- Remove OmegaConf. It functioned as an intermediary data format, between YAML/argparse and pydantic. It's not necessary - we can parse YAML or CLI args directly with pydantic.
- Remove dynamic CLI args. Only `root` is explicitly supported. This greatly simplifies config handling. Configuration is done by editing the YAML file. Frequently-used args can be added if there is a demand.
- A separate arg parser is created to handle the slimmed-down CLI args. It's run immediately in the `invokeai-web` script to handle `--version` and `--help`. It is also used inside the singleton config getter (see below).
- Remove categories from the config. Our settings model is mostly flat. Handling categories adds complexity for both us and users - we have to handle transforming a flat config to categorized config (and vice-versa), while users have to be careful with indentation in their YAML file.
- Add a `meta` key to the config file. Currently, this holds the config schema version only. It is not a part of the config object itself.
- Remove legacy settings that are no longer referenced, or were effectively no-op settings when referenced in code.
- Implement simple migration logic to for v3 configs. If migration is successful, the v3 config file is backed up to `invokeai.yaml.bak` and the new config written to `invokeai.yaml`.
- Previously, the singleton config was accessed by calling `InvokeAIAppConfig.get_config()`. This returned an instance of `InvokeAIAppConfig`, which _also_ has the `get_config` function. This created to a confusing situation where you weren't sure if you needed to call `get_config` or just use the config object. This method is replaced by a standalone `get_config` function which returns a singleton config object.
- Wrap CLI arg parsing (for `root`) and loading/migrating `invokeai.yaml` into the new `get_config()` function.
- Move `generate_config_docstrings` into standalone utility function.
- Make `root` a private attr (`_root`). This reduces the temptation to directly modify and or use this sensitive field and ensures it is neither serialized nor read from input data. Use `root_path` to access the resolved root path, or `set_root` to set the root to something.
* allow removal of models with legacy relative path addressing
* added five controlnet models for sdxl to INITIAL_MODELS
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
- No longer install core conversion models. Use the HuggingFace cache to load
them if and when needed.
- Call directly into the diffusers library to perform conversions with only shallow
wrappers around them to massage arguments, etc.
- At root configuration time, do not create all the possible model subdirectories,
but let them be created and populated at model install time.
- Remove checks for missing core conversion files, since they are no
longer installed.
In the client, a controlnet or t2i adapter has two images:
- The source control image: the image the user selected (required)
- The processed control image: the user's image after we've processed it (optional)
The processed image is optional because a user may provide a pre-processed image.
We only actually use one of these images when building the graph, and until this change, we only stored one of the in image metadata. This created a situation where only a processed image was stored in metadata - say, a canny edge map - and the user-selected image wasn't provided.
By adding the processed image to metadata, we can recall both the control image and optional processed image.
This commit is followed by a UI-facing changes to support the change.
- This adds additional logic to the safetensors->diffusers conversion script
to check for and install missing core conversion models at runtime.
- Fixes#5934
BLAKE3 has poor performance on spinning disks when parallelized. See https://github.com/BLAKE3-team/BLAKE3/issues/31
- Replace `skip_model_hash` setting with `hashing_algorithm`. Any algorithm we support is accepted.
- Add `random` algorithm: hashes a UUID with BLAKE3 to create a random "hash". Equivalent to the previous skip functionality.
- Add `blake3_single` algorithm: hashes on a single thread using BLAKE3, fixes the aforementioned performance issue
- Update model probe to accept the algorithm to hash with as an optional arg, defaulting to `blake3`
- Update all calls of the probe to use the app's configured hashing algorithm
- Update an external script that probes models
- Update tests
- Move ModelHash into its own module to avoid circuclar import issues
This script removes unused translations from the `en.json` source translation file:
- Parse `en.json` to build a list of all keys, e.g. `controlnet.depthAnything`
- Check every frontend file for every key
- If the key is not found, it is removed from the translation file
- Exact matches (e.g. `controlnet.depthAnything`) and stem matches (e.g. `depthAnything`) are ignored
The graph builders used awaited functions within `Array.prototype.forEach` loops. This doesn't do what you'd think. This caused graphs to be enqueued before they were fully constructed.
Changed to `for..of` loops to fix this.
There wasn't enough validation of control adapters during graph building. It would be possible for a graph to be built with empty collect node, causing an error. Addressed with an extra check.
