mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Compare commits
3 Commits
lstein/fea
...
improve-co
Author | SHA1 | Date | |
---|---|---|---|
bbb48c5475 | |||
e68c49167a | |||
46950a9bd0 |
@ -9,9 +9,9 @@ runs:
|
||||
node-version: '18'
|
||||
|
||||
- name: setup pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
uses: pnpm/action-setup@v2
|
||||
with:
|
||||
version: 8.15.6
|
||||
version: 8
|
||||
run_install: false
|
||||
|
||||
- name: get pnpm store directory
|
||||
|
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@ -8,7 +8,7 @@
|
||||
|
||||
## QA Instructions
|
||||
|
||||
<!--WHEN APPLICABLE: Describe how you have tested the changes in this PR. Provide enough detail that a reviewer can reproduce your tests.-->
|
||||
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
|
||||
|
||||
## Merge Plan
|
||||
|
||||
|
2
.github/workflows/python-checks.yml
vendored
2
.github/workflows/python-checks.yml
vendored
@ -62,7 +62,7 @@ jobs:
|
||||
|
||||
- name: install ruff
|
||||
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
|
||||
run: pip install ruff==0.6.0
|
||||
run: pip install ruff
|
||||
shell: bash
|
||||
|
||||
- name: ruff check
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -188,3 +188,4 @@ installer/install.sh
|
||||
installer/update.bat
|
||||
installer/update.sh
|
||||
installer/InvokeAI-Installer/
|
||||
.aider*
|
||||
|
4
Makefile
4
Makefile
@ -18,7 +18,6 @@ help:
|
||||
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
|
||||
@echo "installer-zip Build the installer .zip file for the current version"
|
||||
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
|
||||
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
|
||||
|
||||
# Runs ruff, fixing any safely-fixable errors and formatting
|
||||
ruff:
|
||||
@ -71,6 +70,3 @@ installer-zip:
|
||||
tag-release:
|
||||
cd installer && ./tag_release.sh
|
||||
|
||||
# Generate the OpenAPI Schema for the app
|
||||
openapi:
|
||||
python scripts/generate_openapi_schema.py
|
||||
|
45
README.md
45
README.md
@ -12,24 +12,12 @@
|
||||
|
||||
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
|
||||
|
||||
Invoke is available in two editions:
|
||||
|
||||
| **Community Edition** | **Professional Edition** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|
||||
| **For users looking for a locally installed, self-hosted and self-managed service** | **For users or teams looking for a cloud-hosted, fully managed service** |
|
||||
| - Free to use under a commercially-friendly license | - Monthly subscription fee with three different plan levels |
|
||||
| - Download and install on compatible hardware | - Offers additional benefits, including multi-user support, improved model training, and more |
|
||||
| - Includes all core studio features: generate, refine, iterate on images, and build workflows | - Hosted in the cloud for easy, secure model access and scalability |
|
||||
| Quick Start -> [Installation and Updates][installation docs] | More Information -> [www.invoke.com/pricing](https://www.invoke.com/pricing) |
|
||||
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
# Documentation
|
||||
| **Quick Links** |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs] |
|
||||
|
||||
</div>
|
||||
|
||||
## Quick Start
|
||||
@ -49,33 +37,6 @@ Invoke is available in two editions:
|
||||
|
||||
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
|
||||
|
||||
## Docker Container
|
||||
|
||||
We publish official container images in Github Container Registry: https://github.com/invoke-ai/InvokeAI/pkgs/container/invokeai. Both CUDA and ROCm images are available. Check the above link for relevant tags.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Ensure that Docker is set up to use the GPU. Refer to [NVIDIA][nvidia docker docs] or [AMD][amd docker docs] documentation.
|
||||
|
||||
### Generate!
|
||||
|
||||
Run the container, modifying the command as necessary:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Then open `http://localhost:9090` and install some models using the Model Manager tab to begin generating.
|
||||
|
||||
For ROCm, add `--device /dev/kfd --device /dev/dri` to the `docker run` command.
|
||||
|
||||
### Persist your data
|
||||
|
||||
You will likely want to persist your workspace outside of the container. Use the `--volume /home/myuser/invokeai:/invokeai` flag to mount some local directory (using its **absolute** path) to the `/invokeai` path inside the container. Your generated images and models will reside there. You can use this directory with other InvokeAI installations, or switch between runtime directories as needed.
|
||||
|
||||
### DIY
|
||||
|
||||
Build your own image and customize the environment to match your needs using our `docker-compose` stack. See [README.md](./docker/README.md) in the [docker](./docker) directory.
|
||||
|
||||
## Troubleshooting, FAQ and Support
|
||||
|
||||
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
|
||||
@ -153,5 +114,3 @@ Original portions of the software are Copyright © 2024 by respective contributo
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
|
||||
[translation status link]: https://hosted.weblate.org/engage/invokeai/
|
||||
[nvidia docker docs]: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
|
||||
[amd docker docs]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html
|
||||
|
@ -19,9 +19,8 @@
|
||||
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
|
||||
# INVOKEAI_PORT=9090
|
||||
|
||||
## GPU_DRIVER can be set to either `cuda` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=cuda #| rocm
|
||||
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
|
||||
# GPU_DRIVER=nvidia #| rocm
|
||||
|
||||
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
|
||||
## It is usually not necessary to change this. Use `id -u` on the host system to find the UID.
|
||||
# CONTAINER_UID=1000
|
||||
|
@ -55,7 +55,6 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
FROM node:20-slim AS web-builder
|
||||
ENV PNPM_HOME="/pnpm"
|
||||
ENV PATH="$PNPM_HOME:$PATH"
|
||||
RUN corepack use pnpm@8.x
|
||||
RUN corepack enable
|
||||
|
||||
WORKDIR /build
|
||||
|
@ -1,75 +1,41 @@
|
||||
# Invoke in Docker
|
||||
# InvokeAI Containerized
|
||||
|
||||
- Ensure that Docker can use the GPU on your system
|
||||
- This documentation assumes Linux, but should work similarly under Windows with WSL2
|
||||
- We don't recommend running Invoke in Docker on macOS at this time. It works, but very slowly.
|
||||
All commands should be run within the `docker` directory: `cd docker`
|
||||
|
||||
## Quickstart :lightning:
|
||||
## Quickstart :rocket:
|
||||
|
||||
No `docker compose`, no persistence, just a simple one-liner using the official images:
|
||||
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
|
||||
|
||||
**CUDA:**
|
||||
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
**ROCm:**
|
||||
|
||||
```bash
|
||||
docker run --device /dev/kfd --device /dev/dri --publish 9090:9090 ghcr.io/invoke-ai/invokeai:main-rocm
|
||||
```
|
||||
|
||||
Open `http://localhost:9090` in your browser once the container finishes booting, install some models, and generate away!
|
||||
|
||||
> [!TIP]
|
||||
> To persist your data (including downloaded models) outside of the container, add a `--volume/-v` flag to the above command, e.g.: `docker run --volume /some/local/path:/invokeai <...the rest of the command>`
|
||||
|
||||
## Customize the container
|
||||
|
||||
We ship the `run.sh` script, which is a convenient wrapper around `docker compose` for cases where custom image build args are needed. Alternatively, the familiar `docker compose` commands work just as well.
|
||||
|
||||
```bash
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
# edit .env to your liking if you need to; it is well commented.
|
||||
./run.sh
|
||||
```
|
||||
|
||||
It will take a few minutes to build the image the first time. Once the application starts up, open `http://localhost:9090` in your browser to invoke!
|
||||
|
||||
## Docker setup in detail
|
||||
## Detailed setup
|
||||
|
||||
#### Linux
|
||||
|
||||
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
|
||||
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository).
|
||||
- The deprecated `docker-compose` (hyphenated) CLI probably won't work. Update to a recent version.
|
||||
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
|
||||
3. Ensure docker daemon is able to access the GPU.
|
||||
- [NVIDIA docs](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
- [AMD docs](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html)
|
||||
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
#### macOS
|
||||
|
||||
> [!TIP]
|
||||
> You'll be better off installing Invoke directly on your system, because Docker can not use the GPU on macOS.
|
||||
|
||||
If you are still reading:
|
||||
|
||||
1. Ensure Docker has at least 16GB RAM
|
||||
2. Enable VirtioFS for file sharing
|
||||
3. Enable `docker compose` V2 support
|
||||
|
||||
This is done via Docker Desktop preferences.
|
||||
This is done via Docker Desktop preferences
|
||||
|
||||
### Configure the Invoke Environment
|
||||
### Configure Invoke environment
|
||||
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to the desired location of the InvokeAI runtime directory. It may be an existing directory from a previous installation (post 4.0.0).
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. Execute `run.sh`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. Navigate to the Model Manager tab and install some models before generating.
|
||||
The runtime directory (holding models and outputs) will be created in the location specified by `INVOKEAI_ROOT`. The default location is `~/invokeai`. The runtime directory will be populated with the base configs and models necessary to start generating.
|
||||
|
||||
### Use a GPU
|
||||
|
||||
@ -77,9 +43,9 @@ The runtime directory (holding models and outputs) will be created in the locati
|
||||
- WSL2 is *required* for Windows.
|
||||
- only `x86_64` architecture is supported.
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker/NVIDIA/AMD documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file before running `./run.sh`.
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
|
||||
|
||||
## Customize
|
||||
|
||||
@ -93,10 +59,10 @@ Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The defa
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=cuda
|
||||
GPU_DRIVER=nvidia
|
||||
```
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here. See the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
|
||||
## Even More Customizing!
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
# Copyright (c) 2023 Eugene Brodsky https://github.com/ebr
|
||||
|
||||
version: '3.8'
|
||||
|
||||
x-invokeai: &invokeai
|
||||
image: "local/invokeai:latest"
|
||||
build:
|
||||
@ -30,7 +32,7 @@ x-invokeai: &invokeai
|
||||
|
||||
|
||||
services:
|
||||
invokeai-cuda:
|
||||
invokeai-nvidia:
|
||||
<<: *invokeai
|
||||
deploy:
|
||||
resources:
|
||||
|
@ -23,18 +23,18 @@ usermod -u ${USER_ID} ${USER} 1>/dev/null
|
||||
# but it is useful to have the full SSH server e.g. on Runpod.
|
||||
# (use SCP to copy files to/from the image, etc)
|
||||
if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" >.ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
apt-get update
|
||||
apt-get install -y openssh-server
|
||||
pushd "$HOME"
|
||||
mkdir -p .ssh
|
||||
echo "${PUBLIC_KEY}" > .ssh/authorized_keys
|
||||
chmod -R 700 .ssh
|
||||
popd
|
||||
service ssh start
|
||||
fi
|
||||
|
||||
mkdir -p "${INVOKEAI_ROOT}"
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}" || true
|
||||
chown --recursive ${USER} "${INVOKEAI_ROOT}"
|
||||
cd "${INVOKEAI_ROOT}"
|
||||
|
||||
# Run the CMD as the Container User (not root).
|
||||
|
@ -8,15 +8,11 @@ run() {
|
||||
local build_args=""
|
||||
local profile=""
|
||||
|
||||
# create .env file if it doesn't exist, otherwise docker compose will fail
|
||||
touch .env
|
||||
|
||||
# parse .env file for build args
|
||||
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
|
||||
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
|
||||
|
||||
# default to 'cuda' profile
|
||||
[[ -z "$profile" ]] && profile="cuda"
|
||||
[[ -z "$profile" ]] && profile="nvidia"
|
||||
|
||||
local service_name="invokeai-$profile"
|
||||
|
||||
|
@ -128,8 +128,7 @@ The queue operates on a series of download job objects. These objects
|
||||
specify the source and destination of the download, and keep track of
|
||||
the progress of the download.
|
||||
|
||||
Two job types are defined. `DownloadJob` and
|
||||
`MultiFileDownloadJob`. The former is a pydantic object with the
|
||||
The only job type currently implemented is `DownloadJob`, a pydantic object with the
|
||||
following fields:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
@ -139,7 +138,7 @@ following fields:
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `access_token` | str | | [optional] string containing authentication token for access |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
@ -191,33 +190,6 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
|
||||
`error_type` field of "DownloadJobCancelledException". In addition,
|
||||
the job's `cancelled` property will be set to True.
|
||||
|
||||
The `MultiFileDownloadJob` is used for diffusers model downloads,
|
||||
which contain multiple files and directories under a common root:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
|----------------|-----------------|---------------|-----------------|
|
||||
| _Fields passed in at job creation time_ |
|
||||
| `download_parts` | Set[DownloadJob]| | Component download jobs |
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
| _Fields updated over the course of the download task_
|
||||
| `status` | DownloadJobStatus| | Status code |
|
||||
| `download_path` | Path | | Path to the root of the downloaded files |
|
||||
| `bytes` | int | 0 | Bytes downloaded so far |
|
||||
| `total_bytes` | int | 0 | Total size of the file at the remote site |
|
||||
| `error_type` | str | | String version of the exception that caused an error during download |
|
||||
| `error` | str | | String version of the traceback associated with an error |
|
||||
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
|
||||
|
||||
Note that the MultiFileDownloadJob does not support the `priority`,
|
||||
`job_started`, `job_ended` or `content_type` attributes. You can get
|
||||
these from the individual download jobs in `download_parts`.
|
||||
|
||||
|
||||
### Callbacks
|
||||
|
||||
Download jobs can be associated with a series of callbacks, each with
|
||||
@ -279,40 +251,11 @@ jobs using `list_jobs()`, fetch a single job by its with
|
||||
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
|
||||
with `join()`.
|
||||
|
||||
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
#### job = queue.download(source, dest, priority, access_token)
|
||||
|
||||
Create a new download job and put it on the queue, returning the
|
||||
DownloadJob object.
|
||||
|
||||
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
|
||||
|
||||
This is similar to download(), but instead of taking a single source,
|
||||
it accepts a `parts` argument consisting of a list of
|
||||
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
|
||||
where the URL is the location of the remote file, and the Path is the
|
||||
destination.
|
||||
|
||||
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
|
||||
consists of a url/path pair. Note that the path *must* be relative.
|
||||
|
||||
The method returns a `MultiFileDownloadJob`.
|
||||
|
||||
|
||||
```
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
|
||||
path='my_model/textencoder/pytorch_model.safetensors'
|
||||
)
|
||||
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
|
||||
path='my_model/vae/diffusers_model.safetensors'
|
||||
)
|
||||
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
|
||||
dest='/tmp/downloads',
|
||||
on_progress=TqdmProgress().update)
|
||||
queue.wait_for_job(job)
|
||||
print(f"The files were downloaded to {job.download_path}")
|
||||
```
|
||||
|
||||
#### jobs = queue.list_jobs()
|
||||
|
||||
Return a list of all active and inactive `DownloadJob`s.
|
||||
|
@ -397,25 +397,26 @@ In the event you wish to create a new installer, you may use the
|
||||
following initialization pattern:
|
||||
|
||||
```
|
||||
from invokeai.app.services.config import get_config
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_records import ModelRecordServiceSQL
|
||||
from invokeai.app.services.model_install import ModelInstallService
|
||||
from invokeai.app.services.download import DownloadQueueService
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.services.shared.sqlite import SqliteDatabase
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
config = get_config()
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
db = SqliteDatabase(config.db_path, logger)
|
||||
record_store = ModelRecordServiceSQL(db, logger)
|
||||
db = SqliteDatabase(config, logger)
|
||||
record_store = ModelRecordServiceSQL(db)
|
||||
queue = DownloadQueueService()
|
||||
queue.start()
|
||||
|
||||
installer = ModelInstallService(app_config=config,
|
||||
installer = ModelInstallService(app_config=config,
|
||||
record_store=record_store,
|
||||
download_queue=queue
|
||||
)
|
||||
download_queue=queue
|
||||
)
|
||||
installer.start()
|
||||
```
|
||||
|
||||
@ -1366,20 +1367,12 @@ the in-memory loaded model:
|
||||
| `model` | AnyModel | The instantiated model (details below) |
|
||||
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
|
||||
|
||||
### get_model_by_key(key, [submodel]) -> LoadedModel
|
||||
|
||||
The `get_model_by_key()` method will retrieve the model using its
|
||||
unique database key. For example:
|
||||
|
||||
loaded_model = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
|
||||
`get_model_by_key()` may raise any of the following exceptions:
|
||||
|
||||
* `UnknownModelException` -- key not in database
|
||||
* `ModelNotFoundException` -- key in database but model not found at path
|
||||
* `NotImplementedException` -- the loader doesn't know how to load this type of model
|
||||
|
||||
### Using the Loaded Model in Inference
|
||||
Because the loader can return multiple model types, it is typed to
|
||||
return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
|
||||
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
|
||||
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
|
||||
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
|
||||
models. The others are obvious.
|
||||
|
||||
`LoadedModel` acts as a context manager. The context loads the model
|
||||
into the execution device (e.g. VRAM on CUDA systems), locks the model
|
||||
@ -1387,33 +1380,17 @@ in the execution device for the duration of the context, and returns
|
||||
the model. Use it like this:
|
||||
|
||||
```
|
||||
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with loaded_model as vae:
|
||||
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with model_info as vae:
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
The object returned by the LoadedModel context manager is an
|
||||
`AnyModel`, which is a Union of `ModelMixin`, `torch.nn.Module`,
|
||||
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
|
||||
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
|
||||
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
|
||||
models. The others are obvious.
|
||||
|
||||
In addition, you may call `LoadedModel.model_on_device()`, a context
|
||||
manager that returns a tuple of the model's state dict in CPU and the
|
||||
model itself in VRAM. It is used to optimize the LoRA patching and
|
||||
unpatching process:
|
||||
|
||||
```
|
||||
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
|
||||
with loaded_model.model_on_device() as (state_dict, vae):
|
||||
image = vae.decode(latents)[0]
|
||||
```
|
||||
|
||||
Since not all models have state dicts, the `state_dict` return value
|
||||
can be None.
|
||||
|
||||
`get_model_by_key()` may raise any of the following exceptions:
|
||||
|
||||
* `UnknownModelException` -- key not in database
|
||||
* `ModelNotFoundException` -- key in database but model not found at path
|
||||
* `NotImplementedException` -- the loader doesn't know how to load this type of model
|
||||
|
||||
### Emitting model loading events
|
||||
|
||||
When the `context` argument is passed to `load_model_*()`, it will
|
||||
@ -1601,59 +1578,3 @@ This method takes a model key, looks it up using the
|
||||
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
|
||||
model configuration to `load_model_by_config()`. It may raise a
|
||||
`NotImplementedException`.
|
||||
|
||||
## Invocation Context Model Manager API
|
||||
|
||||
Within invocations, the following methods are available from the
|
||||
`InvocationContext` object:
|
||||
|
||||
### context.download_and_cache_model(source) -> Path
|
||||
|
||||
This method accepts a `source` of a remote model, downloads and caches
|
||||
it locally, and then returns a Path to the local model. The source can
|
||||
be a direct download URL or a HuggingFace repo_id.
|
||||
|
||||
In the case of HuggingFace repo_id, the following variants are
|
||||
recognized:
|
||||
|
||||
* stabilityai/stable-diffusion-v4 -- default model
|
||||
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
|
||||
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
|
||||
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
|
||||
|
||||
You can also point at an arbitrary individual file within a repo_id
|
||||
directory using this syntax:
|
||||
|
||||
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
|
||||
|
||||
### context.load_local_model(model_path, [loader]) -> LoadedModel
|
||||
|
||||
This method loads a local model from the indicated path, returning a
|
||||
`LoadedModel`. The optional loader is a Callable that accepts a Path
|
||||
to the object, and returns a `AnyModel` object. If no loader is
|
||||
provided, then the method will use `torch.load()` for a .ckpt or .bin
|
||||
checkpoint file, `safetensors.torch.load_file()` for a safetensors
|
||||
checkpoint file, or `cls.from_pretrained()` for a directory that looks
|
||||
like a diffusers directory.
|
||||
|
||||
### context.load_remote_model(source, [loader]) -> LoadedModel
|
||||
|
||||
This method accepts a `source` of a remote model, downloads and caches
|
||||
it locally, loads it, and returns a `LoadedModel`. The source can be a
|
||||
direct download URL or a HuggingFace repo_id.
|
||||
|
||||
In the case of HuggingFace repo_id, the following variants are
|
||||
recognized:
|
||||
|
||||
* stabilityai/stable-diffusion-v4 -- default model
|
||||
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
|
||||
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
|
||||
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
|
||||
|
||||
You can also point at an arbitrary individual file within a repo_id
|
||||
directory using this syntax:
|
||||
|
||||
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
|
||||
|
||||
|
||||
|
||||
|
@ -154,18 +154,6 @@ This is caused by an invalid setting in the `invokeai.yaml` configuration file.
|
||||
|
||||
Check the [configuration docs] for more detail about the settings and how to specify them.
|
||||
|
||||
## `ModuleNotFoundError: No module named 'controlnet_aux'`
|
||||
|
||||
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
|
||||
|
||||
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
|
||||
|
||||
- Run the Invoke launcher
|
||||
- Choose the developer console option
|
||||
- Run this command: `pip cache remove controlnet_aux`
|
||||
- Close the terminal window
|
||||
- Download and run the [installer](https://github.com/invoke-ai/InvokeAI/releases/latest), selecting your current install location
|
||||
|
||||
## Out of Memory Issues
|
||||
|
||||
The models are large, VRAM is expensive, and you may find yourself
|
||||
|
@ -4,37 +4,50 @@ title: Installing with Docker
|
||||
|
||||
# :fontawesome-brands-docker: Docker
|
||||
|
||||
!!! warning "macOS users"
|
||||
!!! warning "macOS and AMD GPU Users"
|
||||
|
||||
Docker can not access the GPU on macOS, so your generation speeds will be slow. [Install InvokeAI](INSTALLATION.md) instead.
|
||||
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md),
|
||||
because Docker containers can not access the GPU on macOS.
|
||||
|
||||
!!! warning "AMD GPU Users"
|
||||
|
||||
Container support for AMD GPUs has been reported to work by the community, but has not received
|
||||
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and
|
||||
use the `build.sh` script to build the image for this to take effect at build time.
|
||||
|
||||
!!! tip "Linux and Windows Users"
|
||||
|
||||
Configure Docker to access your machine's GPU.
|
||||
For optimal performance, configure your Docker daemon to access your machine's GPU.
|
||||
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
|
||||
Linux users should follow the [NVIDIA](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) or [AMD](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) documentation.
|
||||
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
|
||||
|
||||
## Why containers?
|
||||
|
||||
They provide a flexible, reliable way to build and deploy InvokeAI.
|
||||
See [Processes](https://12factor.net/processes) under the Twelve-Factor App
|
||||
methodology for details on why running applications in such a stateless fashion is important.
|
||||
|
||||
The container is configured for CUDA by default, but can be built to support AMD GPUs
|
||||
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
|
||||
|
||||
Developers on Apple silicon (M1/M2/M3): You
|
||||
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
||||
and performance is reduced compared with running it directly on macOS but for
|
||||
development purposes it's fine. Once you're done with development tasks on your
|
||||
laptop you can build for the target platform and architecture and deploy to
|
||||
another environment with NVIDIA GPUs on-premises or in the cloud.
|
||||
|
||||
## TL;DR
|
||||
|
||||
Ensure your Docker setup is able to use your GPU. Then:
|
||||
|
||||
```bash
|
||||
docker run --runtime=nvidia --gpus=all --publish 9090:9090 ghcr.io/invoke-ai/invokeai
|
||||
```
|
||||
|
||||
Once the container starts up, open http://localhost:9090 in your browser, install some models, and start generating.
|
||||
|
||||
## Build-It-Yourself
|
||||
|
||||
All the docker materials are located inside the [docker](https://github.com/invoke-ai/InvokeAI/tree/main/docker) directory in the Git repo.
|
||||
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
|
||||
|
||||
```bash
|
||||
# docker compose commands should be run from the `docker` directory
|
||||
cd docker
|
||||
cp .env.sample .env
|
||||
docker compose up
|
||||
```
|
||||
|
||||
We also ship the `run.sh` convenience script. See the `docker/README.md` file for detailed instructions on how to customize the docker setup to your needs.
|
||||
## Installation in a Linux container (desktop)
|
||||
|
||||
### Prerequisites
|
||||
|
||||
@ -45,9 +58,18 @@ Preferences, Resources, Advanced. Increase the CPUs and Memory to avoid this
|
||||
[Issue](https://github.com/invoke-ai/InvokeAI/issues/342). You may need to
|
||||
increase Swap and Disk image size too.
|
||||
|
||||
#### Get a Huggingface-Token
|
||||
|
||||
Besides the Docker Agent you will need an Account on
|
||||
[huggingface.co](https://huggingface.co/join).
|
||||
|
||||
After you succesfully registered your account, go to
|
||||
[huggingface.co/settings/tokens](https://huggingface.co/settings/tokens), create
|
||||
a token and copy it, since you will need in for the next step.
|
||||
|
||||
### Setup
|
||||
|
||||
Set up your environment variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
|
||||
|
||||
@ -81,9 +103,10 @@ Once the container starts up (and configures the InvokeAI root directory if this
|
||||
## Troubleshooting / FAQ
|
||||
|
||||
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
|
||||
- A: Your `docker-entrypoint.sh` might have has Windows (CRLF) line endings, depending how you cloned the repository.
|
||||
To solve this, change the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
|
||||
and you may have cloned this repository before the issue was fixed. To solve this, please change
|
||||
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
|
||||
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
|
||||
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
|
||||
to reset the file to its most recent version.
|
||||
For more information on this issue, see [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
|
||||
|
@ -13,7 +13,7 @@ echo 2. Open the developer console
|
||||
echo 3. Command-line help
|
||||
echo Q - Quit
|
||||
echo.
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
echo To update, download and run the installer from https://github.com/invoke-ai/InvokeAI/releases/latest.
|
||||
echo.
|
||||
set /P choice="Please enter 1-4, Q: [1] "
|
||||
if not defined choice set choice=1
|
||||
|
@ -17,7 +17,7 @@
|
||||
set -eu
|
||||
|
||||
# Ensure we're in the correct folder in case user's CWD is somewhere else
|
||||
scriptdir=$(dirname $(readlink -f "$0"))
|
||||
scriptdir=$(dirname "$0")
|
||||
cd "$scriptdir"
|
||||
|
||||
. .venv/bin/activate
|
||||
|
@ -1,45 +1,40 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import asyncio
|
||||
from logging import Logger
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from invokeai.app.services.board_images.board_images_default import BoardImagesService
|
||||
from invokeai.app.services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from invokeai.app.services.boards.boards_default import BoardService
|
||||
from invokeai.app.services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService
|
||||
from invokeai.app.services.events.events_fastapievents import FastAPIEventService
|
||||
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from invokeai.app.services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images.images_default import ImageService
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService
|
||||
from invokeai.app.services.model_records.model_records_sql import ModelRecordServiceSQL
|
||||
from invokeai.app.services.names.names_default import SimpleNameService
|
||||
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
|
||||
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
|
||||
from invokeai.app.services.session_processor.session_processor_default import (
|
||||
DefaultSessionProcessor,
|
||||
DefaultSessionRunner,
|
||||
)
|
||||
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
|
||||
from invokeai.app.services.urls.urls_default import LocalUrlService
|
||||
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage
|
||||
from ..services.board_images.board_images_default import BoardImagesService
|
||||
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from ..services.boards.boards_default import BoardService
|
||||
from ..services.bulk_download.bulk_download_default import BulkDownloadService
|
||||
from ..services.config import InvokeAIAppConfig
|
||||
from ..services.download import DownloadQueueService
|
||||
from ..services.events.events_fastapievents import FastAPIEventService
|
||||
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from ..services.images.images_default import ImageService
|
||||
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.model_images.model_images_default import ModelImageFileStorageDisk
|
||||
from ..services.model_manager.model_manager_default import ModelManagerService
|
||||
from ..services.model_records import ModelRecordServiceSQL
|
||||
from ..services.names.names_default import SimpleNameService
|
||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor, DefaultSessionRunner
|
||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from ..services.urls.urls_default import LocalUrlService
|
||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
|
||||
|
||||
# TODO: is there a better way to achieve this?
|
||||
def check_internet() -> bool:
|
||||
@ -66,12 +61,7 @@ class ApiDependencies:
|
||||
invoker: Invoker
|
||||
|
||||
@staticmethod
|
||||
def initialize(
|
||||
config: InvokeAIAppConfig,
|
||||
event_handler_id: int,
|
||||
loop: asyncio.AbstractEventLoop,
|
||||
logger: Logger = logger,
|
||||
) -> None:
|
||||
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
|
||||
logger.info(f"InvokeAI version {__version__}")
|
||||
logger.info(f"Root directory = {str(config.root_path)}")
|
||||
|
||||
@ -82,7 +72,6 @@ class ApiDependencies:
|
||||
image_files = DiskImageFileStorage(f"{output_folder}/images")
|
||||
|
||||
model_images_folder = config.models_path
|
||||
style_presets_folder = config.style_presets_path
|
||||
|
||||
db = init_db(config=config, logger=logger, image_files=image_files)
|
||||
|
||||
@ -93,7 +82,7 @@ class ApiDependencies:
|
||||
board_images = BoardImagesService()
|
||||
board_records = SqliteBoardRecordStorage(db=db)
|
||||
boards = BoardService()
|
||||
events = FastAPIEventService(event_handler_id, loop=loop)
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
bulk_download = BulkDownloadService()
|
||||
image_records = SqliteImageRecordStorage(db=db)
|
||||
images = ImageService()
|
||||
@ -104,11 +93,11 @@ class ApiDependencies:
|
||||
conditioning = ObjectSerializerForwardCache(
|
||||
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
|
||||
)
|
||||
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
|
||||
download_queue_service = DownloadQueueService(event_bus=events)
|
||||
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
|
||||
model_manager = ModelManagerService.build_model_manager(
|
||||
app_config=configuration,
|
||||
model_record_service=ModelRecordServiceSQL(db=db, logger=logger),
|
||||
model_record_service=ModelRecordServiceSQL(db=db),
|
||||
download_queue=download_queue_service,
|
||||
events=events,
|
||||
)
|
||||
@ -118,8 +107,6 @@ class ApiDependencies:
|
||||
session_queue = SqliteSessionQueue(db=db)
|
||||
urls = LocalUrlService()
|
||||
workflow_records = SqliteWorkflowRecordsStorage(db=db)
|
||||
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
|
||||
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
|
||||
|
||||
services = InvocationServices(
|
||||
board_image_records=board_image_records,
|
||||
@ -145,8 +132,6 @@ class ApiDependencies:
|
||||
workflow_records=workflow_records,
|
||||
tensors=tensors,
|
||||
conditioning=conditioning,
|
||||
style_preset_records=style_preset_records,
|
||||
style_preset_image_files=style_preset_image_files,
|
||||
)
|
||||
|
||||
ApiDependencies.invoker = Invoker(services)
|
||||
|
@ -10,13 +10,14 @@ from fastapi import Body
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.upscale import ESRGAN_MODELS
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
|
||||
from invokeai.backend.util.logging import logging
|
||||
from invokeai.version import __version__
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
|
||||
class LogLevel(int, Enum):
|
||||
NotSet = logging.NOTSET
|
||||
|
@ -2,7 +2,7 @@ from fastapi import Body, HTTPException
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
|
||||
|
||||
|
@ -4,11 +4,12 @@ from fastapi import Body, HTTPException, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
boards_router = APIRouter(prefix="/v1/boards", tags=["boards"])
|
||||
|
||||
|
||||
@ -31,7 +32,6 @@ class DeleteBoardResult(BaseModel):
|
||||
)
|
||||
async def create_board(
|
||||
board_name: str = Query(description="The name of the board to create"),
|
||||
is_private: bool = Query(default=False, description="Whether the board is private"),
|
||||
) -> BoardDTO:
|
||||
"""Creates a board"""
|
||||
try:
|
||||
@ -118,13 +118,15 @@ async def list_boards(
|
||||
all: Optional[bool] = Query(default=None, description="Whether to list all boards"),
|
||||
offset: Optional[int] = Query(default=None, description="The page offset"),
|
||||
limit: Optional[int] = Query(default=None, description="The number of boards per page"),
|
||||
include_archived: bool = Query(default=False, description="Whether or not to include archived boards in list"),
|
||||
) -> Union[OffsetPaginatedResults[BoardDTO], list[BoardDTO]]:
|
||||
"""Gets a list of boards"""
|
||||
if all:
|
||||
return ApiDependencies.invoker.services.boards.get_all(include_archived)
|
||||
return ApiDependencies.invoker.services.boards.get_all()
|
||||
elif offset is not None and limit is not None:
|
||||
return ApiDependencies.invoker.services.boards.get_many(offset, limit, include_archived)
|
||||
return ApiDependencies.invoker.services.boards.get_many(
|
||||
offset,
|
||||
limit,
|
||||
)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
|
@ -8,12 +8,13 @@ from fastapi.routing import APIRouter
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from starlette.exceptions import HTTPException
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.download import (
|
||||
DownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
|
||||
|
||||
|
||||
|
@ -8,16 +8,12 @@ from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, JsonValue
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
||||
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
images_router = APIRouter(prefix="/v1/images", tags=["images"])
|
||||
|
||||
@ -218,8 +214,9 @@ async def get_image_workflow(
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@images_router.get(
|
||||
@images_router.api_route(
|
||||
"/i/{image_name}/full",
|
||||
methods=["GET", "HEAD"],
|
||||
operation_id="get_image_full",
|
||||
response_class=Response,
|
||||
responses={
|
||||
@ -230,30 +227,24 @@ async def get_image_workflow(
|
||||
404: {"description": "Image not found"},
|
||||
},
|
||||
)
|
||||
@images_router.head(
|
||||
"/i/{image_name}/full",
|
||||
operation_id="get_image_full_head",
|
||||
response_class=Response,
|
||||
responses={
|
||||
200: {
|
||||
"description": "Return the full-resolution image",
|
||||
"content": {"image/png": {}},
|
||||
},
|
||||
404: {"description": "Image not found"},
|
||||
},
|
||||
)
|
||||
async def get_image_full(
|
||||
image_name: str = Path(description="The name of full-resolution image file to get"),
|
||||
) -> Response:
|
||||
) -> FileResponse:
|
||||
"""Gets a full-resolution image file"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.images.get_path(image_name)
|
||||
with open(path, "rb") as f:
|
||||
content = f.read()
|
||||
response = Response(content, media_type="image/png")
|
||||
|
||||
if not ApiDependencies.invoker.services.images.validate_path(path):
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
response = FileResponse(
|
||||
path,
|
||||
media_type="image/png",
|
||||
filename=image_name,
|
||||
content_disposition_type="inline",
|
||||
)
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
|
||||
return response
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404)
|
||||
@ -273,14 +264,15 @@ async def get_image_full(
|
||||
)
|
||||
async def get_image_thumbnail(
|
||||
image_name: str = Path(description="The name of thumbnail image file to get"),
|
||||
) -> Response:
|
||||
) -> FileResponse:
|
||||
"""Gets a thumbnail image file"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.images.get_path(image_name, thumbnail=True)
|
||||
with open(path, "rb") as f:
|
||||
content = f.read()
|
||||
response = Response(content, media_type="image/webp")
|
||||
if not ApiDependencies.invoker.services.images.validate_path(path):
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
response = FileResponse(path, media_type="image/webp", content_disposition_type="inline")
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
return response
|
||||
except Exception:
|
||||
@ -324,14 +316,16 @@ async def list_image_dtos(
|
||||
),
|
||||
offset: int = Query(default=0, description="The page offset"),
|
||||
limit: int = Query(default=10, description="The number of images per page"),
|
||||
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
|
||||
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a list of image DTOs"""
|
||||
|
||||
image_dtos = ApiDependencies.invoker.services.images.get_many(
|
||||
offset, limit, starred_first, order_dir, image_origin, categories, is_intermediate, board_id, search_term
|
||||
offset,
|
||||
limit,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
)
|
||||
|
||||
return image_dtos
|
||||
|
@ -3,23 +3,23 @@
|
||||
|
||||
import io
|
||||
import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import List, Optional, Type
|
||||
from typing import Any, Dict, List, Optional, Type
|
||||
|
||||
from fastapi import Body, Path, Query, Response, UploadFile
|
||||
from fastapi.responses import FileResponse, HTMLResponse
|
||||
from fastapi.responses import FileResponse
|
||||
from fastapi.routing import APIRouter
|
||||
from PIL import Image
|
||||
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
|
||||
from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
InvalidModelException,
|
||||
ModelRecordChanges,
|
||||
UnknownModelException,
|
||||
@ -30,12 +30,15 @@ from invokeai.backend.model_manager.config import (
|
||||
MainCheckpointConfig,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.model_manager.starter_models import STARTER_MODELS, StarterModel, StarterModelWithoutDependencies
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
|
||||
|
||||
# images are immutable; set a high max-age
|
||||
@ -171,6 +174,18 @@ async def get_model_record(
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
# @model_manager_router.get("/summary", operation_id="list_model_summary")
|
||||
# async def list_model_summary(
|
||||
# page: int = Query(default=0, description="The page to get"),
|
||||
# per_page: int = Query(default=10, description="The number of models per page"),
|
||||
# order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
|
||||
# ) -> PaginatedResults[ModelSummary]:
|
||||
# """Gets a page of model summary data."""
|
||||
# record_store = ApiDependencies.invoker.services.model_manager.store
|
||||
# results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
|
||||
# return results
|
||||
|
||||
|
||||
class FoundModel(BaseModel):
|
||||
path: str = Field(description="Path to the model")
|
||||
is_installed: bool = Field(description="Whether or not the model is already installed")
|
||||
@ -430,11 +445,13 @@ async def delete_model_image(
|
||||
async def install_model(
|
||||
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
|
||||
inplace: Optional[bool] = Query(description="Whether or not to install a local model in place", default=False),
|
||||
access_token: Optional[str] = Query(description="access token for the remote resource", default=None),
|
||||
config: ModelRecordChanges = Body(
|
||||
description="Object containing fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
||||
# TODO(MM2): Can we type this?
|
||||
config: Optional[Dict[str, Any]] = Body(
|
||||
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
||||
default=None,
|
||||
example={"name": "string", "description": "string"},
|
||||
),
|
||||
access_token: Optional[str] = None,
|
||||
) -> ModelInstallJob:
|
||||
"""Install a model using a string identifier.
|
||||
|
||||
@ -449,9 +466,8 @@ async def install_model(
|
||||
- model/name:fp16:path/to/model.safetensors
|
||||
- model/name::path/to/model.safetensors
|
||||
|
||||
`config` is a ModelRecordChanges object. Fields in this object will override
|
||||
the ones that are probed automatically. Pass an empty object to accept
|
||||
all the defaults.
|
||||
`config` is an optional dict containing model configuration values that will override
|
||||
the ones that are probed automatically.
|
||||
|
||||
`access_token` is an optional access token for use with Urls that require
|
||||
authentication.
|
||||
@ -486,133 +502,6 @@ async def install_model(
|
||||
return result
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/install/huggingface",
|
||||
operation_id="install_hugging_face_model",
|
||||
responses={
|
||||
201: {"description": "The model is being installed"},
|
||||
400: {"description": "Bad request"},
|
||||
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
||||
},
|
||||
status_code=201,
|
||||
response_class=HTMLResponse,
|
||||
)
|
||||
async def install_hugging_face_model(
|
||||
source: str = Query(description="HuggingFace repo_id to install"),
|
||||
) -> HTMLResponse:
|
||||
"""Install a Hugging Face model using a string identifier."""
|
||||
|
||||
def generate_html(title: str, heading: str, repo_id: str, is_error: bool, message: str | None = "") -> str:
|
||||
if message:
|
||||
message = f"<p>{message}</p>"
|
||||
title_class = "error" if is_error else "success"
|
||||
return f"""
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<title>{title}</title>
|
||||
<style>
|
||||
body {{
|
||||
text-align: center;
|
||||
background-color: hsl(220 12% 10% / 1);
|
||||
font-family: Helvetica, sans-serif;
|
||||
color: hsl(220 12% 86% / 1);
|
||||
}}
|
||||
|
||||
.repo-id {{
|
||||
color: hsl(220 12% 68% / 1);
|
||||
}}
|
||||
|
||||
.error {{
|
||||
color: hsl(0 42% 68% / 1)
|
||||
}}
|
||||
|
||||
.message-box {{
|
||||
display: inline-block;
|
||||
border-radius: 5px;
|
||||
background-color: hsl(220 12% 20% / 1);
|
||||
padding-inline-end: 30px;
|
||||
padding: 20px;
|
||||
padding-inline-start: 30px;
|
||||
padding-inline-end: 30px;
|
||||
}}
|
||||
|
||||
.container {{
|
||||
display: flex;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
}}
|
||||
|
||||
a {{
|
||||
color: inherit
|
||||
}}
|
||||
|
||||
a:visited {{
|
||||
color: inherit
|
||||
}}
|
||||
|
||||
a:active {{
|
||||
color: inherit
|
||||
}}
|
||||
</style>
|
||||
</head>
|
||||
|
||||
<body style="background-color: hsl(220 12% 10% / 1);">
|
||||
<div class="container">
|
||||
<div class="message-box">
|
||||
<h2 class="{title_class}">{heading}</h2>
|
||||
{message}
|
||||
<p class="repo-id">Repo ID: {repo_id}</p>
|
||||
</div>
|
||||
</div>
|
||||
</body>
|
||||
|
||||
</html>
|
||||
"""
|
||||
|
||||
try:
|
||||
metadata = HuggingFaceMetadataFetch().from_id(source)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
except UnknownMetadataException:
|
||||
title = "Unable to Install Model"
|
||||
heading = "No HuggingFace repository found with that repo ID."
|
||||
message = "Ensure the repo ID is correct and try again."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=400)
|
||||
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
|
||||
try:
|
||||
installer = ApiDependencies.invoker.services.model_manager.install
|
||||
if metadata.is_diffusers:
|
||||
installer.heuristic_import(
|
||||
source=source,
|
||||
inplace=False,
|
||||
)
|
||||
elif metadata.ckpt_urls is not None and len(metadata.ckpt_urls) == 1:
|
||||
installer.heuristic_import(
|
||||
source=str(metadata.ckpt_urls[0]),
|
||||
inplace=False,
|
||||
)
|
||||
else:
|
||||
title = "Unable to Install Model"
|
||||
heading = "This HuggingFace repo has multiple models."
|
||||
message = "Please use the Model Manager to install this model."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=200)
|
||||
|
||||
title = "Model Install Started"
|
||||
heading = "Your HuggingFace model is installing now."
|
||||
message = "You can close this tab and check the Model Manager for installation progress."
|
||||
return HTMLResponse(content=generate_html(title, heading, source, False, message), status_code=201)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
title = "Unable to Install Model"
|
||||
heading = "There was an problem installing this model."
|
||||
message = 'Please use the Model Manager directly to install this model. If the issue persists, ask for help on <a href="https://discord.gg/ZmtBAhwWhy">discord</a>.'
|
||||
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=500)
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/install",
|
||||
operation_id="list_model_installs",
|
||||
@ -730,36 +619,39 @@ async def convert_model(
|
||||
logger.error(f"The model with key {key} is not a main checkpoint model.")
|
||||
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
|
||||
|
||||
with TemporaryDirectory(dir=ApiDependencies.invoker.services.configuration.models_path) as tmpdir:
|
||||
convert_path = pathlib.Path(tmpdir) / pathlib.Path(model_config.path).stem
|
||||
converted_model = loader.load_model(model_config)
|
||||
# write the converted file to the convert path
|
||||
raw_model = converted_model.model
|
||||
assert hasattr(raw_model, "save_pretrained")
|
||||
raw_model.save_pretrained(convert_path) # type: ignore
|
||||
assert convert_path.exists()
|
||||
# loading the model will convert it into a cached diffusers file
|
||||
try:
|
||||
cc_size = loader.convert_cache.max_size
|
||||
if cc_size == 0: # temporary set the convert cache to a positive number so that cached model is written
|
||||
loader._convert_cache.max_size = 1.0
|
||||
loader.load_model(model_config, submodel_type=SubModelType.Scheduler)
|
||||
finally:
|
||||
loader._convert_cache.max_size = cc_size
|
||||
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
# Get the path of the converted model from the loader
|
||||
cache_path = loader.convert_cache.cache_path(key)
|
||||
assert cache_path.exists()
|
||||
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
convert_path,
|
||||
config=ModelRecordChanges(
|
||||
name=original_name,
|
||||
description=model_config.description,
|
||||
hash=model_config.hash,
|
||||
source=model_config.source,
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
store.update_model(key, changes=ModelRecordChanges(name=original_name))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
# temporarily rename the original safetensors file so that there is no naming conflict
|
||||
original_name = model_config.name
|
||||
model_config.name = f"{original_name}.DELETE"
|
||||
changes = ModelRecordChanges(name=model_config.name)
|
||||
store.update_model(key, changes=changes)
|
||||
|
||||
# install the diffusers
|
||||
try:
|
||||
new_key = installer.install_path(
|
||||
cache_path,
|
||||
config={
|
||||
"name": original_name,
|
||||
"description": model_config.description,
|
||||
"hash": model_config.hash,
|
||||
"source": model_config.source,
|
||||
},
|
||||
)
|
||||
except DuplicateModelException as e:
|
||||
logger.error(str(e))
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
# Update the model image if the model had one
|
||||
try:
|
||||
@ -772,8 +664,8 @@ async def convert_model(
|
||||
# delete the original safetensors file
|
||||
installer.delete(key)
|
||||
|
||||
# delete the temporary directory
|
||||
# shutil.rmtree(cache_path)
|
||||
# delete the cached version
|
||||
shutil.rmtree(cache_path)
|
||||
|
||||
# return the config record for the new diffusers directory
|
||||
new_config = store.get_model(new_key)
|
||||
|
@ -4,7 +4,6 @@ from fastapi import Body, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@ -20,6 +19,8 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import CursorPaginatedResults
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
|
||||
|
||||
|
||||
|
@ -1,276 +0,0 @@
|
||||
import csv
|
||||
import io
|
||||
import json
|
||||
import traceback
|
||||
from typing import Optional
|
||||
|
||||
import pydantic
|
||||
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
|
||||
from fastapi.responses import FileResponse
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_common import (
|
||||
InvalidPresetImportDataError,
|
||||
PresetData,
|
||||
PresetType,
|
||||
StylePresetChanges,
|
||||
StylePresetNotFoundError,
|
||||
StylePresetRecordWithImage,
|
||||
StylePresetWithoutId,
|
||||
UnsupportedFileTypeError,
|
||||
parse_presets_from_file,
|
||||
)
|
||||
|
||||
|
||||
class StylePresetUpdateFormData(BaseModel):
|
||||
name: str = Field(description="Preset name")
|
||||
positive_prompt: str = Field(description="Positive prompt")
|
||||
negative_prompt: str = Field(description="Negative prompt")
|
||||
|
||||
|
||||
class StylePresetCreateFormData(StylePresetUpdateFormData):
|
||||
type: PresetType = Field(description="Preset type")
|
||||
|
||||
|
||||
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="get_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def get_style_preset(
|
||||
style_preset_id: str = Path(description="The style preset to get"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Gets a style preset"""
|
||||
try:
|
||||
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
|
||||
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
|
||||
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
|
||||
except StylePresetNotFoundError:
|
||||
raise HTTPException(status_code=404, detail="Style preset not found")
|
||||
|
||||
|
||||
@style_presets_router.patch(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="update_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def update_style_preset(
|
||||
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
|
||||
style_preset_id: str = Path(description="The id of the style preset to update"),
|
||||
data: str = Form(description="The data of the style preset to update"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Updates a style preset"""
|
||||
if image is not None:
|
||||
if not image.content_type or not image.content_type.startswith("image"):
|
||||
raise HTTPException(status_code=415, detail="Not an image")
|
||||
|
||||
contents = await image.read()
|
||||
try:
|
||||
pil_image = Image.open(io.BytesIO(contents))
|
||||
|
||||
except Exception:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail="Failed to read image")
|
||||
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
else:
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
|
||||
except StylePresetImageFileNotFoundException:
|
||||
pass
|
||||
|
||||
try:
|
||||
parsed_data = json.loads(data)
|
||||
validated_data = StylePresetUpdateFormData(**parsed_data)
|
||||
|
||||
name = validated_data.name
|
||||
positive_prompt = validated_data.positive_prompt
|
||||
negative_prompt = validated_data.negative_prompt
|
||||
|
||||
except pydantic.ValidationError:
|
||||
raise HTTPException(status_code=400, detail="Invalid preset data")
|
||||
|
||||
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
|
||||
changes = StylePresetChanges(name=name, preset_data=preset_data)
|
||||
|
||||
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
|
||||
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
|
||||
style_preset_id=style_preset_id, changes=changes
|
||||
)
|
||||
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
|
||||
|
||||
|
||||
@style_presets_router.delete(
|
||||
"/i/{style_preset_id}",
|
||||
operation_id="delete_style_preset",
|
||||
)
|
||||
async def delete_style_preset(
|
||||
style_preset_id: str = Path(description="The style preset to delete"),
|
||||
) -> None:
|
||||
"""Deletes a style preset"""
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
|
||||
except StylePresetImageFileNotFoundException:
|
||||
pass
|
||||
|
||||
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
|
||||
|
||||
|
||||
@style_presets_router.post(
|
||||
"/",
|
||||
operation_id="create_style_preset",
|
||||
responses={
|
||||
200: {"model": StylePresetRecordWithImage},
|
||||
},
|
||||
)
|
||||
async def create_style_preset(
|
||||
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
|
||||
data: str = Form(description="The data of the style preset to create"),
|
||||
) -> StylePresetRecordWithImage:
|
||||
"""Creates a style preset"""
|
||||
|
||||
try:
|
||||
parsed_data = json.loads(data)
|
||||
validated_data = StylePresetCreateFormData(**parsed_data)
|
||||
|
||||
name = validated_data.name
|
||||
type = validated_data.type
|
||||
positive_prompt = validated_data.positive_prompt
|
||||
negative_prompt = validated_data.negative_prompt
|
||||
|
||||
except pydantic.ValidationError:
|
||||
raise HTTPException(status_code=400, detail="Invalid preset data")
|
||||
|
||||
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
|
||||
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
|
||||
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
|
||||
|
||||
if image is not None:
|
||||
if not image.content_type or not image.content_type.startswith("image"):
|
||||
raise HTTPException(status_code=415, detail="Not an image")
|
||||
|
||||
contents = await image.read()
|
||||
try:
|
||||
pil_image = Image.open(io.BytesIO(contents))
|
||||
|
||||
except Exception:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail="Failed to read image")
|
||||
|
||||
try:
|
||||
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=409, detail=str(e))
|
||||
|
||||
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
|
||||
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/",
|
||||
operation_id="list_style_presets",
|
||||
responses={
|
||||
200: {"model": list[StylePresetRecordWithImage]},
|
||||
},
|
||||
)
|
||||
async def list_style_presets() -> list[StylePresetRecordWithImage]:
|
||||
"""Gets a page of style presets"""
|
||||
style_presets_with_image: list[StylePresetRecordWithImage] = []
|
||||
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
|
||||
for preset in style_presets:
|
||||
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
|
||||
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
|
||||
style_presets_with_image.append(style_preset_with_image)
|
||||
|
||||
return style_presets_with_image
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/i/{style_preset_id}/image",
|
||||
operation_id="get_style_preset_image",
|
||||
responses={
|
||||
200: {
|
||||
"description": "The style preset image was fetched successfully",
|
||||
},
|
||||
400: {"description": "Bad request"},
|
||||
404: {"description": "The style preset image could not be found"},
|
||||
},
|
||||
status_code=200,
|
||||
)
|
||||
async def get_style_preset_image(
|
||||
style_preset_id: str = Path(description="The id of the style preset image to get"),
|
||||
) -> FileResponse:
|
||||
"""Gets an image file that previews the model"""
|
||||
|
||||
try:
|
||||
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
|
||||
|
||||
response = FileResponse(
|
||||
path,
|
||||
media_type="image/png",
|
||||
filename=style_preset_id + ".png",
|
||||
content_disposition_type="inline",
|
||||
)
|
||||
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
|
||||
return response
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@style_presets_router.get(
|
||||
"/export",
|
||||
operation_id="export_style_presets",
|
||||
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
|
||||
status_code=200,
|
||||
)
|
||||
async def export_style_presets():
|
||||
# Create an in-memory stream to store the CSV data
|
||||
output = io.StringIO()
|
||||
writer = csv.writer(output)
|
||||
|
||||
# Write the header
|
||||
writer.writerow(["name", "prompt", "negative_prompt"])
|
||||
|
||||
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
|
||||
|
||||
for preset in style_presets:
|
||||
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
|
||||
|
||||
csv_data = output.getvalue()
|
||||
output.close()
|
||||
|
||||
return Response(
|
||||
content=csv_data,
|
||||
media_type="text/csv",
|
||||
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
|
||||
)
|
||||
|
||||
|
||||
@style_presets_router.post(
|
||||
"/import",
|
||||
operation_id="import_style_presets",
|
||||
)
|
||||
async def import_style_presets(file: UploadFile = File(description="The file to import")):
|
||||
try:
|
||||
style_presets = await parse_presets_from_file(file)
|
||||
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
|
||||
except InvalidPresetImportDataError as e:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=400, detail=str(e))
|
||||
except UnsupportedFileTypeError as e:
|
||||
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=415, detail=str(e))
|
@ -3,7 +3,9 @@ import logging
|
||||
import mimetypes
|
||||
import socket
|
||||
from contextlib import asynccontextmanager
|
||||
from inspect import signature
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import uvicorn
|
||||
@ -11,18 +13,27 @@ from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||
from fastapi.openapi.utils import get_openapi
|
||||
from fastapi.responses import HTMLResponse
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||
from pydantic.json_schema import models_json_schema
|
||||
from torch.backends.mps import is_available as is_mps_available
|
||||
|
||||
# for PyCharm:
|
||||
# noinspection PyUnresolvedReferences
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.api.routers import (
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import (
|
||||
app_info,
|
||||
board_images,
|
||||
boards,
|
||||
@ -30,15 +41,15 @@ from invokeai.app.api.routers import (
|
||||
images,
|
||||
model_manager,
|
||||
session_queue,
|
||||
style_presets,
|
||||
utilities,
|
||||
workflows,
|
||||
)
|
||||
from invokeai.app.api.sockets import SocketIO
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.util.custom_openapi import get_openapi_func
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
UIConfigBase,
|
||||
)
|
||||
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
@ -56,13 +67,11 @@ mimetypes.add_type("text/css", ".css")
|
||||
torch_device_name = TorchDevice.get_torch_device_name()
|
||||
logger.info(f"Using torch device: {torch_device_name}")
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
# Add startup event to load dependencies
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
|
||||
yield
|
||||
# Shut down threads
|
||||
ApiDependencies.shutdown()
|
||||
@ -109,9 +118,85 @@ app.include_router(board_images.board_images_router, prefix="/api")
|
||||
app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
app.include_router(style_presets.style_presets_router, prefix="/api")
|
||||
|
||||
app.openapi = get_openapi_func(app)
|
||||
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
def custom_openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# Add all outputs
|
||||
all_invocations = BaseInvocation.get_invocations()
|
||||
output_types = set()
|
||||
output_type_titles = {}
|
||||
for invoker in all_invocations:
|
||||
output_type = signature(invoker.invoke).return_annotation
|
||||
output_types.add(output_type)
|
||||
|
||||
output_schemas = models_json_schema(
|
||||
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
for schema_key, output_schema in output_schemas[1]["$defs"].items():
|
||||
# TODO: note that we assume the schema_key here is the TYPE.__name__
|
||||
# This could break in some cases, figure out a better way to do it
|
||||
output_type_titles[schema_key] = output_schema["title"]
|
||||
openapi_schema["components"]["schemas"][schema_key] = output_schema
|
||||
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions
|
||||
additional_schemas = models_json_schema(
|
||||
[
|
||||
(UIConfigBase, "serialization"),
|
||||
(InputFieldJSONSchemaExtra, "serialization"),
|
||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
||||
(ModelIdentifierField, "serialization"),
|
||||
(ProgressImage, "serialization"),
|
||||
],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
output_type = signature(obj=invoker.invoke).return_annotation
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["properties"][invoker.get_type()] = outputs_ref
|
||||
openapi_schema["components"]["schemas"]["InvocationOutputMap"]["required"].append(invoker.get_type())
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# Add all event schemas
|
||||
for event in sorted(EventBase.get_events(), key=lambda e: e.__name__):
|
||||
json_schema = event.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
|
||||
if "$defs" in json_schema:
|
||||
for schema_key, schema in json_schema["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema
|
||||
del json_schema["$defs"]
|
||||
openapi_schema["components"]["schemas"][event.__name__] = json_schema
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
|
||||
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
|
||||
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
@ -165,7 +250,6 @@ def invoke_api() -> None:
|
||||
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
|
||||
# https://github.com/WaylonWalker
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
s.settimeout(1)
|
||||
if s.connect_ex(("localhost", port)) == 0:
|
||||
return find_port(port=port + 1)
|
||||
else:
|
||||
@ -188,6 +272,8 @@ def invoke_api() -> None:
|
||||
|
||||
check_cudnn(logger)
|
||||
|
||||
# Start our own event loop for eventing usage
|
||||
loop = asyncio.new_event_loop()
|
||||
config = uvicorn.Config(
|
||||
app=app,
|
||||
host=app_config.host,
|
||||
|
@ -40,7 +40,7 @@ from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from ..services.invocation_services import InvocationServices
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
@ -98,13 +98,11 @@ class BaseInvocationOutput(BaseModel):
|
||||
|
||||
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def register_output(cls, output: BaseInvocationOutput) -> None:
|
||||
"""Registers an invocation output."""
|
||||
cls._output_classes.add(output)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
||||
@ -114,12 +112,11 @@ class BaseInvocationOutput(BaseModel):
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation output types."""
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocationOutput = TypeAliasType(
|
||||
"AnyInvocationOutput", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter:
|
||||
InvocationOutputsUnion = TypeAliasType(
|
||||
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocationOutput)
|
||||
cls._typeadapter_needs_update = False
|
||||
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@ -128,13 +125,12 @@ class BaseInvocationOutput(BaseModel):
|
||||
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocationOutput]) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
|
||||
# Because we use a pydantic Literal field with default value for the invocation type,
|
||||
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "output"
|
||||
schema["required"].extend(["type"])
|
||||
|
||||
@classmethod
|
||||
@ -171,7 +167,6 @@ class BaseInvocation(ABC, BaseModel):
|
||||
|
||||
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
||||
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
|
||||
_typeadapter_needs_update: ClassVar[bool] = False
|
||||
|
||||
@classmethod
|
||||
def get_type(cls) -> str:
|
||||
@ -182,17 +177,15 @@ class BaseInvocation(ABC, BaseModel):
|
||||
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
||||
"""Registers an invocation."""
|
||||
cls._invocation_classes.add(invocation)
|
||||
cls._typeadapter_needs_update = True
|
||||
|
||||
@classmethod
|
||||
def get_typeadapter(cls) -> TypeAdapter[Any]:
|
||||
"""Gets a pydantc TypeAdapter for the union of all invocation types."""
|
||||
if not cls._typeadapter or cls._typeadapter_needs_update:
|
||||
AnyInvocation = TypeAliasType(
|
||||
"AnyInvocation", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
if not cls._typeadapter:
|
||||
InvocationsUnion = TypeAliasType(
|
||||
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
|
||||
)
|
||||
cls._typeadapter = TypeAdapter(AnyInvocation)
|
||||
cls._typeadapter_needs_update = False
|
||||
cls._typeadapter = TypeAdapter(InvocationsUnion)
|
||||
return cls._typeadapter
|
||||
|
||||
@classmethod
|
||||
@ -228,7 +221,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
return signature(cls.invoke).return_annotation
|
||||
|
||||
@staticmethod
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseInvocation]) -> None:
|
||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
|
||||
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
||||
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
||||
if uiconfig is not None:
|
||||
@ -244,7 +237,6 @@ class BaseInvocation(ABC, BaseModel):
|
||||
schema["version"] = uiconfig.version
|
||||
if "required" not in schema or not isinstance(schema["required"], list):
|
||||
schema["required"] = []
|
||||
schema["class"] = "invocation"
|
||||
schema["required"].extend(["type", "id"])
|
||||
|
||||
@abstractmethod
|
||||
@ -318,7 +310,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
protected_namespaces=(),
|
||||
validate_assignment=True,
|
||||
json_schema_extra=json_schema_extra,
|
||||
json_schema_serialization_defaults_required=False,
|
||||
json_schema_serialization_defaults_required=True,
|
||||
coerce_numbers_to_str=True,
|
||||
)
|
||||
|
||||
|
@ -1,98 +0,0 @@
|
||||
from typing import Any, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"lblend",
|
||||
title="Blend Latents",
|
||||
tags=["latents", "blend"],
|
||||
category="latents",
|
||||
version="1.0.3",
|
||||
)
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
"""Blend two latents using a given alpha. Latents must have same size."""
|
||||
|
||||
latents_a: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents_b: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents_a = context.tensors.load(self.latents_a.latents_name)
|
||||
latents_b = context.tensors.load(self.latents_b.latents_name)
|
||||
|
||||
if latents_a.shape != latents_b.shape:
|
||||
raise Exception("Latents to blend must be the same size.")
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
def slerp(
|
||||
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
|
||||
v0: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
v1: Union[torch.Tensor, npt.NDArray[Any]],
|
||||
DOT_THRESHOLD: float = 0.9995,
|
||||
) -> Union[torch.Tensor, npt.NDArray[Any]]:
|
||||
"""
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
"""
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
|
||||
return v2_torch
|
||||
else:
|
||||
assert isinstance(v2, np.ndarray)
|
||||
return v2
|
||||
|
||||
# blend
|
||||
bl = slerp(self.alpha, latents_a, latents_b)
|
||||
assert isinstance(bl, torch.Tensor)
|
||||
blended_latents: torch.Tensor = bl # for type checking convenience
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
blended_latents = blended_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=blended_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
|
@ -4,12 +4,13 @@
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"range", title="Integer Range", tags=["collection", "integer", "range"], category="collections", version="1.0.0"
|
||||
|
@ -5,7 +5,6 @@ from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
@ -15,7 +14,6 @@ from invokeai.app.invocations.fields import (
|
||||
TensorField,
|
||||
UIComponent,
|
||||
)
|
||||
from invokeai.app.invocations.model import CLIPField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
@ -28,6 +26,9 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
)
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from .model import CLIPField
|
||||
|
||||
# unconditioned: Optional[torch.Tensor]
|
||||
|
||||
|
||||
@ -80,13 +81,9 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
with (
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
text_encoder_info as text_encoder,
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora_text_encoder(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
|
||||
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
|
||||
@ -175,14 +172,9 @@ class SDXLPromptInvocationBase:
|
||||
|
||||
with (
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
text_encoder_info as text_encoder,
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
prefix=lora_prefix,
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
|
||||
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
|
||||
|
@ -1,6 +1,6 @@
|
||||
from typing import Literal
|
||||
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
|
||||
LATENT_SCALE_FACTOR = 8
|
||||
"""
|
||||
@ -10,7 +10,8 @@ factor is hard-coded to a literal '8' rather than using this constant.
|
||||
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
||||
"""
|
||||
|
||||
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
||||
"""A literal type representing the valid scheduler names."""
|
||||
|
||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||
"""A literal type for PIL image modes supported by Invoke"""
|
||||
|
||||
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()
|
||||
|
@ -2,7 +2,6 @@
|
||||
# initial implementation by Gregg Helt, 2023
|
||||
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
||||
from builtins import bool, float
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Literal, Union
|
||||
|
||||
import cv2
|
||||
@ -21,16 +20,7 @@ from controlnet_aux import (
|
||||
from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
from transformers import pipeline
|
||||
from transformers.pipelines import DepthEstimationPipeline
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@ -46,13 +36,15 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
|
||||
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
from invokeai.backend.image_util.hed import HEDProcessor
|
||||
from invokeai.backend.image_util.lineart import LineartProcessor
|
||||
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(description="The control image")
|
||||
@ -147,7 +139,6 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
return context.images.get_pil(self.image.image_name, "RGB")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
self._context = context
|
||||
raw_image = self.load_image(context)
|
||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||
processed_image = self.run_processor(raw_image)
|
||||
@ -293,8 +284,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
# depth_and_normal not supported in controlnet_aux v0.0.3
|
||||
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
|
||||
def run_processor(self, image):
|
||||
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = midas_processor(
|
||||
image,
|
||||
@ -321,7 +311,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = normalbae_processor(
|
||||
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
|
||||
@ -340,7 +330,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
||||
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
|
||||
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = mlsd_processor(
|
||||
image,
|
||||
@ -363,7 +353,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
||||
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
|
||||
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = pidi_processor(
|
||||
image,
|
||||
@ -391,7 +381,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
|
||||
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
content_shuffle_processor = ContentShuffleDetector()
|
||||
processed_image = content_shuffle_processor(
|
||||
image,
|
||||
@ -415,7 +405,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Zoe depth processing to image"""
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = zoe_depth_processor(image)
|
||||
return processed_image
|
||||
@ -436,7 +426,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
mediapipe_face_processor = MediapipeFaceDetector()
|
||||
processed_image = mediapipe_face_processor(
|
||||
image,
|
||||
@ -464,7 +454,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = leres_processor(
|
||||
image,
|
||||
@ -506,8 +496,8 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
||||
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
|
||||
return np_img
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
np_img = np.array(image, dtype=np.uint8)
|
||||
def run_processor(self, img):
|
||||
np_img = np.array(img, dtype=np.uint8)
|
||||
processed_np_image = self.tile_resample(
|
||||
np_img,
|
||||
# res=self.tile_size,
|
||||
@ -530,7 +520,7 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
||||
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image):
|
||||
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
|
||||
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
|
||||
"ybelkada/segment-anything", subfolder="checkpoints"
|
||||
@ -576,7 +566,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||
|
||||
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def run_processor(self, image: Image.Image):
|
||||
np_image = np.array(image, dtype=np.uint8)
|
||||
height, width = np_image.shape[:2]
|
||||
|
||||
@ -593,14 +583,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return color_map
|
||||
|
||||
|
||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
|
||||
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
|
||||
DEPTH_ANYTHING_MODELS = {
|
||||
"large": "LiheYoung/depth-anything-large-hf",
|
||||
"base": "LiheYoung/depth-anything-base-hf",
|
||||
"small": "LiheYoung/depth-anything-small-hf",
|
||||
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
|
||||
}
|
||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -608,33 +591,22 @@ DEPTH_ANYTHING_MODELS = {
|
||||
title="Depth Anything Processor",
|
||||
tags=["controlnet", "depth", "depth anything"],
|
||||
category="controlnet",
|
||||
version="1.1.3",
|
||||
version="1.1.2",
|
||||
)
|
||||
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Generates a depth map based on the Depth Anything algorithm"""
|
||||
|
||||
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
|
||||
default="small_v2", description="The size of the depth model to use"
|
||||
default="small", description="The size of the depth model to use"
|
||||
)
|
||||
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
def load_depth_anything(model_path: Path):
|
||||
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
|
||||
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
|
||||
return DepthAnythingPipeline(depth_anything_pipeline)
|
||||
def run_processor(self, image: Image.Image):
|
||||
depth_anything_detector = DepthAnythingDetector()
|
||||
depth_anything_detector.load_model(model_size=self.model_size)
|
||||
|
||||
with self._context.models.load_remote_model(
|
||||
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
|
||||
) as depth_anything_detector:
|
||||
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
|
||||
depth_map = depth_anything_detector.generate_depth(image)
|
||||
|
||||
# Resizing to user target specified size
|
||||
new_height = int(image.size[1] * (self.resolution / image.size[0]))
|
||||
depth_map = depth_map.resize((self.resolution, new_height))
|
||||
|
||||
return depth_map
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -652,11 +624,8 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
draw_hands: bool = InputField(default=False)
|
||||
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
|
||||
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
|
||||
|
||||
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
|
||||
def run_processor(self, image: Image.Image):
|
||||
dw_openpose = DWOpenposeDetector()
|
||||
processed_image = dw_openpose(
|
||||
image,
|
||||
draw_face=self.draw_face,
|
||||
|
@ -1,80 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import DenoiseMaskOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_denoise_mask",
|
||||
title="Create Denoise Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
|
||||
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=4,
|
||||
)
|
||||
|
||||
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
|
||||
if mask_image.mode != "L":
|
||||
mask_image = mask_image.convert("L")
|
||||
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
if mask_tensor.dim() == 3:
|
||||
mask_tensor = mask_tensor.unsqueeze(0)
|
||||
# if shape is not None:
|
||||
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
|
||||
return mask_tensor
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
|
||||
if self.image is not None:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
else:
|
||||
image_tensor = None
|
||||
|
||||
mask = self.prep_mask_tensor(
|
||||
context.images.get_pil(self.mask.image_name),
|
||||
)
|
||||
|
||||
if image_tensor is not None:
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
# TODO:
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
|
||||
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
else:
|
||||
masked_latents_name = None
|
||||
|
||||
mask_name = context.tensors.save(tensor=mask)
|
||||
|
||||
return DenoiseMaskOutput.build(
|
||||
mask_name=mask_name,
|
||||
masked_latents_name=masked_latents_name,
|
||||
gradient=False,
|
||||
)
|
@ -1,139 +0,0 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image, ImageFilter
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
OutputField,
|
||||
)
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.model import UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
|
||||
|
||||
@invocation_output("gradient_mask_output")
|
||||
class GradientMaskOutput(BaseInvocationOutput):
|
||||
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
|
||||
|
||||
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
|
||||
expanded_mask_area: ImageField = OutputField(
|
||||
description="Image representing the total gradient area of the mask. For paste-back purposes."
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"create_gradient_mask",
|
||||
title="Create Gradient Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.2.0",
|
||||
)
|
||||
class CreateGradientMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
|
||||
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||||
edge_radius: int = InputField(
|
||||
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
|
||||
)
|
||||
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
|
||||
minimum_denoise: float = InputField(
|
||||
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||||
)
|
||||
image: Optional[ImageField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] Image",
|
||||
ui_order=6,
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
title="[OPTIONAL] UNet",
|
||||
ui_order=5,
|
||||
)
|
||||
vae: Optional[VAEField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] VAE",
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32,
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=9,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||||
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
|
||||
if self.edge_radius > 0:
|
||||
if self.coherence_mode == "Box Blur":
|
||||
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
|
||||
else: # Gaussian Blur OR Staged
|
||||
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
|
||||
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
|
||||
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
|
||||
|
||||
# redistribute blur so that the original edges are 0 and blur outwards to 1
|
||||
blur_tensor = (blur_tensor - 0.5) * 2
|
||||
blur_tensor[blur_tensor < 0] = 0.0
|
||||
|
||||
threshold = 1 - self.minimum_denoise
|
||||
|
||||
if self.coherence_mode == "Staged":
|
||||
# wherever the blur_tensor is less than fully masked, convert it to threshold
|
||||
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
|
||||
else:
|
||||
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
|
||||
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
|
||||
|
||||
else:
|
||||
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
|
||||
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
|
||||
|
||||
# compute a [0, 1] mask from the blur_tensor
|
||||
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
|
||||
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||||
expanded_image_dto = context.images.save(expanded_mask_image)
|
||||
|
||||
masked_latents_name = None
|
||||
if self.unet is not None and self.vae is not None and self.image is not None:
|
||||
# all three fields must be present at the same time
|
||||
main_model_config = context.models.get_config(self.unet.unet.key)
|
||||
assert isinstance(main_model_config, MainConfigBase)
|
||||
if main_model_config.variant is ModelVariantType.Inpaint:
|
||||
mask = blur_tensor
|
||||
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||||
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||||
)
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
|
||||
return GradientMaskOutput(
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||||
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||||
)
|
@ -1,61 +0,0 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
# The Crop Latents node was copied from @skunkworxdark's implementation here:
|
||||
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
|
||||
@invocation(
|
||||
"crop_latents",
|
||||
title="Crop Latents",
|
||||
tags=["latents", "crop"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
|
||||
# Currently, if the class names conflict then 'GET /openapi.json' fails.
|
||||
class CropLatentsCoreInvocation(BaseInvocation):
|
||||
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
|
||||
divisible by the latent scale factor of 8.
|
||||
"""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
x: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
y: int = InputField(
|
||||
ge=0,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=1,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
x1 = self.x // LATENT_SCALE_FACTOR
|
||||
y1 = self.y // LATENT_SCALE_FACTOR
|
||||
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
|
||||
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
|
||||
|
||||
cropped_latents = latents[..., y1:y2, x1:x2]
|
||||
|
||||
name = context.tensors.save(tensor=cropped_latents)
|
||||
|
||||
return LatentsOutput.build(latents_name=name, latents=cropped_latents)
|
@ -5,11 +5,13 @@ import cv2 as cv
|
||||
import numpy
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
|
||||
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.3.1")
|
||||
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,7 +1,7 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Optional, Tuple
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
|
||||
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
|
||||
from pydantic.fields import _Unset
|
||||
from pydantic_core import PydanticUndefined
|
||||
|
||||
@ -48,7 +48,6 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
ControlNetModel = "ControlNetModelField"
|
||||
IPAdapterModel = "IPAdapterModelField"
|
||||
T2IAdapterModel = "T2IAdapterModelField"
|
||||
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
|
||||
# endregion
|
||||
|
||||
# region Misc Field Types
|
||||
@ -135,7 +134,6 @@ class FieldDescriptions:
|
||||
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
||||
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
||||
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
||||
spandrel_image_to_image_model = "Image-to-Image model"
|
||||
lora_weight = "The weight at which the LoRA is applied to each model"
|
||||
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
|
||||
raw_prompt = "Raw prompt text (no parsing)"
|
||||
@ -162,7 +160,6 @@ class FieldDescriptions:
|
||||
fp32 = "Whether or not to use full float32 precision"
|
||||
precision = "Precision to use"
|
||||
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
||||
vae_tile_size = "The tile size for VAE tiling in pixels (image space). If set to 0, the default tile size for the model will be used. Larger tile sizes generally produce better results at the cost of higher memory usage."
|
||||
detect_res = "Pixel resolution for detection"
|
||||
image_res = "Pixel resolution for output image"
|
||||
safe_mode = "Whether or not to use safe mode"
|
||||
@ -242,31 +239,6 @@ class ConditioningField(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class BoundingBoxField(BaseModel):
|
||||
"""A bounding box primitive value."""
|
||||
|
||||
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
|
||||
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
|
||||
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
|
||||
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
|
||||
|
||||
score: Optional[float] = Field(
|
||||
default=None,
|
||||
ge=0.0,
|
||||
le=1.0,
|
||||
description="The score associated with the bounding box. In the range [0, 1]. This value is typically set "
|
||||
"when the bounding box was produced by a detector and has an associated confidence score.",
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_coords(self):
|
||||
if self.x_min > self.x_max:
|
||||
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
|
||||
if self.y_min > self.y_max:
|
||||
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
|
||||
return self
|
||||
|
||||
|
||||
class MetadataField(RootModel[dict[str, Any]]):
|
||||
"""
|
||||
Pydantic model for metadata with custom root of type dict[str, Any].
|
||||
|
@ -1,100 +0,0 @@
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import pipeline
|
||||
from transformers.pipelines import ZeroShotObjectDetectionPipeline
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField
|
||||
from invokeai.app.invocations.primitives import BoundingBoxCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
|
||||
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
||||
|
||||
GroundingDinoModelKey = Literal["grounding-dino-tiny", "grounding-dino-base"]
|
||||
GROUNDING_DINO_MODEL_IDS: dict[GroundingDinoModelKey, str] = {
|
||||
"grounding-dino-tiny": "IDEA-Research/grounding-dino-tiny",
|
||||
"grounding-dino-base": "IDEA-Research/grounding-dino-base",
|
||||
}
|
||||
|
||||
|
||||
@invocation(
|
||||
"grounding_dino",
|
||||
title="Grounding DINO (Text Prompt Object Detection)",
|
||||
tags=["prompt", "object detection"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
)
|
||||
class GroundingDinoInvocation(BaseInvocation):
|
||||
"""Runs a Grounding DINO model. Performs zero-shot bounding-box object detection from a text prompt."""
|
||||
|
||||
# Reference:
|
||||
# - https://arxiv.org/pdf/2303.05499
|
||||
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
|
||||
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
|
||||
|
||||
model: GroundingDinoModelKey = InputField(description="The Grounding DINO model to use.")
|
||||
prompt: str = InputField(description="The prompt describing the object to segment.")
|
||||
image: ImageField = InputField(description="The image to segment.")
|
||||
detection_threshold: float = InputField(
|
||||
description="The detection threshold for the Grounding DINO model. All detected bounding boxes with scores above this threshold will be returned.",
|
||||
ge=0.0,
|
||||
le=1.0,
|
||||
default=0.3,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> BoundingBoxCollectionOutput:
|
||||
# The model expects a 3-channel RGB image.
|
||||
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
|
||||
|
||||
detections = self._detect(
|
||||
context=context, image=image_pil, labels=[self.prompt], threshold=self.detection_threshold
|
||||
)
|
||||
|
||||
# Convert detections to BoundingBoxCollectionOutput.
|
||||
bounding_boxes: list[BoundingBoxField] = []
|
||||
for detection in detections:
|
||||
bounding_boxes.append(
|
||||
BoundingBoxField(
|
||||
x_min=detection.box.xmin,
|
||||
x_max=detection.box.xmax,
|
||||
y_min=detection.box.ymin,
|
||||
y_max=detection.box.ymax,
|
||||
score=detection.score,
|
||||
)
|
||||
)
|
||||
return BoundingBoxCollectionOutput(collection=bounding_boxes)
|
||||
|
||||
@staticmethod
|
||||
def _load_grounding_dino(model_path: Path):
|
||||
grounding_dino_pipeline = pipeline(
|
||||
model=str(model_path),
|
||||
task="zero-shot-object-detection",
|
||||
local_files_only=True,
|
||||
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
|
||||
# model, and figure out how to make it work in the pipeline.
|
||||
# torch_dtype=TorchDevice.choose_torch_dtype(),
|
||||
)
|
||||
assert isinstance(grounding_dino_pipeline, ZeroShotObjectDetectionPipeline)
|
||||
return GroundingDinoPipeline(grounding_dino_pipeline)
|
||||
|
||||
def _detect(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
image: Image.Image,
|
||||
labels: list[str],
|
||||
threshold: float = 0.3,
|
||||
) -> list[DetectionResult]:
|
||||
"""Use Grounding DINO to detect bounding boxes for a set of labels in an image."""
|
||||
# TODO(ryand): I copied this "."-handling logic from the transformers example code. Test it and see if it
|
||||
# actually makes a difference.
|
||||
labels = [label if label.endswith(".") else label + "." for label in labels]
|
||||
|
||||
with context.models.load_remote_model(
|
||||
source=GROUNDING_DINO_MODEL_IDS[self.model], loader=GroundingDinoInvocation._load_grounding_dino
|
||||
) as detector:
|
||||
assert isinstance(detector, GroundingDinoPipeline)
|
||||
return detector.detect(image=image, candidate_labels=labels, threshold=threshold)
|
@ -1,65 +0,0 @@
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
|
||||
|
||||
@invocation_output("ideal_size_output")
|
||||
class IdealSizeOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output an image"""
|
||||
|
||||
width: int = OutputField(description="The ideal width of the image (in pixels)")
|
||||
height: int = OutputField(description="The ideal height of the image (in pixels)")
|
||||
|
||||
|
||||
@invocation(
|
||||
"ideal_size",
|
||||
title="Ideal Size",
|
||||
tags=["latents", "math", "ideal_size"],
|
||||
version="1.0.3",
|
||||
)
|
||||
class IdealSizeInvocation(BaseInvocation):
|
||||
"""Calculates the ideal size for generation to avoid duplication"""
|
||||
|
||||
width: int = InputField(default=1024, description="Final image width")
|
||||
height: int = InputField(default=576, description="Final image height")
|
||||
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
|
||||
multiplier: float = InputField(
|
||||
default=1.0,
|
||||
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "
|
||||
"initial generation artifacts if too large)",
|
||||
)
|
||||
|
||||
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
|
||||
return tuple((x - x % multiple_of) for x in args)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
aspect = self.width / self.height
|
||||
dimension: float = 512
|
||||
if unet_config.base == BaseModelType.StableDiffusion2:
|
||||
dimension = 768
|
||||
elif unet_config.base == BaseModelType.StableDiffusionXL:
|
||||
dimension = 1024
|
||||
dimension = dimension * self.multiplier
|
||||
min_dimension = math.floor(dimension * 0.5)
|
||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
||||
|
||||
if aspect > 1.0:
|
||||
init_height = max(min_dimension, math.sqrt(model_area / aspect))
|
||||
init_width = init_height * aspect
|
||||
else:
|
||||
init_width = max(min_dimension, math.sqrt(model_area * aspect))
|
||||
init_height = init_width / aspect
|
||||
|
||||
scaled_width, scaled_height = self.trim_to_multiple_of(
|
||||
math.floor(init_width),
|
||||
math.floor(init_height),
|
||||
)
|
||||
|
||||
return IdealSizeOutput(width=scaled_width, height=scaled_height)
|
@ -6,7 +6,6 @@ import cv2
|
||||
import numpy
|
||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import IMAGE_MODES
|
||||
from invokeai.app.invocations.fields import (
|
||||
ColorField,
|
||||
@ -22,6 +21,8 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
from .baseinvocation import BaseInvocation, Classification, invocation
|
||||
|
||||
|
||||
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.1")
|
||||
class ShowImageInvocation(BaseInvocation):
|
||||
|
@ -1,143 +0,0 @@
|
||||
from contextlib import nullcontext
|
||||
from functools import singledispatchmethod
|
||||
|
||||
import einops
|
||||
import torch
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
|
||||
|
||||
@invocation(
|
||||
"i2l",
|
||||
title="Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l"],
|
||||
category="latents",
|
||||
version="1.1.0",
|
||||
)
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(
|
||||
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
|
||||
) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(orig_dtype)
|
||||
vae.decoder.conv_in.to(orig_dtype)
|
||||
vae.decoder.mid_block.to(orig_dtype)
|
||||
# else:
|
||||
# latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
# latents = latents.half()
|
||||
|
||||
if tiled:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=tile_size,
|
||||
tile_latent_min_size=tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode(), tiling_context:
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
latents = latents.to(dtype=orig_dtype)
|
||||
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(
|
||||
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
|
||||
)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
||||
latents: torch.Tensor = image_tensor_dist.sample().to(
|
||||
dtype=vae.dtype
|
||||
) # FIXME: uses torch.randn. make reproducible!
|
||||
return latents
|
||||
|
||||
@_encode_to_tensor.register
|
||||
@staticmethod
|
||||
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
assert isinstance(vae, torch.nn.Module)
|
||||
latents: torch.FloatTensor = vae.encode(image_tensor).latents
|
||||
return latents
|
@ -3,9 +3,7 @@ from typing import Literal, get_args
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
from invokeai.app.invocations.fields import ColorField, ImageField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
@ -16,6 +14,10 @@ from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch, in
|
||||
from invokeai.backend.image_util.infill_methods.tile import infill_tile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
@ -40,16 +42,15 @@ class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Infill the image with the specified method"""
|
||||
pass
|
||||
|
||||
def load_image(self) -> tuple[Image.Image, bool]:
|
||||
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
|
||||
"""Process the image to have an alpha channel before being infilled"""
|
||||
image = self._context.images.get_pil(self.image.image_name)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
has_alpha = True if image.mode == "RGBA" else False
|
||||
return image, has_alpha
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
self._context = context
|
||||
# Retrieve and process image to be infilled
|
||||
input_image, has_alpha = self.load_image()
|
||||
input_image, has_alpha = self.load_image(context)
|
||||
|
||||
# If the input image has no alpha channel, return it
|
||||
if has_alpha is False:
|
||||
@ -132,12 +133,8 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
|
||||
"""Infills transparent areas of an image using the LaMa model"""
|
||||
|
||||
def infill(self, image: Image.Image):
|
||||
with self._context.models.load_remote_model(
|
||||
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
|
||||
loader=LaMA.load_jit_model,
|
||||
) as model:
|
||||
lama = LaMA(model)
|
||||
return lama(image)
|
||||
lama = LaMA()
|
||||
return lama(image)
|
||||
|
||||
|
||||
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")
|
||||
|
1478
invokeai/app/invocations/latent.py
Normal file
1478
invokeai/app/invocations/latent.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,121 +0,0 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"l2i",
|
||||
title="Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i"],
|
||||
category="latents",
|
||||
version="1.3.0",
|
||||
)
|
||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
||||
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
|
||||
# offer a way to directly set None values.
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
|
||||
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
||||
vae.decoder.mid_block.attentions[0].processor,
|
||||
(
|
||||
AttnProcessor2_0,
|
||||
XFormersAttnProcessor,
|
||||
LoRAXFormersAttnProcessor,
|
||||
LoRAAttnProcessor2_0,
|
||||
),
|
||||
)
|
||||
# if xformers or torch_2_0 is used attention block does not need
|
||||
# to be in float32 which can save lots of memory
|
||||
if use_torch_2_0_or_xformers:
|
||||
vae.post_quant_conv.to(latents.dtype)
|
||||
vae.decoder.conv_in.to(latents.dtype)
|
||||
vae.decoder.mid_block.to(latents.dtype)
|
||||
else:
|
||||
latents = latents.float()
|
||||
|
||||
else:
|
||||
vae.to(dtype=torch.float16)
|
||||
latents = latents.half()
|
||||
|
||||
if self.tiled or context.config.get().force_tiled_decode:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
||||
tiling_context = nullcontext()
|
||||
if self.tile_size > 0:
|
||||
tiling_context = patch_vae_tiling_params(
|
||||
vae,
|
||||
tile_sample_min_size=self.tile_size,
|
||||
tile_latent_min_size=self.tile_size // LATENT_SCALE_FACTOR,
|
||||
tile_overlap_factor=0.25,
|
||||
)
|
||||
|
||||
# clear memory as vae decode can request a lot
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
with torch.inference_mode(), tiling_context:
|
||||
# copied from diffusers pipeline
|
||||
latents = latents / vae.config.scaling_factor
|
||||
image = vae.decode(latents, return_dict=False)[0]
|
||||
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
|
||||
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||||
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
image_dto = context.images.save(image=image)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
@ -1,10 +1,9 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
|
||||
from invokeai.app.invocations.primitives import MaskOutput
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -119,27 +118,3 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
|
||||
height=mask.shape[1],
|
||||
width=mask.shape[2],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"tensor_mask_to_image",
|
||||
title="Tensor Mask to Image",
|
||||
tags=["mask"],
|
||||
category="mask",
|
||||
version="1.0.0",
|
||||
)
|
||||
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Convert a mask tensor to an image."""
|
||||
|
||||
mask: TensorField = InputField(description="The mask tensor to convert.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
# Ensure that the mask is binary.
|
||||
if mask.dtype != torch.bool:
|
||||
mask = mask > 0.5
|
||||
mask_np = (mask.float() * 255).byte().cpu().numpy()
|
||||
|
||||
mask_pil = Image.fromarray(mask_np, mode="L")
|
||||
image_dto = context.images.save(image=mask_pil)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
@ -5,11 +5,12 @@ from typing import Literal
|
||||
import numpy as np
|
||||
from pydantic import ValidationInfo, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField
|
||||
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
|
||||
|
||||
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.1")
|
||||
class AddInvocation(BaseInvocation):
|
||||
|
@ -14,7 +14,8 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
|
||||
from ...version import __version__
|
||||
|
||||
|
||||
class MetadataItemField(BaseModel):
|
||||
|
@ -3,17 +3,18 @@ from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
Classification,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
|
||||
|
||||
class ModelIdentifierField(BaseModel):
|
||||
|
@ -4,12 +4,18 @@
|
||||
import torch
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.misc import SEED_MAX
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from ...backend.util.devices import TorchDevice
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
Utilities
|
||||
|
@ -39,11 +39,12 @@ from easing_functions import (
|
||||
)
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField
|
||||
from invokeai.app.invocations.primitives import FloatCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_range",
|
||||
|
@ -4,10 +4,8 @@ from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
BoundingBoxField,
|
||||
ColorField,
|
||||
ConditioningField,
|
||||
DenoiseMaskField,
|
||||
@ -23,6 +21,13 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
|
||||
"""
|
||||
Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color
|
||||
- primitive nodes
|
||||
@ -470,42 +475,3 @@ class ConditioningCollectionInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# endregion
|
||||
|
||||
# region BoundingBox
|
||||
|
||||
|
||||
@invocation_output("bounding_box_output")
|
||||
class BoundingBoxOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single bounding box"""
|
||||
|
||||
bounding_box: BoundingBoxField = OutputField(description="The output bounding box.")
|
||||
|
||||
|
||||
@invocation_output("bounding_box_collection_output")
|
||||
class BoundingBoxCollectionOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a collection of bounding boxes"""
|
||||
|
||||
collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes")
|
||||
|
||||
|
||||
@invocation(
|
||||
"bounding_box",
|
||||
title="Bounding Box",
|
||||
tags=["primitives", "segmentation", "collection", "bounding box"],
|
||||
category="primitives",
|
||||
version="1.0.0",
|
||||
)
|
||||
class BoundingBoxInvocation(BaseInvocation):
|
||||
"""Create a bounding box manually by supplying box coordinates"""
|
||||
|
||||
x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex")
|
||||
y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex")
|
||||
x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex")
|
||||
y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
|
||||
bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max)
|
||||
return BoundingBoxOutput(bounding_box=bounding_box)
|
||||
|
||||
|
||||
# endregion
|
||||
|
@ -5,11 +5,12 @@ import numpy as np
|
||||
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import InputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringCollectionOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, UIComponent
|
||||
|
||||
|
||||
@invocation(
|
||||
"dynamic_prompt",
|
||||
|
@ -1,103 +0,0 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
|
||||
|
||||
|
||||
@invocation(
|
||||
"lresize",
|
||||
title="Resize Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ResizeLatentsInvocation(BaseInvocation):
|
||||
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
width: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
height: int = InputField(
|
||||
ge=64,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
description=FieldDescriptions.width,
|
||||
)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
||||
|
||||
|
||||
@invocation(
|
||||
"lscale",
|
||||
title="Scale Latents",
|
||||
tags=["latents", "resize"],
|
||||
category="latents",
|
||||
version="1.0.2",
|
||||
)
|
||||
class ScaleLatentsInvocation(BaseInvocation):
|
||||
"""Scales latents by a given factor."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
|
||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
device = TorchDevice.choose_torch_device()
|
||||
|
||||
# resizing
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
latents.to(device),
|
||||
scale_factor=self.scale_factor,
|
||||
mode=self.mode,
|
||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
resized_latents = resized_latents.to("cpu")
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=resized_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
|
@ -1,34 +0,0 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
OutputField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
|
||||
|
||||
@invocation_output("scheduler_output")
|
||||
class SchedulerOutput(BaseInvocationOutput):
|
||||
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
|
||||
|
||||
|
||||
@invocation(
|
||||
"scheduler",
|
||||
title="Scheduler",
|
||||
tags=["scheduler"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SchedulerInvocation(BaseInvocation):
|
||||
"""Selects a scheduler."""
|
||||
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SchedulerOutput:
|
||||
return SchedulerOutput(scheduler=self.scheduler)
|
@ -1,9 +1,15 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import SubModelType
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .model import CLIPField, ModelIdentifierField, UNetField, VAEField
|
||||
|
||||
|
||||
@invocation_output("sdxl_model_loader_output")
|
||||
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
||||
|
@ -1,161 +0,0 @@
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForMaskGeneration, AutoProcessor
|
||||
from transformers.models.sam import SamModel
|
||||
from transformers.models.sam.processing_sam import SamProcessor
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
|
||||
from invokeai.app.invocations.primitives import MaskOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
|
||||
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
|
||||
|
||||
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
|
||||
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
|
||||
"segment-anything-base": "facebook/sam-vit-base",
|
||||
"segment-anything-large": "facebook/sam-vit-large",
|
||||
"segment-anything-huge": "facebook/sam-vit-huge",
|
||||
}
|
||||
|
||||
|
||||
@invocation(
|
||||
"segment_anything",
|
||||
title="Segment Anything",
|
||||
tags=["prompt", "segmentation"],
|
||||
category="segmentation",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SegmentAnythingInvocation(BaseInvocation):
|
||||
"""Runs a Segment Anything Model."""
|
||||
|
||||
# Reference:
|
||||
# - https://arxiv.org/pdf/2304.02643
|
||||
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
|
||||
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
|
||||
|
||||
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
|
||||
image: ImageField = InputField(description="The image to segment.")
|
||||
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
|
||||
apply_polygon_refinement: bool = InputField(
|
||||
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
|
||||
default=True,
|
||||
)
|
||||
mask_filter: Literal["all", "largest", "highest_box_score"] = InputField(
|
||||
description="The filtering to apply to the detected masks before merging them into a final output.",
|
||||
default="all",
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> MaskOutput:
|
||||
# The models expect a 3-channel RGB image.
|
||||
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
|
||||
|
||||
if len(self.bounding_boxes) == 0:
|
||||
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
|
||||
else:
|
||||
masks = self._segment(context=context, image=image_pil)
|
||||
masks = self._filter_masks(masks=masks, bounding_boxes=self.bounding_boxes)
|
||||
|
||||
# masks contains bool values, so we merge them via max-reduce.
|
||||
combined_mask, _ = torch.stack(masks).max(dim=0)
|
||||
|
||||
mask_tensor_name = context.tensors.save(combined_mask)
|
||||
height, width = combined_mask.shape
|
||||
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
|
||||
|
||||
@staticmethod
|
||||
def _load_sam_model(model_path: Path):
|
||||
sam_model = AutoModelForMaskGeneration.from_pretrained(
|
||||
model_path,
|
||||
local_files_only=True,
|
||||
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
|
||||
# model, and figure out how to make it work in the pipeline.
|
||||
# torch_dtype=TorchDevice.choose_torch_dtype(),
|
||||
)
|
||||
assert isinstance(sam_model, SamModel)
|
||||
|
||||
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
|
||||
assert isinstance(sam_processor, SamProcessor)
|
||||
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
|
||||
|
||||
def _segment(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
image: Image.Image,
|
||||
) -> list[torch.Tensor]:
|
||||
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
|
||||
# Convert the bounding boxes to the SAM input format.
|
||||
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
|
||||
|
||||
with (
|
||||
context.models.load_remote_model(
|
||||
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
|
||||
) as sam_pipeline,
|
||||
):
|
||||
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
|
||||
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
|
||||
|
||||
masks = self._process_masks(masks)
|
||||
if self.apply_polygon_refinement:
|
||||
masks = self._apply_polygon_refinement(masks)
|
||||
|
||||
return masks
|
||||
|
||||
def _process_masks(self, masks: torch.Tensor) -> list[torch.Tensor]:
|
||||
"""Convert the tensor output from the Segment Anything model from a tensor of shape
|
||||
[num_masks, channels, height, width] to a list of tensors of shape [height, width].
|
||||
"""
|
||||
assert masks.dtype == torch.bool
|
||||
# [num_masks, channels, height, width] -> [num_masks, height, width]
|
||||
masks, _ = masks.max(dim=1)
|
||||
# Split the first dimension into a list of masks.
|
||||
return list(masks.cpu().unbind(dim=0))
|
||||
|
||||
def _apply_polygon_refinement(self, masks: list[torch.Tensor]) -> list[torch.Tensor]:
|
||||
"""Apply polygon refinement to the masks.
|
||||
|
||||
Convert each mask to a polygon, then back to a mask. This has the following effect:
|
||||
- Smooth the edges of the mask slightly.
|
||||
- Ensure that each mask consists of a single closed polygon
|
||||
- Removes small mask pieces.
|
||||
- Removes holes from the mask.
|
||||
"""
|
||||
# Convert tensor masks to np masks.
|
||||
np_masks = [mask.cpu().numpy().astype(np.uint8) for mask in masks]
|
||||
|
||||
# Apply polygon refinement.
|
||||
for idx, mask in enumerate(np_masks):
|
||||
shape = mask.shape
|
||||
assert len(shape) == 2 # Assert length to satisfy type checker.
|
||||
polygon = mask_to_polygon(mask)
|
||||
mask = polygon_to_mask(polygon, shape)
|
||||
np_masks[idx] = mask
|
||||
|
||||
# Convert np masks back to tensor masks.
|
||||
masks = [torch.tensor(mask, dtype=torch.bool) for mask in np_masks]
|
||||
|
||||
return masks
|
||||
|
||||
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
|
||||
"""Filter the detected masks based on the specified mask filter."""
|
||||
assert len(masks) == len(bounding_boxes)
|
||||
|
||||
if self.mask_filter == "all":
|
||||
return masks
|
||||
elif self.mask_filter == "largest":
|
||||
# Find the largest mask.
|
||||
return [max(masks, key=lambda x: float(x.sum()))]
|
||||
elif self.mask_filter == "highest_box_score":
|
||||
# Find the index of the bounding box with the highest score.
|
||||
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
|
||||
# cases the scores should all be non-None when using this filtering mode. That being said, -1.0 is a
|
||||
# reasonable fallback since the expected score range is [0.0, 1.0].
|
||||
max_score_idx = max(range(len(bounding_boxes)), key=lambda i: bounding_boxes[i].score or -1.0)
|
||||
return [masks[max_score_idx]]
|
||||
else:
|
||||
raise ValueError(f"Invalid mask filter: {self.mask_filter}")
|
@ -1,253 +0,0 @@
|
||||
from typing import Callable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
InputField,
|
||||
UIType,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import CanceledException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
|
||||
from invokeai.backend.tiles.utils import TBLR, Tile
|
||||
|
||||
|
||||
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.3.0")
|
||||
class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel)."""
|
||||
|
||||
image: ImageField = InputField(description="The input image")
|
||||
image_to_image_model: ModelIdentifierField = InputField(
|
||||
title="Image-to-Image Model",
|
||||
description=FieldDescriptions.spandrel_image_to_image_model,
|
||||
ui_type=UIType.SpandrelImageToImageModel,
|
||||
)
|
||||
tile_size: int = InputField(
|
||||
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def scale_tile(cls, tile: Tile, scale: int) -> Tile:
|
||||
return Tile(
|
||||
coords=TBLR(
|
||||
top=tile.coords.top * scale,
|
||||
bottom=tile.coords.bottom * scale,
|
||||
left=tile.coords.left * scale,
|
||||
right=tile.coords.right * scale,
|
||||
),
|
||||
overlap=TBLR(
|
||||
top=tile.overlap.top * scale,
|
||||
bottom=tile.overlap.bottom * scale,
|
||||
left=tile.overlap.left * scale,
|
||||
right=tile.overlap.right * scale,
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def upscale_image(
|
||||
cls,
|
||||
image: Image.Image,
|
||||
tile_size: int,
|
||||
spandrel_model: SpandrelImageToImageModel,
|
||||
is_canceled: Callable[[], bool],
|
||||
) -> Image.Image:
|
||||
# Compute the image tiles.
|
||||
if tile_size > 0:
|
||||
min_overlap = 20
|
||||
tiles = calc_tiles_min_overlap(
|
||||
image_height=image.height,
|
||||
image_width=image.width,
|
||||
tile_height=tile_size,
|
||||
tile_width=tile_size,
|
||||
min_overlap=min_overlap,
|
||||
)
|
||||
else:
|
||||
# No tiling. Generate a single tile that covers the entire image.
|
||||
min_overlap = 0
|
||||
tiles = [
|
||||
Tile(
|
||||
coords=TBLR(top=0, bottom=image.height, left=0, right=image.width),
|
||||
overlap=TBLR(top=0, bottom=0, left=0, right=0),
|
||||
)
|
||||
]
|
||||
|
||||
# Sort tiles first by left x coordinate, then by top y coordinate. During tile processing, we want to iterate
|
||||
# over tiles left-to-right, top-to-bottom.
|
||||
tiles = sorted(tiles, key=lambda x: x.coords.left)
|
||||
tiles = sorted(tiles, key=lambda x: x.coords.top)
|
||||
|
||||
# Prepare input image for inference.
|
||||
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
|
||||
|
||||
# Scale the tiles for re-assembling the final image.
|
||||
scale = spandrel_model.scale
|
||||
scaled_tiles = [cls.scale_tile(tile, scale=scale) for tile in tiles]
|
||||
|
||||
# Prepare the output tensor.
|
||||
_, channels, height, width = image_tensor.shape
|
||||
output_tensor = torch.zeros(
|
||||
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
|
||||
)
|
||||
|
||||
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
||||
|
||||
# Run the model on each tile.
|
||||
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
|
||||
# Exit early if the invocation has been canceled.
|
||||
if is_canceled():
|
||||
raise CanceledException
|
||||
|
||||
# Extract the current tile from the input tensor.
|
||||
input_tile = image_tensor[
|
||||
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
|
||||
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
||||
|
||||
# Run the model on the tile.
|
||||
output_tile = spandrel_model.run(input_tile)
|
||||
|
||||
# Convert the output tile into the output tensor's format.
|
||||
# (N, C, H, W) -> (C, H, W)
|
||||
output_tile = output_tile.squeeze(0)
|
||||
# (C, H, W) -> (H, W, C)
|
||||
output_tile = output_tile.permute(1, 2, 0)
|
||||
output_tile = output_tile.clamp(0, 1)
|
||||
output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu"))
|
||||
|
||||
# Merge the output tile into the output tensor.
|
||||
# We only keep half of the overlap on the top and left side of the tile. We do this in case there are
|
||||
# edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers
|
||||
# it seems unnecessary, but we may find a need in the future.
|
||||
top_overlap = scaled_tile.overlap.top // 2
|
||||
left_overlap = scaled_tile.overlap.left // 2
|
||||
output_tensor[
|
||||
scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom,
|
||||
scaled_tile.coords.left + left_overlap : scaled_tile.coords.right,
|
||||
:,
|
||||
] = output_tile[top_overlap:, left_overlap:, :]
|
||||
|
||||
# Convert the output tensor to a PIL image.
|
||||
np_image = output_tensor.detach().numpy().astype(np.uint8)
|
||||
pil_image = Image.fromarray(np_image)
|
||||
|
||||
return pil_image
|
||||
|
||||
@torch.inference_mode()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
|
||||
# revisit this.
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGB")
|
||||
|
||||
# Load the model.
|
||||
spandrel_model_info = context.models.load(self.image_to_image_model)
|
||||
|
||||
# Do the upscaling.
|
||||
with spandrel_model_info as spandrel_model:
|
||||
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
||||
|
||||
# Upscale the image
|
||||
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
return ImageOutput.build(image_dto)
|
||||
|
||||
|
||||
@invocation(
|
||||
"spandrel_image_to_image_autoscale",
|
||||
title="Image-to-Image (Autoscale)",
|
||||
tags=["upscale"],
|
||||
category="upscale",
|
||||
version="1.0.0",
|
||||
)
|
||||
class SpandrelImageToImageAutoscaleInvocation(SpandrelImageToImageInvocation):
|
||||
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel) until the target scale is reached."""
