The Pytorch ROCm version in the documentation in outdated (`rocm5.2`)
which leads to errors during the installation of InvokeAI.
This PR updates the documentation with the latest Pytorch ROCm `5.4.2`
version.
- This PR adds support for embedding files that contain a single key
"emb_params". The only example I know of this format is the
"EasyNegative" embedding on HuggingFace, but there are certainly
others.
- This PR also adds support for loading embedding files that have been
saved in safetensors format.
- It also cleans up the code so that the logic of probing for and
selecting the right format parser is clear.
keeping `main` up to date with my api nodes branch:
- bd7e515290: [nodes] Add cancelation to
the API @Kyle0654
- 5fe38f7: fix(backend): simple typing fixes
- just picking some low-hanging fruit to improve IDE hinting
- c34ac91: fix(nodes): fix cancel; fix callback for img2img, inpaint
- makes nodes cancel immediate, use fix progress images on nodes, fix
callbacks for img2img/inpaint
- 4221cf7: fix(nodes): fix schema generation for output classes
- did this previously for some other class; needed to not have node
outputs be optional
Some schedulers report not only the noisy latents at the current
timestep, but also their estimate so far of what the de-noised latents
will be.
It makes for a more legible preview than the noisy latents do.
I think this is a huge improvement, but there are a few considerations:
- Need to not spook @JPPhoto by changing how previews look.
- Some schedulers (most notably **DPM Solver++**) don't provide this
data, and it falls back to the current behavior there. That's not
terrible, but seeing such a big difference in how _previews_ look from
one scheduler to the next might mislead people into thinking there's a
bigger difference in their overall effectiveness than there really is.
My fear of configuration-option-overwhelm leaves me inclined to _not_
add a configuration option for this, but we could.
- resolve conflicts with generate.py invocation
- remove unused symbols that pyflakes complains about
- add **untested** code for passing intermediate latent image to the
step callback in the format expected.
This PR fixes#2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`
This is the test script that I used to determine that `step` is being passed
correctly:
```
from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img
def my_callback(state:PipelineIntermediateState, total_steps:int):
print(f'callback(step={state.step}/{total_steps})')
def main():
manager = ModelManager(Path(global_config_dir()) / "models.yaml")
model = manager.get_model('stable-diffusion-1.5')
print ('=== TXT2IMG TEST ===')
steps=30
output = next(Txt2Img(model).generate(prompt='banana sushi',
iterations=None,
steps=steps,
step_callback=lambda x: my_callback(x,steps)
)
)
print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')
if __name__=='__main__':
main()
```
- When a legacy checkpoint model is loaded via --convert_ckpt and its
models.yaml stanza refers to a custom VAE path (using the 'vae:' key),
the custom VAE will be converted and used within the diffusers model.
Otherwise the VAE contained within the legacy model will be used.
- Note that the checkpoint import functions in the CLI or Web UIs
continue to default to the standard stabilityai/sd-vae-ft-mse VAE. This
can be fixed after the fact by editing VAE key using either the CLI or
Web UI.
- Fixes issue #2917
The mkdocs-workflow has been failing over the past week due to
permission denied errors. I *think* this is the result of not passing
the GitHub API token to the workflow, and this is a speculative fix for
the issue.
- This PR turns on pickle scanning before a legacy checkpoint file is
loaded from disk within the checkpoint_to_diffusers module.
- Also miscellaneous diagnostic message cleanup.
- See also #3011 for a similar patch to the 2.3 branch.
Currently translated at 100.0% (504 of 504 strings)
translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (501 of 501 strings)
Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
Currently translated at 100.0% (504 of 504 strings)
translationBot(ui): update translation (Italian)
Currently translated at 100.0% (501 of 501 strings)
translationBot(ui): update translation (Italian)
Currently translated at 100.0% (500 of 500 strings)
Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI