Commit Graph

582 Commits

Author SHA1 Message Date
a20e17330b blackify 2024-01-06 14:06:47 -05:00
4e83644433 if sdxl-vae-fp16-fix model is available then bake it in when converting ckpts 2024-01-06 14:06:47 -05:00
f7f697849c Skip weight initialization when resizing text encoder token embeddings to accomodate new TI embeddings. This saves time. 2024-01-05 15:16:00 -05:00
53b835945f Updated with ruff formatting 2023-12-28 11:05:19 +11:00
e38d0e39b7 fix bug when there are two multi vector TI in a prompt 2023-12-27 22:14:14 +01:00
cb698ff1fb Update model_probe to work with diffuser-format SD TI embeddings. 2023-12-18 09:51:16 -05:00
212dbaf9a2 fix comment 2023-12-15 00:25:27 -05:00
ac3cf48d7f make probe recognize lora format at https://civitai.com/models/224641 2023-12-15 00:25:27 -05:00
75089b7a9d merge in changes from main 2023-12-01 09:18:07 -05:00
5a3f1f2b22 fix ruff github format errors 2023-12-01 01:59:26 -05:00
f95ce1870c fix ruff format check 2023-12-01 01:46:12 -05:00
0719a46372 add support for SDXL textual inversion/embeddings 2023-12-01 01:28:28 -05:00
ecd3dcd5df Merge branch 'main' into refactor/model-manager-3 2023-11-27 22:15:51 -05:00
e509d719ee Fix attempt to deserialize on CUDA on Mac
Without specifying "cpu", attempts to use non-existent CUDA to deserialize embeddings on macOS, resulting in a warning / failure to load.
2023-11-28 09:24:57 +11:00
8ef596eac7 further changes for ruff 2023-11-26 17:13:31 -05:00
8c7a7bc897 Merge branch 'main' into refactor/model-manager-3 2023-11-22 22:29:23 -05:00
4aab728590 move name/description logic into model_probe.py 2023-11-22 22:29:02 -05:00
98a4930a52 add probe support for LCM main models 2023-11-22 14:58:27 -05:00
1a596a5684 fix(backend): fix unintentional change to import orders
- Ignore I001 (isort rules) for this file
- Ignore F401 (unused imports) for this file
2023-11-21 20:22:27 +11:00
da443973cb chore: ruff 2023-11-21 20:22:27 +11:00
6494e8e551 chore: ruff format 2023-11-11 10:55:40 +11:00
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
6001d3d71d Change pad_to_multiple_of to be 8 for all cases. Add comment about it's temporary status 2023-11-10 17:51:59 -05:00
8831d1ee41 Update Documentation 2023-11-10 17:51:59 -05:00
a0be83e370 Update Transformers to 4.34 and fix pad_to_multiple_of 2023-11-10 17:51:59 -05:00
8702a63197 add support for downloading and installing LCM lora diffusers models 2023-11-10 17:51:30 -05:00
6aa87f973e fix(nodes): create app/shared/ module to prevent circular imports
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.

This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.

Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.

Other shared classes, objects, and functions will be moved here in future commits.
2023-11-09 16:41:55 +11:00
e66d0f7372 Merge branch 'main' into feat/nodes/freeu 2023-11-06 05:39:58 -08:00
aa02ebf8f5 Fix model cache gc.collect() condition. 2023-11-04 08:52:10 -04:00
fb3d0c4b12 Fix bug in model cache reference count checking. 2023-11-03 13:50:40 -07:00
8488ab0134 Reduce frequency that we call gc.collect() in the model cache. 2023-11-03 13:50:40 -07:00
875231ed3d Add reminder to clean up our model cache clearing logic. 2023-11-03 13:50:40 -07:00
43b300498f Remove explicit gc.collect() after transferring models from device to CPU. I'm not sure why this was there in the first place, but it was taking a significant amount of time (up to ~1sec in my tests). 2023-11-03 13:50:40 -07:00
e391f3c9a8 Skip torch.nn.Embedding.reset_parameters(...) when loading a text encoder model. 2023-11-02 19:41:33 -07:00
6e7a3f0546 (minor) Fix static checks and typo. 2023-11-02 19:20:37 -07:00
4a683cc669 Add a app config parameter to control the ModelCache logging behavior. 2023-11-02 19:20:37 -07:00
3781e56e57 Add log_memory_usage param to ModelCache. 2023-11-02 19:20:37 -07:00
8ff49109a8 Update get_pretty_snapshot_diff(...) to handle None-snapshots. 2023-11-02 19:20:37 -07:00
bac2a757e8 Replace deepcopy with a pickle roundtrip in apply_ti(...) to improve speed. 2023-11-02 19:05:24 -07:00
fa7f6a6a10 Further tidying of LoRA patching. Revert some changes that didn't end up being important under the constraint that calculations are done on the same device as the model. 2023-11-02 10:03:17 -07:00
61b17c475a Add TODO note about improving _resolve_lora_key(...). 2023-11-02 10:03:17 -07:00
379d68f595 Patch LoRA on device when model is already on device. 2023-11-02 10:03:17 -07:00
545c811bf1 Remove device and dtype members from LoRAModelRaw, they can too easily get out-of-sync with the underlying layer states. 2023-11-02 10:03:17 -07:00
2ba5b44ec4 Remove unused _lora_forward_hook(...). 2023-11-02 10:03:17 -07:00
7f4ce518b7 auto-format lora.py 2023-11-02 10:03:17 -07:00
6cbc69f3b7 support conversion of controlnets from safetensors to diffusers 2023-10-23 22:06:10 -04:00
fdf02c33d0 Catch generic model errors
Prevent the app from dying on invalid models.
2023-10-19 07:28:33 +11:00
001bba1719 Merge branch 'main' into feat/nodes/freeu 2023-10-17 15:58:00 +11:00
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00