CompViz Stable Diffusion codebase. For v1.4,
   that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
   that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original

2. Edit config/models.yaml to contain the following stanza, modifying `weights`
   and `vae` as required to match the weights and vae model file names. There is
   no requirement to rename the VAE file.

~~~
stable-diffusion-1.4:
  weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
  description: Stable Diffusion v1.4
  config: configs/stable-diffusion/v1-inference.yaml
  vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
  width: 512
  height: 512
~~~

3. Alternatively from within the `invoke.py` CLI, you may use the command
   `!editmodel stable-diffusion-1.4` to bring up a simple editor that will
   allow you to add the path to the VAE.

4. If you are just installing InvokeAI for the first time, you can also
   use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
   to create the configuration from scratch.

5. That's it!
2022-10-23 09:33:15 -04:00
Lincoln Stein
ce6d618e3b outcropping improvements
- catch syntax errors in the outcrop coordinates
- work (after a fashion) on non-Invoke generated images
2022-10-23 09:33:00 -04:00
Lincoln Stein
b2bf2b08ff Merge branch 'model-switching' into development 2022-10-21 21:27:59 -04:00
Lincoln Stein
c9f9eed04e resolve numerous small merge bugs
- This merges PR #882

Coauthor: ArDiouscuros
2022-10-21 12:57:15 -04:00
Lincoln Stein
be7de4849c
Merge branch 'development' into model-switching 2022-10-21 00:55:52 -04:00
Lincoln Stein
83e6ab08aa further improvements to model loading
- code for committing config changes to models.yaml now in module
  rather than in invoke script
- model marked "default" is now loaded if model not specified on
  command line
- uncache changed models when edited, so that they reload properly
- removed liaon from models.yaml and added stable-diffusion-1.5
2022-10-21 00:28:54 -04:00
Lincoln Stein
a357bf4f19 add !mask command to view output of clipseg
- The !mask command takes an image path, a text prompt, and
  (optionally) a masking threshold. It creates a mask over the region
  indicated by the prompt, and outputs several files that show which
  regions will be masked by the chosen prompt and threshold.

- The mask images should not be passed directly to img2img because
  they are designed for visualization only. Instead, use the
  --text_mask option to pass the selected prompt and threshold.

- See docs/features/INPAINTING.md for details.
2022-10-20 06:56:50 -04:00
Lincoln Stein
c974c95e2b Merge branch 'development' of github.com:invoke-ai/InvokeAI into development 2022-10-17 23:14:55 -04:00
Lincoln Stein
3b2590243c ^C at invoke> cmd line exits gracefully 2022-10-17 23:14:32 -04:00
Lincoln Stein
0cf11ce488 add option to CLI and pngwriter that allows user to set PNG compression level
- In CLI: the argument is --png_compression <0..9> (-z<0..9>)
- In API, pass `compress_level` to PngWriter.save_image_and_prompt_to_png()

Compression ranges from 0 (no compression) to 9 (maximum compression).
Default value is 6 (as specified by Pillow package).

This addresses an issue first raised in #652.
2022-10-17 22:27:47 -04:00
Lincoln Stein
ef2058824a add a strength value to inpaint_replace
- --inpaint_replace 0.X will cause inpainting to ignore what is under
  the masked region with a strength ranging from 0 (don't ignore at all)
  to 1.0 (ignore completely)
- sync with upstream development
- update docs
2022-10-16 10:06:47 -04:00
Lincoln Stein
a705a5a0aa enhance support for model switching and editing
- Error checks for invalid model
- Add !del_model command to invoke.py
- Add del_model() method to model_cache
- Autocompleter kept in sync with model addition/subtraction.
2022-10-15 15:46:29 -04:00
Lincoln Stein
c4fb8e304b fix noisy images at high step counts
At step counts greater than ~75, the ksamplers start producing noisy
images when using the Karras noise schedule. This PR reverts to using
the model's own noise schedule, which eliminates the problem at the
cost of slowing convergence at lower step counts.

This PR also introduces a new CLI `--save_intermediates <n>' argument,
which will save every nth intermediate image into a subdirectory
named `intermediates/<image_prefix>'.