|
||||
|
||||
scale: float = InputField(
|
||||
default=4.0,
|
||||
gt=0.0,
|
||||
le=16.0,
|
||||
description="The final scale of the output image. If the model does not upscale the image, this will be ignored.",
|
||||
)
|
||||
fit_to_multiple_of_8: bool = InputField(
|
||||
default=False,
|
||||
description="If true, the output image will be resized to the nearest multiple of 8 in both dimensions.",
|
||||
)
|
||||
|
||||
@torch.inference_mode()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
|
||||
# revisit this.
|
||||
image = context.images.get_pil(self.image.image_name, mode="RGB")
|
||||
|
||||
# Load the model.
|
||||
spandrel_model_info = context.models.load(self.image_to_image_model)
|
||||
|
||||
# The target size of the image, determined by the provided scale. We'll run the upscaler until we hit this size.
|
||||
# Later, we may mutate this value if the model doesn't upscale the image or if the user requested a multiple of 8.
|
||||
target_width = int(image.width * self.scale)
|
||||
target_height = int(image.height * self.scale)
|
||||
|
||||
# Do the upscaling.
|
||||
with spandrel_model_info as spandrel_model:
|
||||
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
||||
|
||||
# First pass of upscaling. Note: `pil_image` will be mutated.
|
||||
pil_image = self.upscale_image(image, self.tile_size, spandrel_model, context.util.is_canceled)
|
||||
|
||||
# Some models don't upscale the image, but we have no way to know this in advance. We'll check if the model
|
||||
# upscaled the image and run the loop below if it did. We'll require the model to upscale both dimensions
|
||||
# to be considered an upscale model.
|
||||
is_upscale_model = pil_image.width > image.width and pil_image.height > image.height
|
||||
|
||||
if is_upscale_model:
|
||||
# This is an upscale model, so we should keep upscaling until we reach the target size.
|
||||
iterations = 1
|
||||
while pil_image.width < target_width or pil_image.height < target_height:
|
||||
pil_image = self.upscale_image(pil_image, self.tile_size, spandrel_model, context.util.is_canceled)
|
||||
iterations += 1
|
||||
|
||||
# Sanity check to prevent excessive or infinite loops. All known upscaling models are at least 2x.
|
||||
# Our max scale is 16x, so with a 2x model, we should never exceed 16x == 2^4 -> 4 iterations.
|
||||
# We'll allow one extra iteration "just in case" and bail at 5 upscaling iterations. In practice,
|
||||
# we should never reach this limit.
|
||||
if iterations >= 5:
|
||||
context.logger.warning(
|
||||
"Upscale loop reached maximum iteration count of 5, stopping upscaling early."
|
||||
)
|
||||
break
|
||||
else:
|
||||
# This model doesn't upscale the image. We should ignore the scale parameter, modifying the output size
|
||||
# to be the same as the processed image size.
|
||||
|
||||
# The output size is now the size of the processed image.
|
||||
target_width = pil_image.width
|
||||
target_height = pil_image.height
|
||||
|
||||
# Warn the user if they requested a scale greater than 1.
|
||||
if self.scale > 1:
|
||||
context.logger.warning(
|
||||
"Model does not increase the size of the image, but a greater scale than 1 was requested. Image will not be scaled."
|
||||
)
|
||||
|
||||
# We may need to resize the image to a multiple of 8. Use floor division to ensure we don't scale the image up
|
||||
# in the final resize
|
||||
if self.fit_to_multiple_of_8:
|
||||
target_width = int(target_width // 8 * 8)
|
||||
target_height = int(target_height // 8 * 8)
|
||||
|
||||
# Final resize. Per PIL documentation, Lanczos provides the best quality for both upscale and downscale.
|
||||
# See: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters-comparison-table
|
||||
pil_image = pil_image.resize((target_width, target_height), resample=Image.Resampling.LANCZOS)
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
return ImageOutput.build(image_dto)
|
@ -2,11 +2,17 @@
|
||||
|
||||
import re
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import InputField, OutputField, UIComponent
|
||||
from invokeai.app.invocations.primitives import StringOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from .fields import InputField, OutputField, UIComponent
|
||||
from .primitives import StringOutput
|
||||
|
||||
|
||||
@invocation_output("string_pos_neg_output")
|
||||
class StringPosNegOutput(BaseInvocationOutput):
|
||||
|
@ -1,287 +0,0 @@
|
||||
import copy
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import torch
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
MultiDiffusionRegionConditioning,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
from invokeai.backend.tiles.tiles import (
|
||||
calc_tiles_min_overlap,
|
||||
)
|
||||
from invokeai.backend.tiles.utils import TBLR
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
|
||||
"""Crop a ControlNetData object to a region."""
|
||||
# Create a shallow copy of the control_data object.
|
||||
control_data_copy = copy.copy(control_data)
|
||||
# The ControlNet reference image is the only attribute that needs to be cropped.
|
||||
control_data_copy.image_tensor = control_data.image_tensor[
|
||||
:,
|
||||
:,
|
||||
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
|
||||
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
|
||||
]
|
||||
return control_data_copy
|
||||
|
||||
|
||||
@invocation(
|
||||
"tiled_multi_diffusion_denoise_latents",
|
||||
title="Tiled Multi-Diffusion Denoise Latents",
|
||||
tags=["upscale", "denoise"],
|
||||
category="latents",
|
||||
classification=Classification.Beta,
|
||||
version="1.0.0",
|
||||
)
|
||||
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
"""Tiled Multi-Diffusion denoising.
|
||||
|
||||
This node handles automatically tiling the input image, and is primarily intended for global refinement of images
|
||||
in tiled upscaling workflows. Future Multi-Diffusion nodes should allow the user to specify custom regions with
|
||||
different parameters for each region to harness the full power of Multi-Diffusion.
|
||||
|
||||
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
|
||||
T2I-Adapter, masking, etc.).
|
||||
"""
|
||||
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||
)
|
||||
noise: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.noise,
|
||||
input=Input.Connection,
|
||||
)
|
||||
latents: LatentsField | None = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
tile_height: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Height of the tiles in image space."
|
||||
)
|
||||
tile_width: int = InputField(
|
||||
default=1024, gt=0, multiple_of=LATENT_SCALE_FACTOR, description="Width of the tiles in image space."
|
||||
)
|
||||
tile_overlap: int = InputField(
|
||||
default=32,
|
||||
multiple_of=LATENT_SCALE_FACTOR,
|
||||
gt=0,
|
||||
description="The overlap between adjacent tiles in pixel space. (Of course, tile merging is applied in latent "
|
||||
"space.) Tiles will be cropped during merging (if necessary) to ensure that they overlap by exactly this "
|
||||
"amount.",
|
||||
)
|
||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
control: ControlField | list[ControlField] | None = InputField(
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||
"""Validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def create_pipeline(
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: SchedulerMixin,
|
||||
) -> MultiDiffusionPipeline:
|
||||
# TODO(ryand): Get rid of this FakeVae hack.
|
||||
class FakeVae:
|
||||
class FakeVaeConfig:
|
||||
def __init__(self) -> None:
|
||||
self.block_out_channels = [0]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.config = FakeVae.FakeVaeConfig()
|
||||
|
||||
return MultiDiffusionPipeline(
|
||||
vae=FakeVae(),
|
||||
text_encoder=None,
|
||||
tokenizer=None,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
# Convert tile image-space dimensions to latent-space dimensions.
|
||||
latent_tile_height = self.tile_height // LATENT_SCALE_FACTOR
|
||||
latent_tile_width = self.tile_width // LATENT_SCALE_FACTOR
|
||||
latent_tile_overlap = self.tile_overlap // LATENT_SCALE_FACTOR
|
||||
|
||||
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
|
||||
# Calculate the tile locations to cover the latent-space image.
|
||||
# TODO(ryand): In the future, we may want to revisit the tile overlap strategy. Things to consider:
|
||||
# - How much overlap 'context' to provide for each denoising step.
|
||||
# - How much overlap to use during merging/blending.
|
||||
# - Should we 'jitter' the tile locations in each step so that the seams are in different places?
|
||||
tiles = calc_tiles_min_overlap(
|
||||
image_height=latent_height,
|
||||
image_width=latent_width,
|
||||
tile_height=latent_tile_height,
|
||||
tile_width=latent_tile_width,
|
||||
min_overlap=latent_tile_overlap,
|
||||
)
|
||||
|
||||
# Get the unet's config so that we can pass the base to sd_step_callback().
|
||||
unet_config = context.models.get_config(self.unet.unet.key)
|
||||
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
context.util.sd_step_callback(state, unet_config.base)
|
||||
|
||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
device=unet.device,
|
||||
dtype=unet.dtype,
|
||||
latent_height=latent_tile_height,
|
||||
latent_width=latent_tile_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=list(latents.shape),
|
||||
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
|
||||
do_classifier_free_guidance=True,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
# Split the controlnet_data into tiles.
|
||||
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
|
||||
controlnet_data_tiles: list[list[ControlNetData]] = []
|
||||
for tile in tiles:
|
||||
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
|
||||
controlnet_data_tiles.append(tile_controlnet_data)
|
||||
|
||||
# Prepare the MultiDiffusionRegionConditioning list.
|
||||
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
|
||||
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
|
||||
multi_diffusion_conditioning.append(
|
||||
MultiDiffusionRegionConditioning(
|
||||
region=tile,
|
||||
text_conditioning_data=conditioning_data,
|
||||
control_data=tile_controlnet_data,
|
||||
)
|
||||
)
|
||||
|
||||
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
|
||||
# Run Multi-Diffusion denoising.
|
||||
result_latents = pipeline.multi_diffusion_denoise(
|
||||
multi_diffusion_conditioning=multi_diffusion_conditioning,
|
||||
target_overlap=latent_tile_overlap,
|
||||
latents=latents,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
noise=noise,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
result_latents = result_latents.to("cpu")
|
||||
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
name = context.tensors.save(tensor=result_latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)
|
@ -1,4 +1,5 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
||||
from pathlib import Path
|
||||
from typing import Literal
|
||||
|
||||
import cv2
|
||||
@ -6,12 +7,16 @@ import numpy as np
|
||||
from PIL import Image
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||||
from invokeai.app.invocations.fields import ImageField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.download_with_progress import download_with_progress_bar
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
from .baseinvocation import BaseInvocation, invocation
|
||||
from .fields import InputField, WithBoard, WithMetadata
|
||||
|
||||
# TODO: Populate this from disk?
|
||||
# TODO: Use model manager to load?
|
||||
@ -47,6 +52,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
rrdbnet_model = None
|
||||
netscale = None
|
||||
esrgan_model_path = None
|
||||
|
||||
if self.model_name in [
|
||||
"RealESRGAN_x4plus.pth",
|
||||
@ -89,25 +95,28 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
context.logger.error(msg)
|
||||
raise ValueError(msg)
|
||||
|
||||
loadnet = context.models.load_remote_model(
|
||||
source=ESRGAN_MODEL_URLS[self.model_name],
|
||||
esrgan_model_path = Path(context.config.get().models_path, f"core/upscaling/realesrgan/{self.model_name}")
|
||||
|
||||
# Downloads the ESRGAN model if it doesn't already exist
|
||||
download_with_progress_bar(
|
||||
name=self.model_name, url=ESRGAN_MODEL_URLS[self.model_name], dest_path=esrgan_model_path
|
||||
)
|
||||
|
||||
with loadnet as loadnet_model:
|
||||
upscaler = RealESRGAN(
|
||||
scale=netscale,
|
||||
loadnet=loadnet_model,
|
||||
model=rrdbnet_model,
|
||||
half=False,
|
||||
tile=self.tile_size,
|
||||
)
|
||||
upscaler = RealESRGAN(
|
||||
scale=netscale,
|
||||
model_path=esrgan_model_path,
|
||||
model=rrdbnet_model,
|
||||
half=False,
|
||||
tile=self.tile_size,
|
||||
)
|
||||
|
||||
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
||||
# TODO: This strips the alpha... is that okay?
|
||||
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
|
||||
upscaled_image = upscaler.upscale(cv2_image)
|
||||
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
|
||||
# TODO: This strips the alpha... is that okay?
|
||||
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
|
||||
upscaled_image = upscaler.upscale(cv2_image)
|
||||
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
|
||||
|
||||
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
image_dto = context.images.save(image=pil_image)
|
||||
|
||||
|
@ -2,11 +2,12 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Optional, cast
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .board_image_records_base import BoardImageRecordStorageBase
|
||||
|
||||
|
||||
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
|
||||
_conn: sqlite3.Connection
|
||||
|
@ -1,8 +1,9 @@
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
from .board_images_base import BoardImagesServiceABC
|
||||
|
||||
|
||||
class BoardImagesService(BoardImagesServiceABC):
|
||||
__invoker: Invoker
|
||||
|
@ -1,8 +1,9 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges, BoardRecord
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .board_records_common import BoardChanges, BoardRecord
|
||||
|
||||
|
||||
class BoardRecordStorageBase(ABC):
|
||||
"""Low-level service responsible for interfacing with the board record store."""
|
||||
@ -39,12 +40,16 @@ class BoardRecordStorageBase(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
"""Gets many board records."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
"""Gets all board records."""
|
||||
pass
|
||||
|
@ -22,10 +22,6 @@ class BoardRecord(BaseModelExcludeNull):
|
||||
"""The updated timestamp of the image."""
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the cover image of the board.")
|
||||
"""The name of the cover image of the board."""
|
||||
archived: bool = Field(description="Whether or not the board is archived.")
|
||||
"""Whether or not the board is archived."""
|
||||
is_private: Optional[bool] = Field(default=None, description="Whether the board is private.")
|
||||
"""Whether the board is private."""
|
||||
|
||||
|
||||
def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
@ -39,8 +35,6 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at = board_dict.get("created_at", get_iso_timestamp())
|
||||
updated_at = board_dict.get("updated_at", get_iso_timestamp())
|
||||
deleted_at = board_dict.get("deleted_at", get_iso_timestamp())
|
||||
archived = board_dict.get("archived", False)
|
||||
is_private = board_dict.get("is_private", False)
|
||||
|
||||
return BoardRecord(
|
||||
board_id=board_id,
|
||||
@ -49,15 +43,12 @@ def deserialize_board_record(board_dict: dict) -> BoardRecord:
|
||||
created_at=created_at,
|
||||
updated_at=updated_at,
|
||||
deleted_at=deleted_at,
|
||||
archived=archived,
|
||||
is_private=is_private,
|
||||
)
|
||||
|
||||
|
||||
class BoardChanges(BaseModel, extra="forbid"):
|
||||
board_name: Optional[str] = Field(default=None, description="The board's new name.")
|
||||
cover_image_name: Optional[str] = Field(default=None, description="The name of the board's new cover image.")
|
||||
archived: Optional[bool] = Field(default=None, description="Whether or not the board is archived")
|
||||
|
||||
|
||||
class BoardRecordNotFoundException(Exception):
|
||||
|
@ -2,8 +2,12 @@ import sqlite3
|
||||
import threading
|
||||
from typing import Union, cast
|
||||
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.board_records.board_records_common import (
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .board_records_base import BoardRecordStorageBase
|
||||
from .board_records_common import (
|
||||
BoardChanges,
|
||||
BoardRecord,
|
||||
BoardRecordDeleteException,
|
||||
@ -11,9 +15,6 @@ from invokeai.app.services.board_records.board_records_common import (
|
||||
BoardRecordSaveException,
|
||||
deserialize_board_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
@ -124,17 +125,6 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
(changes.cover_image_name, board_id),
|
||||
)
|
||||
|
||||
# Change the archived status of a board
|
||||
if changes.archived is not None:
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
UPDATE boards
|
||||
SET archived = ?
|
||||
WHERE board_id = ?;
|
||||
""",
|
||||
(changes.archived, board_id),
|
||||
)
|
||||
|
||||
self._conn.commit()
|
||||
except sqlite3.Error as e:
|
||||
self._conn.rollback()
|
||||
@ -144,49 +134,35 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
return self.get(board_id)
|
||||
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
) -> OffsetPaginatedResults[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
# Build base query
|
||||
base_query = """
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
LIMIT ? OFFSET ?;
|
||||
"""
|
||||
|
||||
# Determine archived filter condition
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
# Execute query to fetch boards
|
||||
self._cursor.execute(final_query, (limit, offset))
|
||||
""",
|
||||
(limit, offset),
|
||||
)
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
||||
# Determine count query
|
||||
if include_archived:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards;
|
||||
# Get the total number of boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE 1=1;
|
||||
"""
|
||||
else:
|
||||
count_query = """
|
||||
SELECT COUNT(*)
|
||||
FROM boards
|
||||
WHERE archived = 0;
|
||||
"""
|
||||
|
||||
# Execute count query
|
||||
self._cursor.execute(count_query)
|
||||
)
|
||||
|
||||
count = cast(int, self._cursor.fetchone()[0])
|
||||
|
||||
@ -198,25 +174,20 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardRecord]:
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
|
||||
base_query = """
|
||||
# Get all the boards
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM boards
|
||||
{archived_filter}
|
||||
ORDER BY created_at DESC
|
||||
"""
|
||||
|
||||
if include_archived:
|
||||
archived_filter = ""
|
||||
else:
|
||||
archived_filter = "WHERE archived = 0"
|
||||
|
||||
final_query = base_query.format(archived_filter=archived_filter)
|
||||
|
||||
self._cursor.execute(final_query)
|
||||
"""
|
||||
)
|
||||
|
||||
result = cast(list[sqlite3.Row], self._cursor.fetchall())
|
||||
boards = [deserialize_board_record(dict(r)) for r in result]
|
||||
|
@ -1,9 +1,10 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_common import BoardDTO
|
||||
|
||||
|
||||
class BoardServiceABC(ABC):
|
||||
"""High-level service for board management."""
