Compare commits

...

68 Commits

Author SHA1 Message Date
73be58a0b5 fix issue #3293 2023-04-29 11:37:07 -04:00
5a7d11bca8 remove debugging statement 2023-04-27 08:21:26 -04:00
5bbf7fe34a [Bugfix] Renames in 0.15.0 diffusers (#3184)
Link to PR in diffusers repository:
https://github.com/huggingface/diffusers/pull/2691

Imports:
`diffusers.models.cross_attention ->
diffusers.models.attention_processor`

Unions:
`AttnProcessor -> AttentionProcessor`

Classes:
| Old name | New name |
| --- | --- |
| CrossAttention | Attention |
| CrossAttnProcessor | AttnProcessor |
| XFormersCrossAttnProcessor | XFormersAttnProcessor |
| CrossAttnAddedKVProcessor | AttnAddedKVProcessor |
| LoRACrossAttnProcessor | LoRAAttnProcessor |
| LoRAXFormersCrossAttnProcessor | LoRAXFormersAttnProcessor |
| FlaxCrossAttention | FlaxAttention |
| AttendExciteCrossAttnProcessor | AttendExciteAttnProcessor |
| Pix2PixZeroCrossAttnProcessor | Pix2PixZeroAttnProcessor |


Also config values no longer sets as attributes of object:
https://github.com/huggingface/diffusers/pull/2849
2023-04-27 11:38:27 +01:00
bfb968bbe8 Merge branch 'v2.3' into fix/new_diffusers_names 2023-04-26 23:54:37 +01:00
6db72f83a2 bump version number to 2.3.5-rc1 (#3267)
Bump version number for 2.3.5 release candidate.
2023-04-26 23:53:53 +01:00
432e526999 Revert merge changes 2023-04-25 14:49:08 +03:00
830740b93b remove redundant/buggy restore_default_attention() method 2023-04-25 07:05:07 -04:00
ff3f289342 Merge branch 'v2.3' into fix/new_diffusers_names 2023-04-25 13:21:26 +03:00
34abbb3589 Merge branch 'v2.3' into release/v2.3.5 2023-04-25 04:33:09 +01:00
c0eb1a9921 increase sha256 chunksize when calculating model hash (#3162)
- Thanks to @abdBarho, who discovered that increasing the chunksize
dramatically decreases the amount of time to calculate the hash.
2023-04-25 04:25:55 +01:00
2ddd0301f4 bump version number to 2.3.5-rc1 2023-04-24 23:24:33 -04:00
ce6629b6f5 Merge branch 'v2.3' into enhance/increase-sha256-chunksize 2023-04-25 03:58:30 +01:00
994a76aeaa [Enhancement] distinguish v1 from v2 LoRA models (#3175)
# Distinguish LoRA/LyCORIS files based on what version of SD they were
built on top of

- Attempting to run a prompt with a LoRA based on SD v1.X against a
model based on v2.X will now throw an `IncompatibleModelException`. To
import this exception:
`from ldm.modules.lora_manager import IncompatibleModelException` (maybe
this should be defined in ModelManager?)
    
- Enhance `LoraManager.list_loras()` to accept an optional integer
argument, `token_vector_length`. This will filter the returned LoRA
models to return only those that match the indicated length. Use:
      ```
      768 => for models based on SD v1.X
      1024 => for models based on SD v2.X
      ```
Note that this filtering requires each LoRA file to be opened by
`torch.safetensors`. It will take ~8s to scan a directory of 40 files.
    
- Added new static methods to `ldm.modules.kohya_lora_manager`:
      - check_model_compatibility()
      - vector_length_from_checkpoint()
      - vector_length_from_checkpoint_file()

- You can now create subdirectories within the `loras` directory and
organize the model files.
2023-04-25 03:57:45 +01:00
144dfe4a5b Merge branch 'v2.3' into bugfix/lora-incompatibility-handling 2023-04-25 03:54:46 +01:00
5dbc63e2ae Revert "improvements to the installation and upgrade processes" (#3266)
Reverts invoke-ai/InvokeAI#3186
2023-04-25 03:54:04 +01:00
c6ae1edc82 Revert "improvements to the installation and upgrade processes" 2023-04-24 22:53:43 -04:00
0f3c456d59 merge with v2.3 2023-04-24 22:51:48 -04:00
2cd0e036ac Merge branch 'v2.3' into bugfix/lora-incompatibility-handling 2023-04-25 03:24:25 +01:00
a45b3387c0 Merge branch 'v2.3' into enhance/increase-sha256-chunksize 2023-04-25 03:22:43 +01:00
c088cf0344 improvements to the installation and upgrade processes (#3186)
- Moved all postinstallation config file and model munging code out of
the CLI and into a separate script named `invokeai-postinstall`

- Fixed two calls to `shutil.copytree()` so that they don't try to
preserve the file mode of the copied files. This is necessary to run
correctly in a Nix environment (see thread at
https://discord.com/channels/1020123559063990373/1091716696965918732/1095662756738371615)

- Update the installer so that an existing virtual environment will be
updated, not overwritten.

- Pin npyscreen version to see if this fixes issues people have had with
installing this module.
2023-04-25 03:20:58 +01:00
264af3c054 fix crash caused by incorrect conflict resolution 2023-04-24 22:20:12 -04:00
b332432a88 Merge branch 'v2.3' into lstein/bugfix/improve-update-handling 2023-04-25 03:09:12 +01:00
7f7d5894fa Merge branch 'v2.3' into bugfix/lora-incompatibility-handling 2023-04-25 02:51:27 +01:00
96c39b61cf Enable LoRAs to patch the text_encoder as well as the unet (#3214)
Load LoRAs during compel's text embedding encode pass in case there are
requested LoRAs which also want to patch the text encoder.

Also generally cleanup the attention processor patching stuff. It's
still a mess, but at least now it's a *stateless* mess.
2023-04-24 23:22:51 +01:00
40744ed996 Merge branch 'v2.3' into fix_inconsistent_loras 2023-04-22 20:22:32 +01:00
2a2c86896a pull in diffusers 0.15.1
- Change diffusers dependency to `diffusers~=0.15.0` which *should*
  enforce  non-breaking changes.
2023-04-20 13:29:20 -04:00
f36452d650 rebuild front end 2023-04-20 12:27:08 -04:00
e5188309ec Merge branch 'v2.3' into bugfix/lora-incompatibility-handling 2023-04-20 17:25:09 +01:00
aabe79686e Merge branch 'v2.3' into fix/new_diffusers_names 2023-04-20 17:20:33 +01:00
a9e8005a92 CODEOWNERS update - 2.3 branch (#3230)
Both @mauwii and @keturn have been offline for some time. I am
temporarily removing them from CODEOWNERS so that they will not be
responsible for code reviews until they wish to/are able to re-engage
fully.