Addresses issue #1083.
2022-10-14 16:19:45 -04:00
Lincoln Stein
fe2a2cfc8b
Merge branch 'development' into model-switching 2022-10-14 13:18:59 -04:00
Lincoln Stein
1c501333e8 minor doc fixes 2022-10-14 07:30:26 -04:00
db3000
ce5e57d828 Generalize facetool strength argument 2022-10-14 00:03:06 -04:00
Lincoln Stein
e98fe9c22d fix noisy images at high step counts
At step counts greater than ~75, the ksamplers start producing noisy
images when using the Karras noise schedule. This PR reverts to using
the model's own noise schedule, which eliminates the problem at the
cost of slowing convergence at lower step counts.

This PR also introduces a new CLI `--save_intermediates <n>' argument,
which will save every nth intermediate image into a subdirectory
named `intermediates/<image_prefix>'.

Addresses issue #1083.
2022-10-14 00:01:59 -04:00
Lincoln Stein
6afc0f9b38 add ability to import and edit alternative models online
- !import_model <path/to/model/weights> will import a new model,
  prompt the user for its name and description, write it to the
  models.yaml file, and load it.

- !edit_model <model_name> will bring up a previously-defined model
  and prompt the user to edit its descriptive fields.

Example of !import_model

<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:

Name for this model: <b>waifu-diffusion</b>
Description of this model: <b>Waifu Diffusion v1.3</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu Diffusion v1.3
  height: 512
  weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
  width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
   | LatentDiffusion: Running in eps-prediction mode
   | DiffusionWrapper has 859.52 M params.
   | Making attention of type 'vanilla' with 512 in_channels
   | Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
   | Making attention of type 'vanilla' with 512 in_channels
   | Using faster float16 precision
</pre>

Example of !edit_model

<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512

>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu diffusion v1.4beta
  weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
  height: 512
  width: 512

OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
2022-10-13 23:48:07 -04:00
Lincoln Stein
aa6aa68753 proposed fix to work on mps systems 2022-10-12 11:08:27 -04:00
Lincoln Stein
488334710b enable fast switching between models in invoke.py
- This PR enables two new commands in the invoke.py script

 !models         -- list the available models and their cache status
 !switch <model> -- switch to the indicated model

Example:

 invoke> !models
   laion400m            not loaded  Latent Diffusion LAION400M model
   stable-diffusion-1.4     active  Stable Diffusion inference model version 1.4
   waifu-1.3                cached  Waifu anime model version 1.3
 invoke> !switch waifu-1.3
   >> Caching model stable-diffusion-1.4 in system RAM
   >> Retrieving model waifu-1.3 from system RAM cache

The name and descriptions of the models are taken from
`config/models.yaml`. A future enhancement to `model_cache.py` will be
to enable new model stanzas to be added to the file
programmatically. This will be useful for the WebGUI.

More details:

- Use fast switching algorithm described in PR #948
- Models are selected using their configuration stanza name
  given in models.yaml.
- To avoid filling up CPU RAM with cached models, this PR
  implements an LRU cache that monitors available CPU RAM.
- The caching code allows the minimum value of available RAM
  to be adjusted, but invoke.py does not currently have a
  command-line argument that allows you to set it. The
  minimum free RAM is arbitrarily set to 2 GB.
- Add optional description field to configs/models.yaml

Unrelated fixes:
- Added ">>" to CompViz model loading messages in order to make user experience
  more consistent.
- When generating an image greater than defaults, will only warn about possible
  VRAM filling the first time.
- Fixed bug that was causing help message to be printed twice. This involved
  moving the import line for the web backend into the section where it is
  called.

Coauthored by: @ArDiouscuros
2022-10-12 02:37:42 -04:00
Lincoln Stein
2b1aaf4ee7 rename all modules from ldm.dream to ldm.invoke
- scripts and documentation updated to match
- ran preflight checks on both web and CLI and seems to be working
2022-10-08 11:37:23 -04:00
Lincoln Stein
98fe044dee rebrand CLI from "dream" to "invoke"
- rename dream.py to invoke.py
- create a compatibility script named dream.py that execs() invoke.py
- redo documentation
- change help message in args
- this does **not** rename the libraries, which are still ldm.dream.util, etc
2022-10-08 09:32:06 -04:00