Commit Graph

118 Commits

Author SHA1 Message Date
Lincoln Stein
abe4dc8ac1 Add support for yet another textual inversion embedding format
- This PR adds support for embedding files that contain a single key
  "emb_params". The only example I know of this format is the
  "EasyNegative" embedding on HuggingFace, but there are certainly
  others.

- This PR also adds support for loading embedding files that have been
  saved in safetensors format.

- It also cleans up the code so that the logic of probing for and
  selecting the right format parser is clear.
2023-03-27 09:39:03 -04:00
psychedelicious
5fe38f7c88 fix(backend): simple typing fixes 2023-03-26 17:07:03 +11:00
Lincoln Stein
dac3c158a5 Merge branch 'main' into feat/preview_predicted_x0
- resolve conflicts with generate.py invocation
- remove unused symbols that pyflakes complains about
- add **untested** code for passing intermediate latent image to the
  step callback in the format expected.
2023-03-25 16:07:18 -04:00
Lincoln Stein
501924bc60 do not reexport PipelineIntermediateState 2023-03-25 13:57:09 -04:00
Lincoln Stein
d117251747 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-25 13:57:09 -04:00
Lincoln Stein
5ac0316c62 fix issue with embeddings being loaded twice
- as noted by JPPhoto
2023-03-25 10:45:03 -04:00
Lincoln Stein
9ceec40b76
Merge branch 'main' into feat/use-custom-vaes 2023-03-24 17:45:02 -04:00
Lincoln Stein
85b2822f5e
Merge branch 'main' into security/scan-ckpt-files-main 2023-03-24 08:39:59 -04:00
Lincoln Stein
6e7dbf99f3
Merge branch 'main' into bugfix/dreambooth_ema 2023-03-23 23:24:15 -04:00
Lincoln Stein
deeff36e16
Merge branch 'main' into security/scan-ckpt-files-main 2023-03-23 23:20:52 -04:00
Lincoln Stein
92721a1d45 do not reexport PipelineIntermediateState 2023-03-24 09:32:47 +11:00
Lincoln Stein
f329fddab9 make step_callback work again in generate() call
This PR fixes #2951 and restores the step_callback argument in the
refactored generate() method. Note that this issue states that
"something is still wrong because steps and step are zero." However,
I think this is confusion over the call signature of the callback, which
since the diffusers merge has been `callback(state:PipelineIntermediateState)`

This is the test script that I used to determine that `step` is being passed
correctly:

```

from pathlib import Path
from invokeai.backend import ModelManager, PipelineIntermediateState
from invokeai.backend.globals import global_config_dir
from invokeai.backend.generator import Txt2Img

def my_callback(state:PipelineIntermediateState, total_steps:int):
    print(f'callback(step={state.step}/{total_steps})')

def main():
    manager = ModelManager(Path(global_config_dir()) / "models.yaml")
    model = manager.get_model('stable-diffusion-1.5')
    print ('=== TXT2IMG TEST ===')
    steps=30
    output = next(Txt2Img(model).generate(prompt='banana sushi',
                                          iterations=None,
                                          steps=steps,
                                          step_callback=lambda x: my_callback(x,steps)
                                          )
                  )
    print(f'image={output.image}, seed={output.seed}, steps={output.params.steps}')

if __name__=='__main__':
    main()
```
2023-03-24 09:32:47 +11:00
Lincoln Stein
f751dcd245 load embeddings after a ckpt legacy model is converted to diffusers
- Fixes #2954
- Also improves diagnostic reporting during embedding loading.
2023-03-23 15:21:58 -04:00
Lincoln Stein
a97107bd90 handle VAEs that do not have a "state_dict" key 2023-03-23 15:11:29 -04:00
Lincoln Stein
b2ce45a417 re-implement model scanning when loading legacy checkpoint files
- This PR turns on pickle scanning before a legacy checkpoint file
  is loaded from disk within the checkpoint_to_diffusers module.

- Also miscellaneous diagnostic message cleanup.
2023-03-23 15:03:30 -04:00
Lincoln Stein
4e0b5d85ba convert custom VAEs into diffusers
- When a legacy checkpoint model is loaded via --convert_ckpt and its
  models.yaml stanza refers to a custom VAE path (using the 'vae:'
  key), the custom VAE will be converted and used within the diffusers
  model. Otherwise the VAE contained within the legacy model will be
  used.

- Note that the heuristic_import() method, which imports arbitrary
  legacy files on disk and URLs, will continue to default to the
  the standard stabilityai/sd-vae-ft-mse VAE. This can be fixed after
  the fact by editing the models.yaml stanza using the Web or CLI
  UIs.

- Fixes issue #2917
2023-03-23 13:14:19 -04:00
Lincoln Stein
a958ae5e29 Merge branch 'main' into feat/use-custom-vaes 2023-03-23 10:32:56 -04:00
psychedelicious
b194180f76 feat(backend): make fast latents method static 2023-03-16 20:03:08 +11:00
psychedelicious
fb30b7d17a feat(backend): add image_to_dataURL util 2023-03-16 20:03:08 +11:00
Jonathan
44f489d581
Merge branch 'main' into fix-seampaint 2023-03-14 06:19:25 -05:00
blessedcoolant
0a761d7c43 fix(inpaint): Seam painting being broken 2023-03-15 00:00:08 +13:00
Damian Stewart
a0f47aa72e
Merge branch 'main' into main 2023-03-14 11:41:29 +01:00
Lincoln Stein
d840c597b5 fix --png_compression command line argument
- The value of png_compression was always 6, despite the value provided to the
  --png_compression argument. This fixes the bug.
- It also fixes an inconsistency between the maximum range of png_compression
  and the help text.

