Commit Graph

148 Commits

Author SHA1 Message Date
psychedelicious
9bd78823a3 refactor(events): use pydantic schemas for events
Our events handling and implementation has a couple pain points:
- Adding or removing data from event payloads requires changes wherever the events are dispatched from.
- We have no type safety for events and need to rely on string matching and dict access when interacting with events.
- Frontend types for socket events must be manually typed. This has caused several bugs.

`fastapi-events` has a neat feature where you can create a pydantic model as an event payload, give it an `__event_name__` attr, and then dispatch the model directly.

This allows us to eliminate a layer of indirection and some unpleasant complexity:
- Event handler callbacks get type hints for their event payloads, and can use `isinstance` on them if needed.
- Event payload construction is now the responsibility of the event itself (a pydantic model), not the service. Every event model has a `build` class method, encapsulating this logic. The build methods are provided as few args as possible. For example, `InvocationStartedEvent.build()` gets the invocation instance and queue item, and can choose the data it wants to include in the event payload.
- Frontend event types may be autogenerated from the OpenAPI schema. We use the payload registry feature of `fastapi-events` to collect all payload models into one place, making it trivial to keep our schema and frontend types in sync.

This commit moves the backend over to this improved event handling setup.
2024-05-27 09:06:02 +10:00
psychedelicious
887b73aece feat(db): add error_type, error_message, rename error -> error_traceback to session_queue table 2024-05-24 20:02:24 +10:00
psychedelicious
25b9c19eed feat(app): handle preparation errors as node errors
We were not handling node preparation errors as node errors before. Here's the explanation, copied from a comment that is no longer required:

---

TODO(psyche): Sessions only support errors on nodes, not on the session itself. When an error occurs outside
node execution, it bubbles up to the processor where it is treated as a queue item error.

Nodes are pydantic models. When we prepare a node in `session.next()`, we set its inputs. This can cause a
pydantic validation error. For example, consider a resize image node which has a constraint on its `width`
input field - it must be greater than zero. During preparation, if the width is set to zero, pydantic will
raise a validation error.

When this happens, it breaks the flow before `invocation` is set. We can't set an error on the invocation
because we didn't get far enough to get it - we don't know its id. Hence, we just set it as a queue item error.

---

This change wraps the node preparation step with exception handling. A new `NodeInputError` exception is raised when there is a validation error. This error has the node (in the state it was in just prior to the error) and an identifier of the input that failed.

This allows us to mark the node that failed preparation as errored, correctly making such errors _node_ errors and not _processor_ errors. It's much easier to diagnose these situations. The error messages look like this:

> Node b5ac87c6-0678-4b8c-96b9-d215aee12175 has invalid incoming input for height

Some of the exception handling logic is cleaned up.
2024-05-24 20:02:24 +10:00
psychedelicious
5928ade5fd feat(app): simplified create image API
Graph, metadata and workflow all take stringified JSON only. This makes the API consistent and means we don't need to do a round-trip of pydantic parsing when handling this data.

It also prevents a failure mode where an uploaded image's metadata, workflow or graph are old and don't match the current schema.

As before, the frontend does strict validation and parsing when loading these values.
2024-05-18 09:04:37 +10:00
psychedelicious
922716d2ab feat(ui): store graph in image metadata
The previous super-minimal implementation had a major issue - the saved workflow didn't take into account batched field values. When generating with multiple iterations or dynamic prompts, the same workflow with the first prompt, seed, etc was stored in each image.

As a result, when the batch results in multiple queue items, only one of the images has the correct workflow - the others are mismatched.

To work around this, we can store the _graph_ in the image metadata (alongside the workflow, if generated via workflow editor). When loading a workflow from an image, we can choose to load the workflow or the graph, preferring the workflow.

Internally, we need to update images router image-saving services. The changes are minimal.