This should never happen in practice, because the invoke button should be disabled if an invalid CA is active.
We were stripping the file extension from file models when moving them in `_sync_model_path`. For example, `some_model.safetensors` would be moved to `some_model`, which of course breaks things.
Instead of using the model's name as the new path, use the model's path's last segment. This is the same behaviour for directories, but for files, it retains the file extension.
- No need for it to by a pydantic model. Just a class now.
- Remove ABC, it made it hard to understand what was going on as attributes were spread across the ABC and implementation. Also, there is no other implementation.
- Add tests
- If the metadata yaml has an invalid version, exist the app. If we don't, the app will crawl the models dir and add models to the db without having first parsed `models.yaml`. This should not happen often, as the vast majority of users are on v3.0.0 models.yaml files.
- Fix off-by-one error with models count (need to pop the `__metadata__` stanza
- After a successful migration, rename `models.yaml` to `models.yaml.bak` to prevent the migration logic from re-running on subsequent app startups.
The old logic to check if a model needed to be moved relied on the model path being a relative path. Paths are now absolute, causing this check to fail. We then assumed the paths were different and moved the model from its current location to, well, its current location.
Use more resilient method to check if a model should be moved.
mkdocs can autogenerate python class docs from its docstrings. Our config is a pydantic model.
It's tedious and error-prone to duplicate docstrings from the pydantic field descriptions to the class docstrings.
- Add helper function to generate a mkdocs-compatible docstring from the InvokeAIAppConfig class fields
Recently the schema for models was changed to a generic `ModelField`, and the UI was unable to derive the type of those fields. This didn't affect functionality, but it did break the styling of handles.
Add `ui_type` to the affected fields and update the UI to use the correct capitalizations.
A list of regex and token pairs is accepted. As a file is downloaded by the model installer, the URL is tested against the provided regex/token pairs. The token for the first matching regex is used during download, added as a bearer token.
Without this, the form will incorrectly compare its state to its initial default values to determine if it is dirty. Instead, it should reset its default values to the new values after successful submit.
When we change a model image, its URL remains the same. The browser will aggressively cache the image. The easiest way to fix this is to append a random query parameter to the URL whenever we build a model config in the API.
- Move image display to left
- Move description into model header
- Move model edit & convert buttons to top right of model header
- Tweak styles for model display component
Currently translated at 94.6% (1431 of 1512 strings)
translationBot(ui): update translation (Russian)
Currently translated at 94.6% (1431 of 1512 strings)
Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
Currently translated at 98.0% (1487 of 1516 strings)
translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1482 of 1512 strings)
translationBot(ui): update translation (Italian)
Currently translated at 98.0% (1475 of 1505 strings)
Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
- All models are identified by a key and optionally a submodel type via new model `ModelField`. Previously, a few model types had their own class, but not all of them. This inconsistency just added complexity without any benefit.
- Update all invocation to use the new format.
- In the node API, models are loaded by key or an instance of `ModelField` as a convenience.
- Add an enriched model schema for metadata. It includes key, hash, name, base and type.
In order for delete by match to work, we need the whole invocation output to be stringified.
For some reason, the serialization of the output was set to only include the `type` field. It should instead include the whole output.
I don't understand how this ever worked unless pydantic had different serialization behaviour in v1 (though it appears to have been the same).
Closes#5805
* move defaultModel logic to modelsLoaded and update to work for key instead of name/base/type string
* lint fix
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
- Update all queries
- Remove Advanced Add
- Removed un-editable, internal-only model attributes from model edit UI (e.g. format, repo variant, model type)
- Update model tags so the list refreshes when a model installs
- Rename some queries, components, variables, types to match backend
- Fix divide-by-zero in install queue
Rename MM routes to be consistent:
- "import" -> "install"
- "model_record" -> "model"
Comment several unused routes while I work (may end up removing them?):
- list model summary (we use the search route instead)
- add model record
- convert model
- merge models
There is a breaking change in python 3.11 related to how enums with `str` as a mixin are formatted. This appears to have not caused any grief for us until now.
Re-jigger the discriminator setup to use `.value` so everything works on both python 3.10 and 3.11.
- Metadata is merged with the config. We can simplify the MM substantially and remove the handling for metadata.
- Per discussion, we don't have an ETA for frontend implementation of tags, and with the realization that the tags from CivitAI are largely useless, there's no reason to keep tags in the MM right now. When we are ready to implement tags on the frontend, we can refer back to the implementation here and use it if it supports the design.
- Fix all tests.
Sometimes, diffusers model components (tokenizer, unet, etc.) have multiple weights files in the same directory.
In this situation, we assume the files are different versions of the same weights. For example, we may have multiple
formats (`.bin`, `.safetensors`) with different precisions. When downloading model files, we want to select only
the best of these files for the requested format and precision/variant.
The previous logic assumed that each model weights file would have the same base filename, but this assumption was
not always true. The logic is revised score each file and choose the best scoring file, resulting in only a single
file being downloaded for each submodel/subdirectory.
* UI in MM to create trigger phrases
* add scheduler and vaePrecision to config
* UI for configuring default settings for models'
* hook MM default model settings up to API
* add button to set default settings in parameters
* pull out trigger phrases
* back-end for default settings
* lint
* remove log;
gi
* ruff
* ruff format
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
- Use memory view for hashlib algorithms (closer to python 3.11's filehash API in hashlib)
- Remove `sha1_fast` (realized it doesn't even hash the whole file, it just does the first block)
- Add support for custom file filters
- Update docstrings
- Update tests
- When installing, model keys are now calculated from the model contents.
- .safetensors, .ckpt and other single file models are hashed with sha1
- The contents of diffusers directories are hashed using imohash (faster)
fixup yaml->sql db migration script to assign deterministic key
- this commit also detects and assigns the correct image encoder for
ip adapter models.
Model metadata includes the main model, VAE and refiner model.
These used full model configs, as returned by the server, as their metadata type.
LoRA and control adapter metadata only use the metadata identifier.
This created a difference in handling. After parsing a model/vae/refiner, we have its name and can display it. But for LoRAs and control adapters, we only have the model key and must query for the full model config to get the name.
This change makes main model/vae/refiner metadata only have the model key, like LoRAs and control adapters.
The render function is now async so fetching can occur within it. All metadata fields with models now only contain the identifier, and fetch the model name to render their values.
When we retrieve a list of models, upsert that data into the `getModelConfig` and `getModelConfigByAttrs` query caches.
With this change, calls to those two queries are almost always going to be free, because their caches will already have all models in them. The exception is queries for models that no longer exist.
Add concepts for metadata handlers. Handlers include parsers, recallers and validators for different metadata types:
- Parsers parse a raw metadata object of any shape to a structured object.
- Recallers load the parsed metadata into state. Recallers are optional, as some metadata types don't need to be loaded into state.
- Validators provide an additional layer of validation before recalling the metadata. This is needed because a metadata object may be valid, but not able to be recalled due to some other requirement, like base model compatibility. Validators are optional.
Sometimes metadata is not a single object but a list of items - like LoRAs. Metadata handlers may implement an optional set of "item" handlers which operate on individual items in the list.
Parsers and validators are async to allow fetching additional data, like a model config. Recallers are synchronous.
The these handlers are composed into a public API, exported as a `handlers` object. Besides the handlers functions, a metadata handler set includes:
- A function to get the label of the metadata type.
- An optional function to render the value of the metadata type.
- An optional function to render the _item_ value of the metadata type.
Gets the first model that matches the given name, base and type. Raises 404 if there isn't one.
This will be used for backwards compatibility with old metadata.
This was done in the frontend before but it's something the backend should handle.
The logic compares the found model paths to the path and source of all installed models. It excludes core models.
Refactor of metadata recall handling. This is in preparation for a backwards compatibility layer for models.
- Create helpers to fetch a model outside react (e.g. not in a hook)
- Created helpers to parse model metadata
- Renamed a lot of types that were confusing and/or had naming collisions
The setup of `ModelConfigBase` means autogenerated types have critical fields flagged as nullable (like `key` and `base`). Need to manually flag them as required.
- Support extended HF repoid syntax in TUI. This allows
installation of subfolders and safetensors files, as in
`XpucT/Deliberate::Deliberate_v5.safetensors`
- Add `error` and `error_traceback` properties to the install
job objects.
- Rename the `heuristic_import` route to `heuristic_install`.
- Fix the example `config` input in the `heuristic_install` route.
Notable updates:
- Minor version of RTK includes customizable selectors for RTK Query, so we can remove the patch that was added to ensure only the LRU memoize function was used for perf reasons. Updated to use the LRU memoize function.
- Major version of react-resizable-panels. No breaking changes, works great, and you can now resize all panels when dragging at the intersection point of panels. Cool!
- Minor (?) version of nanostores. `action` API is removed, we were using it in one spot. Fixed.
- @invoke-ai/eslint-config-react has all deps bumped and now has its dependent plugins/configs listed as normal dependencies (as opposed to peer deps). This means we can remove those packages from explicit dev deps.
- Use a single listener for all of the to keep them in one spot
- Use the bulk download item name as a toast id so we can update the existing toasts
- Update handling to work with other environments
- Move all bulk download handling from components to listener
Double underscores are used in the app but it doesn't actually do or convey anything that single underscores don't already do. Considered unpythonic except for actual dunder/magic methods.
Consolidate graph processing logic into session processor.
With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.
Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.
- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
`GraphInvocation` is a node that can contain a whole graph. It is removed for a number of reasons:
1. This feature was unused (the UI doesn't support it) and there is no plan for it to be used.
The use-case it served is known in other node execution engines as "node groups" or "blocks" - a self-contained group of nodes, which has group inputs and outputs. This is a planned feature that will be handled client-side.
2. It adds substantial complexity to the graph processing logic. It's probably not enough to have a measurable performance impact but it does make it harder to work in the graph logic.
3. It allows for graphs to be recursive, and the improved invocations union handling does not play well with it. Actually, it works fine within `graph.py` but not in the tests for some reason. I do not understand why. There's probably a workaround, but I took this as encouragement to remove `GraphInvocation` from the app since we don't use it.
The change to `Graph.nodes` and `GraphExecutionState.results` validation requires some fanagling to get the OpenAPI schema generation to work. See new comments for a details.
We use pydantic to validate a union of valid invocations when instantiating a graph.
Previously, we constructed the union while creating the `Graph` class. This introduces a dependency on the order of imports.
For example, consider a setup where we have 3 invocations in the app:
- Python executes the module where `FirstInvocation` is defined, registering `FirstInvocation`.
- Python executes the module where `SecondInvocation` is defined, registering `SecondInvocation`.
- Python executes the module where `Graph` is defined. A union of invocations is created and used to define the `Graph.nodes` field. The union contains `FirstInvocation` and `SecondInvocation`.
- Python executes the module where `ThirdInvocation` is defined, registering `ThirdInvocation`.
- A graph is created that includes `ThirdInvocation`. Pydantic validates the graph using the union, which does not know about `ThirdInvocation`, raising a `ValidationError` about an unknown invocation type.
This scenario has been particularly problematic in tests, where we may create invocations dynamically. The test files have to be structured in such a way that the imports happen in the right order. It's a major pain.
This PR refactors the validation of graph nodes to resolve this issue:
- `BaseInvocation` gets a new method `get_typeadapter`. This builds a pydantic `TypeAdapter` for the union of all registered invocations, caching it after the first call.
- `Graph.nodes`'s type is widened to `dict[str, BaseInvocation]`. This actually is a nice bonus, because we get better type hints whenever we reference `some_graph.nodes`.
- A "plain" field validator takes over the validation logic for `Graph.nodes`. "Plain" validators totally override pydantic's own validation logic. The validator grabs the `TypeAdapter` from `BaseInvocation`, then validates each node with it. The validation is identical to the previous implementation - we get the same errors.
`BaseInvocationOutput` gets the same treatment.
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation
resolve conflict with seamless.py
- Rename old "model_management" directory to "model_management_OLD" in order to catch
dangling references to original model manager.
- Caught and fixed most dangling references (still checking)
- Rename lora, textual_inversion and model_patcher modules
- Introduce a RawModel base class to simplfy the Union returned by the
model loaders.
- Tidy up the model manager 2-related tests. Add useful fixtures, and
a finalizer to the queue and installer fixtures that will stop the
services and release threads.
- ModelMetadataStoreService is now injected into ModelRecordStoreService
(these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
- Update most model identifiers to be `{key: string}` instead of name/base/type. Doesn't change the model select components yet.
- Update model _parameters_, stored in redux, to be `{key: string, base: BaseModel}` - we need to store the base model to be able to check model compatibility. May want to store the whole config? Not sure...