- Closes #2945
2023-03-14 00:24:05 -04:00
Lincoln Stein
3ca654d256 speculative fix for alternative vaes 2023-03-13 23:27:29 -04:00
jeremy
e0e01f6c50 Reduced Pickle ACE attack surface
Prior to this commit, all models would be loaded with the extremely unsafe `torch.load` method, except those with the exact extension `.safetensors`. Even a change in casing (eg. `saFetensors`, `Safetensors`, etc) would cause the file to be loaded with torch.load instead of the much safer `safetensors.toch.load_file`.
If a malicious actor renamed an infected `.ckpt` to something like `.SafeTensors` or `.SAFETENSORS` an unsuspecting user would think they are loading a safe .safetensor, but would in fact be parsing an unsafe pickle file, and executing an attacker's payload. This commit fixes this vulnerability by reversing the loading-method decision logic to only use the unsafe `torch.load` when the file extension is exactly `.ckpt`.
2023-03-13 16:16:30 -04:00
JPPhoto
596ba754b1 Removed seed from get_make_image. 2023-03-13 08:15:46 -05:00
JPPhoto
b980e563b9 Fix bug #2931 2023-03-13 08:11:09 -05:00
Kevin Turner
288cee9611 Merge remote-tracking branch 'origin/main' into feat/preview_predicted_x0
# Conflicts:
#	invokeai/app/invocations/generate.py
2023-03-12 20:56:02 -07:00
Kyle Schouviller
3ee2798ede [fix] Get the model again if current model is empty 2023-03-12 22:26:11 -04:00
Fabio 'MrWHO' Torchetti
5c5106c14a Add keys when non EMA 2023-03-12 16:22:22 -05:00
Fabio 'MrWHO' Torchetti
c367b21c71 Fix issue #2932 2023-03-12 15:40:33 -05:00
Lincoln Stein
6a77634b34 remove unneeded generate initializer routines 2023-03-11 17:14:03 -05:00
Lincoln Stein
8ca91b1774 add restoration services to nodes 2023-03-11 17:00:00 -05:00
Lincoln Stein
3aa1ee1218 restore NSFW checker 2023-03-11 16:16:44 -05:00
Lincoln Stein
c14241436b move ModelManager initialization into its own module and restore embedding support 2023-03-11 10:56:53 -05:00
Lincoln Stein
d612f11c11 initialize InvokeAIGenerator object with model, not manager 2023-03-11 09:06:46 -05:00
Lincoln Stein
250b0ab182 add seamless tiling support 2023-03-11 08:33:23 -05:00
Lincoln Stein
675dd12b6c add attention map images to output object 2023-03-11 08:07:01 -05:00
Lincoln Stein
7e76eea059 add embiggen, remove complicated constructor 2023-03-11 07:50:39 -05:00
Lincoln Stein
fe75b95464 Merge branch 'refactor/nodes-on-generator' of github.com:invoke-ai/InvokeAI into refactor/nodes-on-generator 2023-03-10 19:36:40 -05:00
Lincoln Stein
95954188b2 remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:

```
from invokeai.backend.generator import (
    InvokeAIGeneratorBasicParams,
    Txt2Img,
    Img2Img,
    Inpaint,
)
    params = InvokeAIGeneratorBasicParams(
        model_name = 'stable-diffusion-1.5',
        steps = 30,
        scheduler = 'k_lms',
        cfg_scale = 8.0,
        height = 640,
        width = 640
        )
    print ('=== TXT2IMG TEST ===')
    txt2img = Txt2Img(manager, params)
    outputs = txt2img.generate(prompt='banana sushi', iterations=2)

    for i in outputs:
        print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```

The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:

```
    outputs = Txt2Img(manager).generate(prompt='banana sushi',
                                        steps=50,
					scheduler='k_heun',
					model_name='stable-diffusion-2.1'
					)
```
2023-03-10 19:33:04 -05:00
Jonathan
63f59201f8
Merge branch 'main' into feat/preview_predicted_x0 2023-03-10 12:34:07 -06:00
Jonathan
370e8281b3
Merge branch 'main' into refactor/nodes-on-generator 2023-03-10 12:34:00 -06:00
Lincoln Stein
685df33584
fix bug that caused black images when converting ckpts to diffusers in RAM (#2914)
Cause of the problem was inadvertent activation of the safety checker.

When conversion occurs on disk, the safety checker is disabled during loading.
However, when converting in RAM, the safety checker was not removed, resulting
in it activating even when user specified --no-nsfw_checker.

This PR fixes the problem by detecting when the caller has requested the InvokeAi
StableDiffusionGeneratorPipeline class to be returned and setting safety checker
to None. Do not do this with diffusers models destined for disk because then they
will be incompatible with the merge script!!

Closes #2836
2023-03-10 18:11:32 +00:00
Kevin Turner
fe6858f2d9 feat: use the predicted denoised image for previews
Some schedulers report not only the noisy latents at the current timestep,
but also their estimate so far of what the de-noised latents will be.

It makes for a more legible preview than the noisy latents do.
2023-03-09 20:28:06 -08:00
Lincoln Stein
14c8738a71 fix dangling reference to _model_to_cpu and missing variable model_description 2023-03-09 21:41:45 -05:00
Kevin Turner
1a829bb998 pipeline: remove code for legacy model 2023-03-09 18:15:12 -08:00
Kevin Turner
9d339e94f2 backend..conditioning: remove code for legacy model 2023-03-09 18:15:12 -08:00
Kevin Turner
ad7b1fa6fb model_manager: model to/from CPU methods are implemented on the Pipeline 2023-03-09 18:15:12 -08:00
Kevin Turner
42355b70c2 fix(Pipeline.debug_latents): fix import for moved utility function 2023-03-09 18:15:12 -08:00