To avoid pydantic errors deserializing the graph, when we extract it from the image, we will leave it as stringified JSON and let the frontend's more sophisticated and flexible parsing handle it. The worklow is also changed to just return stringified JSON, so the API is consistent.
2024-05-18 09:04:37 +10:00
Lincoln Stein
dedf0c6ffa fix ruff issues 2024-04-12 07:19:16 +10:00
Lincoln Stein
579082ac10 [mm] clear the cache entry for a model that got an OOM during loading 2024-04-12 07:19:16 +10:00
fieldOfView
dca30d5462 (feat) add a method to get the path of an image from the invocation context
Fixes #6175
2024-04-08 18:42:55 +10:00
psychedelicious
f75de8a35c feat(db): add migration 9 - empty session queue
Empties the session queue. This is done to prevent any lingering session queue items from causing pydantic errors due to changed schemas.
2024-04-02 13:25:14 +11:00
psychedelicious
4049217728 feat(db): back up database before running migrations
Just in case.
2024-04-02 09:10:53 +11:00
Lincoln Stein
5be69f191d remove debug statement 2024-03-29 17:37:04 -04:00
Lincoln Stein
0ac1c0f339 use is_relative_to() rather than relying on string matching to determine relative directory positioning 2024-03-29 10:56:06 -04:00
Lincoln Stein
c308654442 migrate legacy conf files that were incorrectly relative to root 2024-03-29 10:56:06 -04:00
psychedelicious
7639e05dd2 feat(mm): add migration for RC users to migrate their dbs 2024-03-29 10:56:06 -04:00
Lincoln Stein
3409711ed3 close #6080 2024-03-28 22:51:45 -04:00
Joe Kubler
83b3828b55 prioritize iterate in _get_next_node 2024-03-26 09:18:46 +11:00
psychedelicious
897fe497dc fix(config): use new get_config across the app, use correct settings 2024-03-19 09:24:28 +11:00
psychedelicious
92b0d13d0e feat(nodes): "ModelField" -> "ModelIdentifierField", add hash/name/base/type 2024-03-10 11:03:38 +11:00
Brandon Rising
8ba4b2a150 Run ruff 2024-03-08 15:36:14 -05:00
Brandon Rising
df12e12e09 Run ruff 2024-03-08 15:36:14 -05:00
maryhipp
281222df3c remove old data migration from previous schema version 2024-03-08 13:10:27 -05:00
Brandon Rising
b6065d6328 Run ruff with newest version of ruff 2024-03-08 13:59:59 +11:00
Brandon Rising
04229f4a21 Run ruff 2024-03-08 13:59:59 +11:00
psychedelicious
528ac5dd25 refactor(nodes): model identifiers
- All models are identified by a key and optionally a submodel type via new model `ModelField`. Previously, a few model types had their own class, but not all of them. This inconsistency just added complexity without any benefit.
- Update all invocation to use the new format.
- In the node API, models are loaded by key or an instance of `ModelField` as a convenience.
- Add an enriched model schema for metadata. It includes key, hash, name, base and type.
2024-03-07 10:56:59 +11:00
psychedelicious
c953e61294 tidy(mm): "trigger_words" -> "trigger_phrases" 2024-03-05 23:50:19 +11:00
psychedelicious
44c40d7d1a refactor(mm): remove unused metadata logic, fix tests
- Metadata is merged with the config. We can simplify the MM substantially and remove the handling for metadata.
- Per discussion, we don't have an ETA for frontend implementation of tags, and with the realization that the tags from CivitAI are largely useless, there's no reason to keep tags in the MM right now. When we are ready to implement tags on the frontend, we can refer back to the implementation here and use it if it supports the design.
- Fix all tests.
2024-03-05 23:50:19 +11:00
psychedelicious
7cb0da1f66 refactor(mm): wip schema changes 2024-03-05 23:50:19 +11:00
psychedelicious
f13f5984c0 fix(mm): update db schema & migration 2024-03-05 23:50:19 +11:00
psychedelicious
2c835fd550 refactor(mm): WIP db schema 2024-03-05 23:50:19 +11:00
psychedelicious
a8cd3dfc99 refactor(mm): add models table (schema WIP), rename "original_hash" -> "hash" 2024-03-05 23:50:19 +11:00
psychedelicious
86982f3059 feat(mm): make ModelHash instantiatable, taking an algorithm as arg 2024-03-03 14:32:14 +11:00
psychedelicious
982076d7d7 feat(mm): add hashing algos to ModelHash
- Some algos are slow, so it is now just called ModelHash
- Added all hashlib algos, plus BLAKE3 and the fast (but incorrect) SHA1 algo
2024-03-03 14:32:14 +11:00
Lincoln Stein
a72056e0df make model key assignment deterministic
- When installing, model keys are now calculated from the model contents.
- .safetensors, .ckpt and other single file models are hashed with sha1
- The contents of diffusers directories are hashed using imohash (faster)