Note that I have volunteered @GreggHelt2 to be a codeowner of the
generation backend code, replacing @keturn . Let me know if you're
uncomfortable with this.
2023-04-20 17:19:51 +01:00
c2e6d98e66 Merge branch 'v2.3' into dev/codeowner-fix-2.3 2023-04-20 17:19:30 +01:00
40d9b5dc27 [Feature] Add support for LoKR LyCORIS format (#3216)
It's like LoHA but use Kronecker product instead of Hadamard product.
https://github.com/KohakuBlueleaf/LyCORIS#lokr

I tested it on this 2 LoKR's:
https://civitai.com/models/34518/unofficial-vspo-yakumo-beni
https://civitai.com/models/35136/mika-pikazo-lokr

More tests hard to find as it's new format)
Better to test with https://github.com/invoke-ai/InvokeAI/pull/3214

Also a bit refactor forward function.
//LyCORIS also have (IA)^3 format, but I can't find examples in this
format and even on LyCORIS page it's marked as experimental. So, until
there some test examples I prefer not to add this.
2023-04-19 22:51:33 +01:00
216b1c3a4a Merge branch 'v2.3' into fix/new_diffusers_names 2023-04-18 19:37:25 -04:00
1a704efff1 update codeowners in response to team changes 2023-04-18 19:30:52 -04:00
f49d2619be Merge branch 'v2.3' into fix_inconsistent_loras 2023-04-18 19:09:35 -04:00
da96ec9dd5 Merge branch 'v2.3' into feat/lokr_support 2023-04-18 19:08:03 -04:00
298ccda365 fix the "import from directory" function in console model installer (#3211)
- This was inadvertently broken when we stopped supporting direct
loading of checkpoint models.
- Now fixed.
- May fix #3209
2023-04-17 23:04:27 -04:00
967d853020 Merge branch 'v2.3' into feat/lokr_support 2023-04-16 23:10:45 +03:00
e91117bc74 Add support for lokr lycoris format 2023-04-16 23:05:13 +03:00
4d58444153 fix issues and further cleanup 2023-04-16 17:54:21 +02:00
3667eb4d0d activate LoRAs when generating prompt embeddings; also cleanup attention stuff 2023-04-16 17:03:31 +02:00
203a7157e1 fix the "import from directory" function in console model installer
- This was inadvertently broken when we stopped supporting direct
  loading of checkpoint models.
- Now fixed.
2023-04-15 21:07:02 -04:00
47883860a6 Merge branch 'v2.3' into enhance/increase-sha256-chunksize 2023-04-13 23:00:34 -04:00
6365a7c790 Merge branch 'v2.3' into lstein/bugfix/improve-update-handling 2023-04-13 22:49:41 -04:00
5fcb3d90e4 fix missing files variable 2023-04-13 22:49:04 -04:00
8f17d17208 Merge branch 'v2.3' into fix/new_diffusers_names 2023-04-13 22:44:05 -04:00
c6ecf3afc5 pin diffusers to 0.15.*, and fix deprecation warning on unet.in_channels 2023-04-13 22:38:50 -04:00
2c449bfb34 Merge branch 'v2.3' into bugfix/lora-incompatibility-handling 2023-04-13 22:23:59 -04:00
8fb4b05556 change lora and TI list dynamically when model changes 2023-04-13 22:22:43 -04:00
4d7289b20f explicitly set permissions of config files 2023-04-13 22:03:52 -04:00
d81584c8fd hotfix to 2.3.4 (#3188)
- Pin diffusers to 0.14
- Small fix to LoRA loading routine that was preventing placement of
LoRA files in subdirectories.
- Bump version to 2.3.4.post1
2023-04-13 12:39:16 -04:00
0bc5dcc663 Refactor 2023-04-13 16:05:04 +03:00
1183bf96ed hotfix to 2.3.4
- Pin diffusers to 0.14
- Small fix to LoRA loading routine that was preventing placement of
  LoRA files in subdirectories.
- Bump version to 2.3.4.post1
2023-04-13 08:48:30 -04:00
d81394cda8 fix directory permissions after install 2023-04-13 08:39:47 -04:00
0eda1a03e1 pin diffusers to 0.14 2023-04-13 00:40:26 -04:00
be7e067c95 getLoraModels event filters loras by compatibility 2023-04-13 00:31:11 -04:00
afa3cdce27 add a list_compatible_loras() method 2023-04-13 00:11:26 -04:00
6dfbd1c677 implement caching scheme for vector length 2023-04-12 23:56:52 -04:00
a775c7730e improvements to the installation and upgrade processes
- Moved all postinstallation config file and model munging code out
  of the CLI and into a separate script named `invokeai-postinstall`

- Fixed two calls to `shutil.copytree()` so that they don't try to preserve
  the file mode of the copied files. This is necessary to run correctly
  in a Nix environment
  (see thread at https://discord.com/channels/1020123559063990373/1091716696965918732/1095662756738371615)

- Update the installer so that an existing virtual environment will be
  updated, not overwritten.

- Pin npyscreen version to see if this fixes issues people have had with
  installing this module.
2023-04-12 22:40:53 -04:00
16c97ca0cb Fix num_train_timesteps in config 2023-04-12 23:57:45 +03:00
e24dd97b80 Fix that config attributes no longer accessible as object attributes 2023-04-12 23:40:14 +03:00
5a54039dd7 Fix imports for diffusers 0.15.0
Imports:
`diffusers.models.cross_attention -> diffusers.models.attention_processor`

Unions:
`AttnProcessor -> AttentionProcessor`

Classes:
| Old name | New name|
| --- | --- |
| CrossAttention | Attention |
| CrossAttnProcessor | AttnProcessor |
| XFormersCrossAttnProcessor | XFormersAttnProcessor |
| CrossAttnAddedKVProcessor | AttnAddedKVProcessor |
| LoRACrossAttnProcessor | LoRAAttnProcessor |
| LoRAXFormersCrossAttnProcessor | LoRAXFormersAttnProcessor |

Same names in this class:
`SlicedAttnProcessor, SlicedAttnAddedKVProcessor`
2023-04-12 22:54:25 +03:00
9385edb453 Merge branch 'v2.3' into enhance/increase-sha256-chunksize 2023-04-11 18:51:44 -04:00
2251d3abfe fixup relative path to devices module 2023-04-10 23:44:58 -04:00
0b22a3f34d distinguish LoRA/LyCORIS files based on what SD model they were based on
- Attempting to run a prompt with a LoRA based on SD v1.X against a
  model based on v2.X will now throw an
  `IncompatibleModelException`. To import this exception:
  `from ldm.modules.lora_manager import IncompatibleModelException`
  (maybe this should be defined in ModelManager?)

- Enhance `LoraManager.list_loras()` to accept an optional integer
  argument, `token_vector_length`. This will filter the returned LoRA
  models to return only those that match the indicated length. Use:
  ```
  768 => for models based on SD v1.X
  1024 => for models based on SD v2.X
  ```

  Note that this filtering requires each LoRA file to be opened
  by `torch.safetensors`. It will take ~8s to scan a directory of
  40 files.

- Added new static methods to `ldm.modules.kohya_lora_manager`:
  - check_model_compatibility()
  - vector_length_from_checkpoint()
  - vector_length_from_checkpoint_file()
2023-04-10 23:33:28 -04:00
2528e14fe9 raise generation exceptions so that frontend can catch 2023-04-10 14:26:09 -04:00
16ccc807cc control which revision of a diffusers model is downloaded
- Previously the user's preferred precision was used to select which
  version branch of a diffusers model would be downloaded. Half-precision
  would try to download the 'fp16' branch if it existed.

- Turns out that with waifu-diffusion this logic doesn't work, as
  'fp16' gets you waifu-diffusion v1.3, while 'main' gets you
  waifu-diffusion v1.4. Who knew?

- This PR adds a new optional "revision" field to `models.yaml`. This
  can be used to override the diffusers branch version. In the case of
  Waifu diffusion, INITIAL_MODELS.yaml now specifies the "main" branch.

- This PR also quenches the NSFW nag that downloading diffusers sometimes
  triggers.

- Closes #3160
2023-04-09 22:07:55 -04:00
66364501d5 increase sha256 chunksize when calculating model hash
- Thanks to @abdBarho, who discovered that increasing the chunksize
  dramatically decreases the amount of time to calculate the hash.
2023-04-09 16:39:16 -04:00
23 changed files with 501 additions and 332 deletions

34
.github/CODEOWNERS vendored
View File

@ -1,13 +1,13 @@
# continuous integration
/.github/workflows/ @mauwii @lstein @blessedcoolant
/.github/workflows/ @lstein @blessedcoolant
# documentation
/docs/ @lstein @mauwii @blessedcoolant
mkdocs.yml @mauwii @lstein
/docs/ @lstein @blessedcoolant
mkdocs.yml @lstein @ebr
# installation and configuration
/pyproject.toml @mauwii @lstein @ebr
/docker/ @mauwii
/pyproject.toml @lstein @ebr
/docker/ @lstein
/scripts/ @ebr @lstein @blessedcoolant
/installer/ @ebr @lstein
ldm/invoke/config @lstein @ebr
@ -21,13 +21,13 @@ invokeai/configs @lstein @ebr @blessedcoolant
# generation and model management
/ldm/*.py @lstein @blessedcoolant
/ldm/generate.py @lstein @keturn
/ldm/generate.py @lstein @gregghelt2
/ldm/invoke/args.py @lstein @blessedcoolant
/ldm/invoke/ckpt* @lstein @blessedcoolant
/ldm/invoke/ckpt_generator @lstein @blessedcoolant
/ldm/invoke/CLI.py @lstein @blessedcoolant
/ldm/invoke/config @lstein @ebr @mauwii @blessedcoolant
/ldm/invoke/generator @keturn @damian0815
/ldm/invoke/config @lstein @ebr @blessedcoolant
/ldm/invoke/generator @gregghelt2 @damian0815
/ldm/invoke/globals.py @lstein @blessedcoolant
/ldm/invoke/merge_diffusers.py @lstein @blessedcoolant
/ldm/invoke/model_manager.py @lstein @blessedcoolant
@ -36,17 +36,17 @@ invokeai/configs @lstein @ebr @blessedcoolant
/ldm/invoke/restoration @lstein @blessedcoolant
# attention, textual inversion, model configuration
/ldm/models @damian0815 @keturn @blessedcoolant
/ldm/models @damian0815 @gregghelt2 @blessedcoolant
/ldm/modules/textual_inversion_manager.py @lstein @blessedcoolant
/ldm/modules/attention.py @damian0815 @keturn
/ldm/modules/diffusionmodules @damian0815 @keturn
/ldm/modules/distributions @damian0815 @keturn
/ldm/modules/ema.py @damian0815 @keturn
/ldm/modules/attention.py @damian0815 @gregghelt2
/ldm/modules/diffusionmodules @damian0815 @gregghelt2
/ldm/modules/distributions @damian0815 @gregghelt2
/ldm/modules/ema.py @damian0815 @gregghelt2
/ldm/modules/embedding_manager.py @lstein
/ldm/modules/encoders @damian0815 @keturn
/ldm/modules/image_degradation @damian0815 @keturn
/ldm/modules/losses @damian0815 @keturn
/ldm/modules/x_transformer.py @damian0815 @keturn
/ldm/modules/encoders @damian0815 @gregghelt2
/ldm/modules/image_degradation @damian0815 @gregghelt2
/ldm/modules/losses @damian0815 @gregghelt2
/ldm/modules/x_transformer.py @damian0815 @gregghelt2
# Nodes
apps/ @Kyle0654 @jpphoto

2
.gitignore vendored
View File

@ -233,5 +233,3 @@ installer/install.sh
installer/update.bat
installer/update.sh
# no longer stored in source directory
models

View File

@ -30,7 +30,6 @@ from ldm.invoke.conditioning import (
get_tokens_for_prompt_object,
get_prompt_structure,
split_weighted_subprompts,
get_tokenizer,
)
from ldm.invoke.generator.diffusers_pipeline import PipelineIntermediateState
from ldm.invoke.generator.inpaint import infill_methods
@ -38,11 +37,11 @@ from ldm.invoke.globals import (
Globals,
global_converted_ckpts_dir,
global_models_dir,
global_lora_models_dir,
)
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
from compel.prompt_parser import Blend
from ldm.invoke.merge_diffusers import merge_diffusion_models
from ldm.modules.lora_manager import LoraManager
# Loading Arguments
opt = Args()
@ -524,20 +523,12 @@ class InvokeAIWebServer:
@socketio.on("getLoraModels")
def get_lora_models():
try:
lora_path = global_lora_models_dir()
loras = []
for root, _, files in os.walk(lora_path):
models = [
Path(root, x)
for x in files
if Path(x).suffix in [".ckpt", ".pt", ".safetensors"]
]
loras = loras + models
model = self.generate.model
lora_mgr = LoraManager(model)
loras = lora_mgr.list_compatible_loras()
found_loras = []
for lora in sorted(loras, key=lambda s: s.stem.lower()):
location = str(lora.resolve()).replace("\\", "/")
found_loras.append({"name": lora.stem, "location": location})
for lora in sorted(loras, key=str.casefold):
found_loras.append({"name":lora,"location":str(loras[lora])})
socketio.emit("foundLoras", found_loras)
except Exception as e:
self.handle_exceptions(e)
@ -1314,7 +1305,7 @@ class InvokeAIWebServer:
None
if type(parsed_prompt) is Blend
else get_tokens_for_prompt_object(
get_tokenizer(self.generate.model), parsed_prompt
self.generate.model.tokenizer, parsed_prompt
)
)
attention_maps_image_base64_url = (

View File

@ -80,7 +80,8 @@ trinart-2.0:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
waifu-diffusion-1.4:
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
description: An SD-2.1 model trained on 5.4M anime/manga-style images (4.27 GB)
revision: main
repo_id: hakurei/waifu-diffusion
format: diffusers
vae:

File diff suppressed because one or more lines are too long

View File

@ -5,7 +5,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="./assets/favicon-0d253ced.ico" />
<script type="module" crossorigin src="./assets/index-f56b39bc.js"></script>
<script type="module" crossorigin src="./assets/index-b12e648e.js"></script>
<link rel="stylesheet" href="./assets/index-2ab0eb58.css">
</head>

View File

@ -33,6 +33,10 @@ import {
setIntermediateImage,
} from 'features/gallery/store/gallerySlice';
import {
getLoraModels,
getTextualInversionTriggers,
} from 'app/socketio/actions';
import type { RootState } from 'app/store';
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
import {
@ -463,6 +467,8 @@ const makeSocketIOListeners = (
const { model_name, model_list } = data;
dispatch(setModelList(model_list));
dispatch(setCurrentStatus(i18n.t('common.statusModelChanged')));
dispatch(getLoraModels());
dispatch(getTextualInversionTriggers());
dispatch(setIsProcessing(false));
dispatch(setIsCancelable(true));
dispatch(

File diff suppressed because one or more lines are too long

View File

@ -633,9 +633,8 @@ class Generate:
except RuntimeError:
# Clear the CUDA cache on an exception
self.clear_cuda_cache()
print(traceback.format_exc(), file=sys.stderr)
print(">> Could not generate image.")
print("** Could not generate image.")
raise
toc = time.time()
print("\n>> Usage stats:")

View File

@ -1 +1 @@
__version__='2.3.4'
__version__='2.3.5-rc2'

View File

@ -15,19 +15,10 @@ from compel import Compel
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser, \
Conjunction
from .devices import torch_dtype
from .generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ldm.invoke.globals import Globals
def get_tokenizer(model) -> CLIPTokenizer:
# TODO remove legacy ckpt fallback handling
return (getattr(model, 'tokenizer', None) # diffusers
or model.cond_stage_model.tokenizer) # ldm
def get_text_encoder(model) -> Any:
# TODO remove legacy ckpt fallback handling
return (getattr(model, 'text_encoder', None) # diffusers
or UnsqueezingLDMTransformer(model.cond_stage_model.transformer)) # ldm
class UnsqueezingLDMTransformer:
def __init__(self, ldm_transformer):
self.ldm_transformer = ldm_transformer
@ -41,15 +32,15 @@ class UnsqueezingLDMTransformer:
return insufficiently_unsqueezed_tensor.unsqueeze(0)
def get_uc_and_c_and_ec(prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False):
def get_uc_and_c_and_ec(prompt_string,
model: StableDiffusionGeneratorPipeline,
log_tokens=False, skip_normalize_legacy_blend=False):
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(prompt_string)
tokenizer = get_tokenizer(model)
text_encoder = get_text_encoder(model)
compel = Compel(tokenizer=tokenizer,
text_encoder=text_encoder,
compel = Compel(tokenizer=model.tokenizer,
text_encoder=model.text_encoder,
textual_inversion_manager=model.textual_inversion_manager,
dtype_for_device_getter=torch_dtype)
@ -78,14 +69,20 @@ def get_uc_and_c_and_ec(prompt_string, model, log_tokens=False, skip_normalize_l
negative_conjunction = Compel.parse_prompt_string(negative_prompt_string)
negative_prompt: FlattenedPrompt | Blend = negative_conjunction.prompts[0]
tokens_count = get_max_token_count(model.tokenizer, positive_prompt)
if log_tokens or getattr(Globals, "log_tokenization", False):
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
log_tokenization(positive_prompt, negative_prompt, tokenizer=model.tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
tokens_count = get_max_token_count(tokenizer, positive_prompt)
# some LoRA models also mess with the text encoder, so they must be active while compel builds conditioning tensors
lora_conditioning_ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count,
lora_conditions=lora_conditions)
with InvokeAIDiffuserComponent.custom_attention_context(model.unet,
extra_conditioning_info=lora_conditioning_ec,
step_count=-1):
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
# now build the "real" ec
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count,
cross_attention_control_args=options.get(
'cross_attention_control', None),

View File

@ -196,16 +196,6 @@ class addModelsForm(npyscreen.FormMultiPage):
scroll_exit=True,
)
self.nextrely += 1
self.convert_models = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==",
values=["Keep original format", "Convert to diffusers"],
value=0,
begin_entry_at=4,
max_height=4,
hidden=True, # will appear when imported models box is edited
scroll_exit=True,
)
self.cancel = self.add_widget_intelligent(
npyscreen.ButtonPress,
name="CANCEL",
@ -240,8 +230,6 @@ class addModelsForm(npyscreen.FormMultiPage):
self.show_directory_fields.addVisibleWhenSelected(i)
self.show_directory_fields.when_value_edited = self._clear_scan_directory
self.import_model_paths.when_value_edited = self._show_hide_convert
self.autoload_directory.when_value_edited = self._show_hide_convert
def resize(self):
super().resize()
@ -252,13 +240,6 @@ class addModelsForm(npyscreen.FormMultiPage):
if not self.show_directory_fields.value:
self.autoload_directory.value = ""
def _show_hide_convert(self):
model_paths = self.import_model_paths.value or ""
autoload_directory = self.autoload_directory.value or ""
self.convert_models.hidden = (
len(model_paths) == 0 and len(autoload_directory) == 0
)
def _get_starter_model_labels(self) -> List[str]:
window_width, window_height = get_terminal_size()
label_width = 25
@ -318,7 +299,6 @@ class addModelsForm(npyscreen.FormMultiPage):
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
.convert_to_diffusers: if True, convert legacy checkpoints into diffusers
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
@ -354,7 +334,6 @@ class addModelsForm(npyscreen.FormMultiPage):
# URLs and the like
selections.import_model_paths = self.import_model_paths.value.split()
selections.convert_to_diffusers = self.convert_models.value[0] == 1
class AddModelApplication(npyscreen.NPSAppManaged):
@ -367,7 +346,6 @@ class AddModelApplication(npyscreen.NPSAppManaged):
scan_directory=None,
autoscan_on_startup=None,
import_model_paths=None,
convert_to_diffusers=None,
)
def onStart(self):
@ -387,7 +365,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
convert_to_diffusers = selections.convert_to_diffusers
install_requested_models(
install_initial_models=models_to_install,
@ -395,7 +372,6 @@ def process_and_execute(opt: Namespace, selections: Namespace):
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
convert_to_diffusers=convert_to_diffusers,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),

View File

@ -11,6 +11,7 @@ from tempfile import TemporaryFile
import requests
from diffusers import AutoencoderKL
from diffusers import logging as dlogging
from huggingface_hub import hf_hub_url
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
@ -68,7 +69,6 @@ def install_requested_models(
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
convert_to_diffusers: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
@ -114,17 +114,16 @@ def install_requested_models(
try:
model_manager.heuristic_import(
path_url_or_repo,
convert=convert_to_diffusers,
config_file_callback=_pick_configuration_file,
commit_to_conf=config_file_path
)
except KeyboardInterrupt:
sys.exit(-1)
except Exception:
pass
except Exception as e:
print(f'An exception has occurred: {str(e)}')
if scan_at_startup and scan_directory.is_dir():
argument = '--autoconvert' if convert_to_diffusers else '--autoimport'
argument = '--autoconvert'
initfile = Path(Globals.root, Globals.initfile)
replacement = Path(Globals.root, f'{Globals.initfile}.new')
directory = str(scan_directory).replace('\\','/')
@ -296,13 +295,21 @@ def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
revision = mconfig.get('revision',None)
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
extra_arg_list = [{"revision": revision}] if revision \
else [{"revision": "fp16"}, {}] if precision == "float16" \
else [{}]
path = None
# quench safety checker warnings
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
for extra_args in extra_arg_list:
try:
path = download_from_hf(
@ -318,6 +325,7 @@ def _download_diffusion_weights(
print(f"An unexpected error occurred while downloading the model: {e})")
if path:
break
dlogging.set_verbosity(verbosity)
return path
@ -448,6 +456,8 @@ def new_config_file_contents(
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
if "revision" in mod:
stanza["revision"] = mod["revision"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
@ -472,10 +482,9 @@ def new_config_file_contents(
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
# if no default model was chosen, then we select the first one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
conf[list(conf.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)

View File

@ -400,8 +400,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config))
values = [getattr(self, name) for name in module_names.keys()]
return [m for m in values if isinstance(m, torch.nn.Module)]
submodels = []
for name in module_names.keys():
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
conditioning_data: ConditioningData,
@ -467,11 +474,12 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
if additional_guidance is None:
additional_guidance = []
extra_conditioning_info = conditioning_data.extra
with self.invokeai_diffuser.custom_attention_context(extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps)
with InvokeAIDiffuserComponent.custom_attention_context(self.invokeai_diffuser.model,
extra_conditioning_info=extra_conditioning_info,
step_count=len(self.scheduler.timesteps)
):
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.config.num_train_timesteps,
latents=latents)
batch_size = latents.shape[0]
@ -755,7 +763,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property
def channels(self) -> int:
"""Compatible with DiffusionWrapper"""
return self.unet.in_channels
return self.unet.config.in_channels
def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@ -372,12 +372,6 @@ class ModelManager(object):
)
from ldm.invoke.ckpt_to_diffuser import load_pipeline_from_original_stable_diffusion_ckpt
# try:
# if self.list_models()[self.current_model]['status'] == 'active':
# self.offload_model(self.current_model)
# except Exception:
# pass
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@ -423,9 +417,9 @@ class ModelManager(object):
pipeline_args.update(cache_dir=global_cache_dir("hub"))
if using_fp16:
pipeline_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}]
else:
fp_args_list = [{}]
revision = mconfig.get('revision') or ('fp16' if using_fp16 else None)
fp_args_list = [{"revision": revision}] if revision else []
fp_args_list.append({})
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
@ -1162,7 +1156,7 @@ class ModelManager(object):
return self.device.type == "cuda"
def _diffuser_sha256(
self, name_or_path: Union[str, Path], chunksize=4096
self, name_or_path: Union[str, Path], chunksize=16777216
) -> Union[str, bytes]:
path = None
if isinstance(name_or_path, Path):

View File

@ -14,7 +14,6 @@ from torch import nn
from compel.cross_attention_control import Arguments
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.models.cross_attention import AttnProcessor
from ldm.invoke.devices import torch_dtype
@ -163,7 +162,7 @@ class Context:
class InvokeAICrossAttentionMixin:
"""
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection.
"""
@ -178,7 +177,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked.
`module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@ -288,16 +287,7 @@ class InvokeAICrossAttentionMixin:
return self.einsum_op_tensor_mem(q, k, v, 32)
def restore_default_cross_attention(model, is_running_diffusers: bool, processors_to_restore: Optional[AttnProcessor]=None):
if is_running_diffusers:
unet = model
unet.set_attn_processor(processors_to_restore or CrossAttnProcessor())
else:
remove_attention_function(model)
def override_cross_attention(model, context: Context, is_running_diffusers = False):
def setup_cross_attention_control_attention_processors(unet: UNet2DConditionModel, context: Context):
"""
Inject attention parameters and functions into the passed in model to enable cross attention editing.
@ -323,26 +313,19 @@ def override_cross_attention(model, context: Context, is_running_diffusers = Fal
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
if is_running_diffusers:
unet = model
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
old_attn_processors = unet.attn_processors
if torch.backends.mps.is_available():
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
unet.set_attn_processor(SwapCrossAttnProcessor())
else:
context.register_cross_attention_modules(model)
inject_attention_function(model, context)
# try to re-use an existing slice size
default_slice_size = 4
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size)
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
from ldm.modules.attention import CrossAttention # avoid circular import # TODO: rename as in diffusers?
cross_attention_class: type = InvokeAIDiffusersCrossAttention if isinstance(model,UNet2DConditionModel) else CrossAttention
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [(name,module) for name, module in model.named_modules() if
@ -448,7 +431,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin):
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.Attention, InvokeAICrossAttentionMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@ -473,8 +456,8 @@ class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention,
"""
# base implementation
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
class AttnProcessor:
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@ -503,7 +486,7 @@ from dataclasses import field, dataclass
import torch
from diffusers.models.cross_attention import CrossAttention, CrossAttnProcessor, SlicedAttnProcessor
from diffusers.models.attention_processor import Attention, AttnProcessor, SlicedAttnProcessor
@dataclass
@ -548,7 +531,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
# TODO: dynamically pick slice size based on memory conditions
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None,
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
# kwargs
swap_cross_attn_context: SwapCrossAttnContext=None):

View File

@ -12,17 +12,6 @@ class DDIMSampler(Sampler):
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.model,
model_forward_callback = lambda x, sigma, cond: self.model.apply_model(x, sigma, cond))
def prepare_to_sample(self, t_enc, **kwargs):
super().prepare_to_sample(t_enc, **kwargs)
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
all_timesteps_count = kwargs.get('all_timesteps_count', t_enc)
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
self.invokeai_diffuser.override_attention_processors(extra_conditioning_info, step_count = all_timesteps_count)
else:
self.invokeai_diffuser.restore_default_cross_attention()
# This is the central routine
@torch.no_grad()

View File

@ -38,15 +38,6 @@ class CFGDenoiser(nn.Module):
model_forward_callback=lambda x, sigma, cond: self.inner_model(x, sigma, cond=cond))
def prepare_to_sample(self, t_enc, **kwargs):
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
self.invokeai_diffuser.override_attention_processors(extra_conditioning_info, step_count = t_enc)
else:
self.invokeai_diffuser.restore_default_cross_attention()
def forward(self, x, sigma, uncond, cond, cond_scale):
next_x = self.invokeai_diffuser.do_diffusion_step(x, sigma, uncond, cond, cond_scale)

View File

@ -14,17 +14,6 @@ class PLMSSampler(Sampler):
def __init__(self, model, schedule='linear', device=None, **kwargs):
super().__init__(model,schedule,model.num_timesteps, device)
def prepare_to_sample(self, t_enc, **kwargs):
super().prepare_to_sample(t_enc, **kwargs)
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
all_timesteps_count = kwargs.get('all_timesteps_count', t_enc)
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
self.invokeai_diffuser.override_attention_processors(extra_conditioning_info, step_count = all_timesteps_count)
else:
self.invokeai_diffuser.restore_default_cross_attention()
# this is the essential routine
@torch.no_grad()

View File

@ -1,18 +1,17 @@
from contextlib import contextmanager
from dataclasses import dataclass
from math import ceil
from typing import Callable, Optional, Union, Any, Dict
from typing import Callable, Optional, Union, Any
import numpy as np
import torch
from diffusers.models.cross_attention import AttnProcessor
from diffusers import UNet2DConditionModel
from typing_extensions import TypeAlias
from ldm.invoke.globals import Globals
from ldm.models.diffusion.cross_attention_control import (
Arguments,
restore_default_cross_attention,
override_cross_attention,
setup_cross_attention_control_attention_processors,
Context,
get_cross_attention_modules,
CrossAttentionType,
@ -84,66 +83,45 @@ class InvokeAIDiffuserComponent:
self.cross_attention_control_context = None
self.sequential_guidance = Globals.sequential_guidance
@classmethod
@contextmanager
def custom_attention_context(
self, extra_conditioning_info: Optional[ExtraConditioningInfo], step_count: int
clss,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int
):
old_attn_processor = None
old_attn_processors = None
if extra_conditioning_info and (
extra_conditioning_info.wants_cross_attention_control
| extra_conditioning_info.has_lora_conditions
):
old_attn_processor = self.override_attention_processors(
extra_conditioning_info, step_count=step_count
)
old_attn_processors = unet.attn_processors
# Load lora conditions into the model
if extra_conditioning_info.has_lora_conditions:
for condition in extra_conditioning_info.lora_conditions:
condition() # target model is stored in condition state for some reason
if extra_conditioning_info.wants_cross_attention_control:
cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
cross_attention_control_context,
)
try:
yield None
finally:
if old_attn_processor is not None:
self.restore_default_cross_attention(old_attn_processor)
if old_attn_processors is not None:
unet.set_attn_processor(old_attn_processors)
if extra_conditioning_info and extra_conditioning_info.has_lora_conditions:
for lora_condition in extra_conditioning_info.lora_conditions:
lora_condition.unload()
# TODO resuscitate attention map saving
# self.remove_attention_map_saving()
def override_attention_processors(
self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttnProcessor]:
"""
setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later.
"""
old_attn_processors = self.model.attn_processors
# Load lora conditions into the model
if conditioning.has_lora_conditions:
for condition in conditioning.lora_conditions:
condition(self.model)
if conditioning.wants_cross_attention_control:
self.cross_attention_control_context = Context(
arguments=conditioning.cross_attention_control_args,
step_count=step_count,
)
override_cross_attention(
self.model,
self.cross_attention_control_context,
is_running_diffusers=self.is_running_diffusers,
)
return old_attn_processors
def restore_default_cross_attention(
self, processors_to_restore: Optional[dict[str, "AttnProcessor"]] = None
):
self.cross_attention_control_context = None
restore_default_cross_attention(
self.model,
is_running_diffusers=self.is_running_diffusers,
processors_to_restore=processors_to_restore,
)
def setup_attention_map_saving(self, saver: AttentionMapSaver):
def callback(slice, dim, offset, slice_size, key):
if dim is not None:

View File

@ -1,15 +1,16 @@
import re
import json
from pathlib import Path
from typing import Optional
import torch
from compel import Compel
from diffusers.models import UNet2DConditionModel
from filelock import FileLock, Timeout
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from transformers import CLIPTextModel
from ldm.invoke.devices import choose_torch_device
from ..invoke.globals import global_lora_models_dir, Globals
from ..invoke.devices import choose_torch_device
"""
This module supports loading LoRA weights trained with https://github.com/kohya-ss/sd-scripts
@ -17,6 +18,11 @@ To be removed once support for diffusers LoRA weights is well supported
"""
class IncompatibleModelException(Exception):
"Raised when there is an attempt to load a LoRA into a model that is incompatible with it"
pass
class LoRALayer:
lora_name: str
name: str
@ -31,18 +37,14 @@ class LoRALayer:
self.name = name
self.scale = alpha / rank if (alpha and rank) else 1.0
def forward(self, lora, input_h, output):
def forward(self, lora, input_h):
if self.mid is None:
output = (
output
+ self.up(self.down(*input_h)) * lora.multiplier * self.scale
)
weight = self.up(self.down(*input_h))
else:
output = (
output
+ self.up(self.mid(self.down(*input_h))) * lora.multiplier * self.scale
)
return output
weight = self.up(self.mid(self.down(*input_h)))
return weight * lora.multiplier * self.scale
class LoHALayer:
lora_name: str
@ -64,8 +66,7 @@ class LoHALayer:
self.name = name
self.scale = alpha / rank if (alpha and rank) else 1.0
def forward(self, lora, input_h, output):
def forward(self, lora, input_h):
if type(self.org_module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
@ -80,21 +81,87 @@ class LoHALayer:
extra_args = {}
if self.t1 is None:
weight = ((self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b))
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum('i j k l, j r, i p -> p r k l', self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum('i j k l, j r, i p -> p r k l', self.t2, self.w2_b, self.w2_a)
rebuild1 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a
)
rebuild2 = torch.einsum(
"i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a
)
weight = rebuild1 * rebuild2
bias = self.bias if self.bias is not None else 0
return output + op(
return op(
*input_h,
(weight + bias).view(self.org_module.weight.shape),
None,
**extra_args,
) * lora.multiplier * self.scale
class LoKRLayer:
lora_name: str
name: str
scale: float
w1: Optional[torch.Tensor] = None
w1_a: Optional[torch.Tensor] = None
w1_b: Optional[torch.Tensor] = None
w2: Optional[torch.Tensor] = None
w2_a: Optional[torch.Tensor] = None
w2_b: Optional[torch.Tensor] = None
t2: Optional[torch.Tensor] = None
bias: Optional[torch.Tensor] = None
org_module: torch.nn.Module
def __init__(self, lora_name: str, name: str, rank=4, alpha=1.0):
self.lora_name = lora_name
self.name = name
self.scale = alpha / rank if (alpha and rank) else 1.0
def forward(self, lora, input_h):
if type(self.org_module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=self.org_module.stride,
padding=self.org_module.padding,
dilation=self.org_module.dilation,
groups=self.org_module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum('i j k l, i p, j r -> p r k l', self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2).reshape(self.org_module.weight.shape)
bias = self.bias if self.bias is not None else 0
return op(
*input_h,
(weight + bias).view(self.org_module.weight.shape),
None,
**extra_args
) * lora.multiplier * self.scale
class LoRAModuleWrapper:
unet: UNet2DConditionModel
@ -111,12 +178,22 @@ class LoRAModuleWrapper:
self.applied_loras = {}
self.loaded_loras = {}
self.UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention", "ResnetBlock2D", "Downsample2D", "Upsample2D", "SpatialTransformer"]
self.TEXT_ENCODER_TARGET_REPLACE_MODULE = ["ResidualAttentionBlock", "CLIPAttention", "CLIPMLP"]
self.UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
"SpatialTransformer",
]
self.TEXT_ENCODER_TARGET_REPLACE_MODULE = [
"ResidualAttentionBlock",
"CLIPAttention",
"CLIPMLP",
]
self.LORA_PREFIX_UNET = "lora_unet"
self.LORA_PREFIX_TEXT_ENCODER = "lora_te"
def find_modules(
prefix, root_module: torch.nn.Module, target_replace_modules
) -> dict[str, torch.nn.Module]:
@ -147,7 +224,6 @@ class LoRAModuleWrapper:
self.LORA_PREFIX_UNET, unet, self.UNET_TARGET_REPLACE_MODULE
)
def lora_forward_hook(self, name):
wrapper = self
@ -159,7 +235,7 @@ class LoRAModuleWrapper:
layer = lora.layers.get(name, None)
if layer is None:
continue
output = layer.forward(lora, input_h, output)
output += layer.forward(lora, input_h)
return output
return lora_forward
@ -180,6 +256,7 @@ class LoRAModuleWrapper:
def clear_loaded_loras(self):
self.loaded_loras.clear()
class LoRA:
name: str
layers: dict[str, LoRALayer]
@ -205,7 +282,6 @@ class LoRA:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
for stem, values in state_dict_groupped.items():
if stem.startswith(self.wrapper.LORA_PREFIX_TEXT_ENCODER):
wrapped = self.wrapper.text_modules.get(stem, None)
@ -226,34 +302,59 @@ class LoRA:
if "alpha" in values:
alpha = values["alpha"].item()
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
if (
"bias_indices" in values
and "bias_values" in values
and "bias_size" in values
):
bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
).to(device=self.device, dtype=self.dtype)
# lora and locon
if "lora_down.weight" in values:
value_down = values["lora_down.weight"]
value_mid = values.get("lora_mid.weight", None)
value_up = values["lora_up.weight"]
value_mid = values.get("lora_mid.weight", None)
value_up = values["lora_up.weight"]
if type(wrapped) == torch.nn.Conv2d:
if value_mid is not None:
layer_down = torch.nn.Conv2d(value_down.shape[1], value_down.shape[0], (1, 1), bias=False)
layer_mid = torch.nn.Conv2d(value_mid.shape[1], value_mid.shape[0], wrapped.kernel_size, wrapped.stride, wrapped.padding, bias=False)
layer_down = torch.nn.Conv2d(
value_down.shape[1], value_down.shape[0], (1, 1), bias=False
)
layer_mid = torch.nn.Conv2d(
value_mid.shape[1],
value_mid.shape[0],
wrapped.kernel_size,
wrapped.stride,
wrapped.padding,
bias=False,
)
else:
layer_down = torch.nn.Conv2d(value_down.shape[1], value_down.shape[0], wrapped.kernel_size, wrapped.stride, wrapped.padding, bias=False)
layer_mid = None
layer_down = torch.nn.Conv2d(
value_down.shape[1],
value_down.shape[0],
wrapped.kernel_size,
wrapped.stride,
wrapped.padding,
bias=False,
)
layer_mid = None
layer_up = torch.nn.Conv2d(value_up.shape[1], value_up.shape[0], (1, 1), bias=False)
layer_up = torch.nn.Conv2d(
value_up.shape[1], value_up.shape[0], (1, 1), bias=False
)
elif type(wrapped) == torch.nn.Linear:
layer_down = torch.nn.Linear(value_down.shape[1], value_down.shape[0], bias=False)
layer_mid = None
layer_up = torch.nn.Linear(value_up.shape[1], value_up.shape[0], bias=False)
layer_down = torch.nn.Linear(
value_down.shape[1], value_down.shape[0], bias=False
)
layer_mid = None
layer_up = torch.nn.Linear(
value_up.shape[1], value_up.shape[0], bias=False
)
else:
print(
@ -261,52 +362,90 @@ class LoRA:
)
return
with torch.no_grad():
layer_down.weight.copy_(value_down)
if layer_mid is not None:
layer_mid.weight.copy_(value_mid)
layer_up.weight.copy_(value_up)
layer_down.to(device=self.device, dtype=self.dtype)
if layer_mid is not None:
layer_mid.to(device=self.device, dtype=self.dtype)
layer_up.to(device=self.device, dtype=self.dtype)
rank = value_down.shape[0]
layer = LoRALayer(self.name, stem, rank, alpha)
#layer.bias = bias # TODO: find and debug lora/locon with bias
# layer.bias = bias # TODO: find and debug lora/locon with bias
layer.down = layer_down
layer.mid = layer_mid
layer.up = layer_up
# loha
elif "hada_w1_b" in values:
rank = values["hada_w1_b"].shape[0]
layer = LoHALayer(self.name, stem, rank, alpha)
layer.org_module = wrapped
layer.bias = bias
layer.w1_a = values["hada_w1_a"].to(device=self.device, dtype=self.dtype)
layer.w1_b = values["hada_w1_b"].to(device=self.device, dtype=self.dtype)
layer.w2_a = values["hada_w2_a"].to(device=self.device, dtype=self.dtype)
layer.w2_b = values["hada_w2_b"].to(device=self.device, dtype=self.dtype)
layer.w1_a = values["hada_w1_a"].to(
device=self.device, dtype=self.dtype
)
layer.w1_b = values["hada_w1_b"].to(
device=self.device, dtype=self.dtype
)
layer.w2_a = values["hada_w2_a"].to(
device=self.device, dtype=self.dtype
)
layer.w2_b = values["hada_w2_b"].to(
device=self.device, dtype=self.dtype
)
if "hada_t1" in values:
layer.t1 = values["hada_t1"].to(device=self.device, dtype=self.dtype)
layer.t1 = values["hada_t1"].to(
device=self.device, dtype=self.dtype
)
else:
layer.t1 = None
if "hada_t2" in values:
layer.t2 = values["hada_t2"].to(device=self.device, dtype=self.dtype)
layer.t2 = values["hada_t2"].to(
device=self.device, dtype=self.dtype
)
else:
layer.t2 = None
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
if "lokr_w1_b" in values:
rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
rank = values["lokr_w2_b"].shape[0]
else:
rank = None # unscaled
layer = LoKRLayer(self.name, stem, rank, alpha)
layer.org_module = wrapped
layer.bias = bias
if "lokr_w1" in values:
layer.w1 = values["lokr_w1"].to(device=self.device, dtype=self.dtype)
else:
layer.w1_a = values["lokr_w1_a"].to(device=self.device, dtype=self.dtype)
layer.w1_b = values["lokr_w1_b"].to(device=self.device, dtype=self.dtype)
if "lokr_w2" in values:
layer.w2 = values["lokr_w2"].to(device=self.device, dtype=self.dtype)
else:
layer.w2_a = values["lokr_w2_a"].to(device=self.device, dtype=self.dtype)
layer.w2_b = values["lokr_w2_b"].to(device=self.device, dtype=self.dtype)
if "lokr_t2" in values:
layer.t2 = values["lokr_t2"].to(device=self.device, dtype=self.dtype)
else:
print(
f">> Encountered unknown lora layer module in {self.name}: {stem} - {type(wrapped).__name__}"
@ -317,9 +456,13 @@ class LoRA:
class KohyaLoraManager:
def __init__(self, pipe, lora_path):
lora_path = None
vector_length_cache_path = None
def __init__(self, pipe):
self.lora_path = Path(global_lora_models_dir())
self.vector_length_cache_path = self.lora_path / '.vectorlength.cache'
self.unet = pipe.unet
self.lora_path = lora_path
self.wrapper = LoRAModuleWrapper(pipe.unet, pipe.text_encoder)
self.text_encoder = pipe.text_encoder
self.device = torch.device(choose_torch_device())
@ -332,6 +475,9 @@ class KohyaLoraManager:
else:
checkpoint = torch.load(path_file, map_location="cpu")
if not self.check_model_compatibility(checkpoint):
raise IncompatibleModelException
lora = LoRA(name, self.device, self.dtype, self.wrapper, multiplier)
lora.load_from_dict(checkpoint)
self.wrapper.loaded_loras[name] = lora
@ -339,12 +485,14 @@ class KohyaLoraManager:
return lora
def apply_lora_model(self, name, mult: float = 1.0):
path_file = None
for suffix in ["ckpt", "safetensors", "pt"]:
path_file = Path(self.lora_path, f"{name}.{suffix}")
if path_file.exists():
path_files = [x for x in Path(self.lora_path).glob(f"**/{name}.{suffix}")]
if len(path_files):
path_file = path_files[0]
print(f" | Loading lora {path_file.name} with weight {mult}")
break
if not path_file.exists():
if not path_file:
print(f" ** Unable to find lora: {name}")
return
@ -355,13 +503,90 @@ class KohyaLoraManager:
lora.multiplier = mult
self.wrapper.applied_loras[name] = lora
def unload_applied_lora(self, lora_name: str):
def unload_applied_lora(self, lora_name: str) -> bool:
"""If the indicated LoRA has previously been applied then
unload it and return True. Return False if the LoRA was
not previously applied (for status reporting)
"""
if lora_name in self.wrapper.applied_loras:
del self.wrapper.applied_loras[lora_name]
return True
return False
def unload_lora(self, lora_name: str):
def unload_lora(self, lora_name: str) -> bool:
if lora_name in self.wrapper.loaded_loras:
del self.wrapper.loaded_loras[lora_name]
return True
return False
def clear_loras(self):
self.wrapper.clear_applied_loras()
def check_model_compatibility(self, checkpoint) -> bool:
"""Checks whether the LoRA checkpoint is compatible with the token vector
length of the model that this manager is associated with.
"""
model_token_vector_length = (
self.text_encoder.get_input_embeddings().weight.data[0].shape[0]
)
lora_token_vector_length = self.vector_length_from_checkpoint(checkpoint)
return model_token_vector_length == lora_token_vector_length
@staticmethod
def vector_length_from_checkpoint(checkpoint: dict) -> int:
"""Return the vector token length for the passed LoRA checkpoint object.
This is used to determine which SD model version the LoRA was based on.
768 -> SDv1
1024-> SDv2
"""
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
lora_token_vector_length = (
checkpoint[key1].shape[1]
if key1 in checkpoint
else checkpoint[key2].shape[0]
if key2 in checkpoint
else 768
)
return lora_token_vector_length
@classmethod
def vector_length_from_checkpoint_file(self, checkpoint_path: Path) -> int:
with LoraVectorLengthCache(self.vector_length_cache_path) as cache:
if str(checkpoint_path) not in cache:
if checkpoint_path.suffix == ".safetensors":
checkpoint = load_file(
checkpoint_path.absolute().as_posix(), device="cpu"
)
else:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
cache[str(checkpoint_path)] = KohyaLoraManager.vector_length_from_checkpoint(
checkpoint
)
return cache[str(checkpoint_path)]
class LoraVectorLengthCache(object):
def __init__(self, cache_path: Path):
self.cache_path = cache_path
print(f'DEBUG: lock path = {Path(cache_path.parent, ".cachelock")}')
self.lock = FileLock(Path(cache_path.parent, ".cachelock"))
self.cache = {}
def __enter__(self):
self.lock.acquire(timeout=10)
try:
if self.cache_path.exists():
with open(self.cache_path, "r") as json_file:
self.cache = json.load(json_file)
except Timeout:
print(
"** Can't acquire lock on lora vector length cache. Operations will be slower"
)
except (json.JSONDecodeError, OSError):
self.cache_path.unlink()
return self.cache
def __exit__(self, type, value, traceback):
with open(self.cache_path, "w") as json_file:
json.dump(self.cache, json_file)
self.lock.release()

View File

@ -1,66 +1,101 @@
import os
from diffusers import StableDiffusionPipeline
from pathlib import Path
from diffusers import UNet2DConditionModel, StableDiffusionPipeline
from ldm.invoke.globals import global_lora_models_dir
from .kohya_lora_manager import KohyaLoraManager
from .kohya_lora_manager import KohyaLoraManager, IncompatibleModelException
from typing import Optional, Dict
class LoraCondition:
name: str
weight: float
def __init__(self, name, weight: float = 1.0, kohya_manager: Optional[KohyaLoraManager]=None):
def __init__(self,
name,
weight: float = 1.0,
unet: UNet2DConditionModel=None, # for diffusers format LoRAs
kohya_manager: Optional[KohyaLoraManager]=None, # for KohyaLoraManager-compatible LoRAs
):
self.name = name
self.weight = weight
self.kohya_manager = kohya_manager
self.unet = unet
def __call__(self, model):
def __call__(self):
# TODO: make model able to load from huggingface, rather then just local files
path = Path(global_lora_models_dir(), self.name)
if path.is_dir():
if model.load_attn_procs:
if not self.unet:
print(f" ** Unable to load diffusers-format LoRA {self.name}: unet is None")
return
if self.unet.load_attn_procs:
file = Path(path, "pytorch_lora_weights.bin")
if file.is_file():
print(f">> Loading LoRA: {path}")
model.load_attn_procs(path.absolute().as_posix())
self.unet.load_attn_procs(path.absolute().as_posix())
else:
print(f" ** Unable to find valid LoRA at: {path}")
else:
print(" ** Invalid Model to load LoRA")
elif self.kohya_manager:
self.kohya_manager.apply_lora_model(self.name,self.weight)
try:
self.kohya_manager.apply_lora_model(self.name,self.weight)
except IncompatibleModelException:
print(f" ** LoRA {self.name} is incompatible with this model; will generate without the LoRA applied.")
else:
print(" ** Unable to load LoRA")
def unload(self):
if self.kohya_manager:
if self.kohya_manager and self.kohya_manager.unload_applied_lora(self.name):
print(f'>> unloading LoRA {self.name}')
self.kohya_manager.unload_applied_lora(self.name)
class LoraManager:
def __init__(self, pipe):
def __init__(self, pipe: StableDiffusionPipeline):
# Kohya class handles lora not generated through diffusers
self.kohya = KohyaLoraManager(pipe, global_lora_models_dir())
self.kohya = KohyaLoraManager(pipe)
self.unet = pipe.unet
def set_loras_conditions(self, lora_weights: list):
conditions = []
if len(lora_weights) > 0:
for lora in lora_weights:
conditions.append(LoraCondition(lora.model, lora.weight, self.kohya))
conditions.append(LoraCondition(lora.model, lora.weight, self.unet, self.kohya))
if len(conditions) > 0:
return conditions
return None
def list_compatible_loras(self)->Dict[str, Path]:
'''
List all the LoRAs in the global lora directory that
are compatible with the current model. Return a dictionary
of the lora basename and its path.
'''
model_length = self.kohya.text_encoder.get_input_embeddings().weight.data[0].shape[0]
return self.list_loras(model_length)
@classmethod
def list_loras(self)->Dict[str, Path]:
@staticmethod
def list_loras(token_vector_length:int=None)->Dict[str, Path]:
'''List the LoRAS in the global lora directory.
If token_vector_length is provided, then only return
LoRAS that have the indicated length:
768: v1 models
1024: v2 models
'''
path = Path(global_lora_models_dir())
models_found = dict()
for root,_,files in os.walk(path):
for x in files:
name = Path(x).stem
suffix = Path(x).suffix
if suffix in [".ckpt", ".pt", ".safetensors"]:
models_found[name]=Path(root,x)
if suffix not in [".ckpt", ".pt", ".safetensors"]:
continue
path = Path(root,x)
if token_vector_length is None:
models_found[name]=Path(root,x) # unconditional addition
elif token_vector_length == KohyaLoraManager.vector_length_from_checkpoint_file(path):
models_found[name]=Path(root,x) # conditional on the base model matching
return models_found

View File

@ -34,7 +34,7 @@ dependencies = [
"clip_anytorch",
"compel~=1.1.0",
"datasets",
"diffusers[torch]~=0.14",
"diffusers[torch]~=0.15.0",
"dnspython==2.2.1",
"einops",
"eventlet",