fixup yaml->sql db migration script to assign deterministic key

- this commit also detects and assigns the correct image encoder for
  ip adapter models.
2024-03-03 14:32:14 +11:00
psychedelicious
dd9daf8efb chore: ruff 2024-03-01 10:42:33 +11:00
psychedelicious
753919c6d7 docs(nodes): update all docstrings for public nodes API 2024-03-01 10:42:33 +11:00
psychedelicious
0b0128647b feat(nodes): revise model load API args 2024-03-01 10:42:33 +11:00
psychedelicious
d53a2a2d4e chore(nodes): better comments for invocation context 2024-03-01 10:42:33 +11:00
psychedelicious
ccfe6b6bef chore(nodes): "context_data" -> "data"
Changed within InvocationContext, for brevity.
2024-03-01 10:42:33 +11:00
psychedelicious
fdac0c3c9b refactor(nodes): move is_canceled to context.util 2024-03-01 10:42:33 +11:00
psychedelicious
18adcc1dd2 feat(nodes): add whole queue_item to InvocationContextData
No reason to not have the whole thing in there.
2024-03-01 10:42:33 +11:00
psychedelicious
86c50f2d5b tidy(nodes): remove extraneous comments 2024-03-01 10:42:33 +11:00
psychedelicious
317d076a1a feat(nodes): promote is_canceled to public node API 2024-03-01 10:42:33 +11:00
psychedelicious
725c03cf87 refactor(nodes): merge processors
Consolidate graph processing logic into session processor.

With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.

Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.

- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
2024-03-01 10:42:33 +11:00
psychedelicious
7e71effa17 tidy(nodes): remove no-op model_config
Because we now customize the JSON Schema creation for GraphExecutionState, the model_config did nothing.
2024-03-01 10:42:33 +11:00
psychedelicious
e93bd15392 tidy(nodes): remove LibraryGraphs
The workflow library supersedes this unused feature.
2024-03-01 10:42:33 +11:00
psychedelicious
641d235102 tidy(nodes): remove GraphInvocation
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:

1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.

The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.

2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.

3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
2024-03-01 10:42:33 +11:00
psychedelicious
b79ae3a101 fix(nodes): fix OpenAPI schema generation
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
2024-03-01 10:42:33 +11:00
psychedelicious
731860c332 feat(nodes): JIT graph nodes validation
We use pydantic to validate a union of valid invocations when instantiating a graph.

Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.

For example, consider a setup where we have 3 invocations in the app:

- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.

This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.

This PR refactors the validation of graph nodes to resolve this issue:

- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.

`BaseInvocationOutput` gets the same treatment.
2024-03-01 10:42:33 +11:00
dunkeroni
cd070d8be9 chore: ruff formatting 2024-03-01 10:42:33 +11:00
dunkeroni
965867151b chore(invocations): use IMAGE_MODES constant literal 2024-03-01 10:42:33 +11:00