|
||||
@ -43,12 +44,16 @@ class BoardServiceABC(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
"""Gets many boards."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
def get_all(
|
||||
self,
|
||||
) -> list[BoardDTO]:
|
||||
"""Gets all boards."""
|
||||
pass
|
||||
|
@ -2,7 +2,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecord
|
||||
from ..board_records.board_records_common import BoardRecord
|
||||
|
||||
|
||||
class BoardDTO(BoardRecord):
|
||||
|
@ -1,9 +1,11 @@
|
||||
from invokeai.app.services.board_records.board_records_common import BoardChanges
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO, board_record_to_dto
|
||||
from invokeai.app.services.boards.boards_common import BoardDTO
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from .boards_base import BoardServiceABC
|
||||
from .boards_common import board_record_to_dto
|
||||
|
||||
|
||||
class BoardService(BoardServiceABC):
|
||||
__invoker: Invoker
|
||||
@ -46,10 +48,8 @@ class BoardService(BoardServiceABC):
|
||||
def delete(self, board_id: str) -> None:
|
||||
self.__invoker.services.board_records.delete(board_id)
|
||||
|
||||
def get_many(
|
||||
self, offset: int = 0, limit: int = 10, include_archived: bool = False
|
||||
) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit, include_archived)
|
||||
def get_many(self, offset: int = 0, limit: int = 10) -> OffsetPaginatedResults[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_many(offset, limit)
|
||||
board_dtos = []
|
||||
for r in board_records.items:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
@ -63,8 +63,8 @@ class BoardService(BoardServiceABC):
|
||||
|
||||
return OffsetPaginatedResults[BoardDTO](items=board_dtos, offset=offset, limit=limit, total=len(board_dtos))
|
||||
|
||||
def get_all(self, include_archived: bool = False) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all(include_archived)
|
||||
def get_all(self) -> list[BoardDTO]:
|
||||
board_records = self.__invoker.services.board_records.get_all()
|
||||
board_dtos = []
|
||||
for r in board_records:
|
||||
cover_image = self.__invoker.services.image_records.get_most_recent_image_for_board(r.board_id)
|
||||
|
@ -4,7 +4,6 @@ from typing import Optional, Union
|
||||
from zipfile import ZipFile
|
||||
|
||||
from invokeai.app.services.board_records.board_records_common import BoardRecordNotFoundException
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.bulk_download.bulk_download_common import (
|
||||
DEFAULT_BULK_DOWNLOAD_ID,
|
||||
BulkDownloadException,
|
||||
@ -16,6 +15,8 @@ from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
from .bulk_download_base import BulkDownloadBase
|
||||
|
||||
|
||||
class BulkDownloadService(BulkDownloadBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""Init file for InvokeAI configure package."""
|
||||
|
||||
from invokeai.app.services.config.config_common import PagingArgumentParser
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
|
||||
|
||||
from .config_default import InvokeAIAppConfig, get_config
|
||||
|
||||
__all__ = ["InvokeAIAppConfig", "get_config", "PagingArgumentParser"]
|
||||
|
@ -3,7 +3,6 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import locale
|
||||
import os
|
||||
import re
|
||||
@ -26,13 +25,14 @@ DB_FILE = Path("invokeai.db")
|
||||
LEGACY_INIT_FILE = Path("invokeai.init")
|
||||
DEFAULT_RAM_CACHE = 10.0
|
||||
DEFAULT_VRAM_CACHE = 0.25
|
||||
DEFAULT_CONVERT_CACHE = 20.0
|
||||
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
|
||||
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
|
||||
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
|
||||
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
|
||||
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
|
||||
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
|
||||
CONFIG_SCHEMA_VERSION = "4.0.2"
|
||||
CONFIG_SCHEMA_VERSION = "4.0.1"
|
||||
|
||||
|
||||
def get_default_ram_cache_size() -> float:
|
||||
@ -85,13 +85,11 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
log_tokenization: Enable logging of parsed prompt tokens.
|
||||
patchmatch: Enable patchmatch inpaint code.
|
||||
models_dir: Path to the models directory.
|
||||
convert_cache_dir: Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).
|
||||
download_cache_dir: Path to the directory that contains dynamically downloaded models.
|
||||
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
|
||||
legacy_conf_dir: Path to directory of legacy checkpoint config files.
|
||||
db_dir: Path to InvokeAI databases directory.
|
||||
outputs_dir: Path to directory for outputs.
|
||||
custom_nodes_dir: Path to directory for custom nodes.
|
||||
style_presets_dir: Path to directory for style presets.
|
||||
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
|
||||
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
|
||||
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
|
||||
@ -103,6 +101,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path to profiles output directory.
|
||||
ram: Maximum memory amount used by memory model cache for rapid switching (GB).
|
||||
vram: Amount of VRAM reserved for model storage (GB).
|
||||
convert_cache: Maximum size of on-disk converted models cache (GB).
|
||||
lazy_offload: Keep models in VRAM until their space is needed.
|
||||
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
|
||||
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
|
||||
@ -113,7 +112,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
|
||||
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
|
||||
max_queue_size: Maximum number of items in the session queue.
|
||||
clear_queue_on_startup: Empties session queue on startup.
|
||||
allow_nodes: List of nodes to allow. Omit to allow all.
|
||||
deny_nodes: List of nodes to deny. Omit to deny none.
|
||||
node_cache_size: How many cached nodes to keep in memory.
|
||||
@ -148,13 +146,11 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
|
||||
# PATHS
|
||||
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory (DEPRECATED, but do not delete because it is needed for migration from previous versions).")
|
||||
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
|
||||
convert_cache_dir: Path = Field(default=Path("models/.cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
|
||||
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
|
||||
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
|
||||
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
|
||||
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
|
||||
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
|
||||
|
||||
# LOGGING
|
||||
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
|
||||
@ -171,8 +167,9 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
profiles_dir: Path = Field(default=Path("profiles"), description="Path to profiles output directory.")
|
||||
|
||||
# CACHE
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
ram: float = Field(default_factory=get_default_ram_cache_size, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).")
|
||||
vram: float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB).")
|
||||
convert_cache: float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB).")
|
||||
lazy_offload: bool = Field(default=True, description="Keep models in VRAM until their space is needed.")
|
||||
log_memory_usage: bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.")
|
||||
|
||||
@ -187,7 +184,6 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
|
||||
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
|
||||
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
|
||||
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
|
||||
|
||||
# NODES
|
||||
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")
|
||||
@ -302,21 +298,11 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
"""Path to the models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.models_dir)
|
||||
|
||||
@property
|
||||
def style_presets_path(self) -> Path:
|
||||
"""Path to the style presets directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.style_presets_dir)
|
||||
|
||||
@property
|
||||
def convert_cache_path(self) -> Path:
|
||||
"""Path to the converted cache models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.convert_cache_dir)
|
||||
|
||||
@property
|
||||
def download_cache_path(self) -> Path:
|
||||
"""Path to the downloaded models directory, resolved to an absolute path.."""
|
||||
return self._resolve(self.download_cache_dir)
|
||||
|
||||
@property
|
||||
def custom_nodes_path(self) -> Path:
|
||||
"""Path to the custom nodes directory, resolved to an absolute path.."""
|
||||
@ -362,14 +348,14 @@ class DefaultInvokeAIAppConfig(InvokeAIAppConfig):
|
||||
return (init_settings,)
|
||||
|
||||
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate a v3 config dictionary to a v4.0.0.
|
||||
def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate a v3 config dictionary to a current config object.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v3 config file.
|
||||
|
||||
Returns:
|
||||
An `InvokeAIAppConfig` config dict.
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
@ -403,41 +389,32 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
elif k in InvokeAIAppConfig.model_fields:
|
||||
# skip unknown fields
|
||||
parsed_config_dict[k] = v
|
||||
parsed_config_dict["schema_version"] = "4.0.0"
|
||||
return parsed_config_dict
|
||||
# When migrating the config file, we should not include currently-set environment variables.
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def migrate_v4_0_0_to_4_0_1_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.0 config dictionary to a v4.0.1 config dictionary
|
||||
def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
|
||||
"""Migrate v4.0.0 config dictionary to a current config object.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.0 config file.
|
||||
|
||||
Returns:
|
||||
A config dict with the settings migrated to v4.0.1.
|
||||
An instance of `InvokeAIAppConfig` with the migrated settings.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# precision "autocast" was replaced by "auto" in v4.0.1
|
||||
if parsed_config_dict.get("precision") == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
parsed_config_dict["schema_version"] = "4.0.1"
|
||||
return parsed_config_dict
|
||||
|
||||
|
||||
def migrate_v4_0_1_to_4_0_2_config_dict(config_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Migrate v4.0.1 config dictionary to a v4.0.2 config dictionary.
|
||||
|
||||
Args:
|
||||
config_dict: A dictionary of settings from a v4.0.1 config file.
|
||||
|
||||
Returns:
|
||||
An config dict with the settings migrated to v4.0.2.
|
||||
"""
|
||||
parsed_config_dict: dict[str, Any] = copy.deepcopy(config_dict)
|
||||
# convert_cache was removed in 4.0.2
|
||||
parsed_config_dict.pop("convert_cache", None)
|
||||
parsed_config_dict["schema_version"] = "4.0.2"
|
||||
return parsed_config_dict
|
||||
parsed_config_dict: dict[str, Any] = {}
|
||||
for k, v in config_dict.items():
|
||||
# autocast was removed from precision in v4.0.1
|
||||
if k == "precision" and v == "autocast":
|
||||
parsed_config_dict["precision"] = "auto"
|
||||
else:
|
||||
parsed_config_dict[k] = v
|
||||
if k == "schema_version":
|
||||
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
|
||||
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
|
||||
return config
|
||||
|
||||
|
||||
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
@ -451,31 +428,27 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
|
||||
"""
|
||||
assert config_path.suffix == ".yaml"
|
||||
with open(config_path, "rt", encoding=locale.getpreferredencoding()) as file:
|
||||
loaded_config_dict: dict[str, Any] = yaml.safe_load(file)
|
||||
loaded_config_dict = yaml.safe_load(file)
|
||||
|
||||
assert isinstance(loaded_config_dict, dict)
|
||||
|
||||
migrated = False
|
||||
if "InvokeAI" in loaded_config_dict:
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_0_to_4_0_1_config_dict(loaded_config_dict)
|
||||
if loaded_config_dict["schema_version"] == "4.0.1":
|
||||
migrated = True
|
||||
loaded_config_dict = migrate_v4_0_1_to_4_0_2_config_dict(loaded_config_dict)
|
||||
|
||||
if migrated:
|
||||
# This is a v3 config file, attempt to migrate it
|
||||
shutil.copy(config_path, config_path.with_suffix(".yaml.bak"))
|
||||
try:
|
||||
# load and write without environment variables
|
||||
migrated_config = DefaultInvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
migrated_config.write_file(config_path)
|
||||
# loaded_config_dict could be the wrong shape, but we will catch all exceptions below
|
||||
migrated_config = migrate_v3_config_dict(loaded_config_dict) # pyright: ignore [reportUnknownArgumentType]
|
||||
except Exception as e:
|
||||
shutil.copy(config_path.with_suffix(".yaml.bak"), config_path)
|
||||
raise RuntimeError(f"Failed to load and migrate v3 config file {config_path}: {e}") from e
|
||||
migrated_config.write_file(config_path)
|
||||
return migrated_config
|
||||
|
||||
if loaded_config_dict["schema_version"] == "4.0.0":
|
||||
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
|
||||
loaded_config_dict.write_file(config_path)
|
||||
|
||||
# Attempt to load as a v4 config file
|
||||
try:
|
||||
# Meta is not included in the model fields, so we need to validate it separately
|
||||
config = InvokeAIAppConfig.model_validate(loaded_config_dict)
|
||||
|
@ -1,17 +1,10 @@
|
||||
"""Init file for download queue."""
|
||||
|
||||
from invokeai.app.services.download.download_base import (
|
||||
DownloadJob,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from invokeai.app.services.download.download_default import DownloadQueueService, TqdmProgress
|
||||
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
|
||||
from .download_default import DownloadQueueService, TqdmProgress
|
||||
|
||||
__all__ = [
|
||||
"DownloadJob",
|
||||
"MultiFileDownloadJob",
|
||||
"DownloadQueueServiceBase",
|
||||
"DownloadQueueService",
|
||||
"TqdmProgress",
|
||||
|
@ -5,13 +5,11 @@ from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from functools import total_ordering
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, List, Optional, Set, Union
|
||||
from typing import Any, Callable, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
|
||||
|
||||
class DownloadJobStatus(str, Enum):
|
||||
"""State of a download job."""
|
||||
@ -35,23 +33,30 @@ class ServiceInactiveException(Exception):
|
||||
"""This exception is raised when user attempts to initiate a download before the service is started."""
|
||||
|
||||
|
||||
SingleFileDownloadEventHandler = Callable[["DownloadJob"], None]
|
||||
SingleFileDownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
|
||||
MultiFileDownloadEventHandler = Callable[["MultiFileDownloadJob"], None]
|
||||
MultiFileDownloadExceptionHandler = Callable[["MultiFileDownloadJob", Optional[Exception]], None]
|
||||
DownloadEventHandler = Union[SingleFileDownloadEventHandler, MultiFileDownloadEventHandler]
|
||||
DownloadExceptionHandler = Union[SingleFileDownloadExceptionHandler, MultiFileDownloadExceptionHandler]
|
||||
DownloadEventHandler = Callable[["DownloadJob"], None]
|
||||
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
|
||||
|
||||
|
||||
class DownloadJobBase(BaseModel):
|
||||
"""Base of classes to monitor and control downloads."""
|
||||
@total_ordering
|
||||
class DownloadJob(BaseModel):
|
||||
"""Class to monitor and control a model download request."""
|
||||
|
||||
# required variables to be passed in on creation
|
||||
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
|
||||
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
|
||||
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
|
||||
# automatically assigned on creation
|
||||
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
|
||||
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
|
||||
|
||||
dest: Path = Field(description="Initial destination of downloaded model on local disk; a directory or file path")
|
||||
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file or directory")
|
||||
# set internally during download process
|
||||
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
|
||||
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
|
||||
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
|
||||
job_ended: Optional[str] = Field(
|
||||
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
|
||||
)
|
||||
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
|
||||
bytes: int = Field(default=0, description="Bytes downloaded so far")
|
||||
total_bytes: int = Field(default=0, description="Total file size (bytes)")
|
||||
|
||||
@ -69,6 +74,14 @@ class DownloadJobBase(BaseModel):
|
||||
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return hash of the string representation of this object, for indexing."""
|
||||
return hash(str(self))
|
||||
|
||||
def __le__(self, other: "DownloadJob") -> bool:
|
||||
"""Return True if this job's priority is less than another's."""
|
||||
return self.priority <= other.priority
|
||||
|
||||
def cancel(self) -> None:
|
||||
"""Call to cancel the job."""
|
||||
self._cancelled = True
|
||||
@ -85,11 +98,6 @@ class DownloadJobBase(BaseModel):
|
||||
"""Return true if job completed without errors."""
|
||||
return self.status == DownloadJobStatus.COMPLETED
|
||||
|
||||
@property
|
||||
def waiting(self) -> bool:
|
||||
"""Return true if the job is waiting to run."""
|
||||
return self.status == DownloadJobStatus.WAITING
|
||||
|
||||
@property
|
||||
def running(self) -> bool:
|
||||
"""Return true if the job is running."""
|
||||
@ -146,37 +154,6 @@ class DownloadJobBase(BaseModel):
|
||||
self._on_cancelled = on_cancelled
|
||||
|
||||
|
||||
@total_ordering
|
||||
class DownloadJob(DownloadJobBase):
|
||||
"""Class to monitor and control a model download request."""
|
||||
|
||||
# required variables to be passed in on creation
|
||||
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
|
||||
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
|
||||
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
|
||||
|
||||
# set internally during download process
|
||||
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
|
||||
job_ended: Optional[str] = Field(
|
||||
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
|
||||
)
|
||||
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Return hash of the string representation of this object, for indexing."""
|
||||
return hash(str(self))
|
||||
|
||||
def __le__(self, other: "DownloadJob") -> bool:
|
||||
"""Return True if this job's priority is less than another's."""
|
||||
return self.priority <= other.priority
|
||||
|
||||
|
||||
class MultiFileDownloadJob(DownloadJobBase):
|
||||
"""Class to monitor and control multifile downloads."""
|
||||
|
||||
download_parts: Set[DownloadJob] = Field(default_factory=set, description="List of download parts.")
|
||||
|
||||
|
||||
class DownloadQueueServiceBase(ABC):
|
||||
"""Multithreaded queue for downloading models via URL."""
|
||||
|
||||
@ -224,48 +201,6 @@ class DownloadQueueServiceBase(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def multifile_download(
|
||||
self,
|
||||
parts: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadExceptionHandler] = None,
|
||||
) -> MultiFileDownloadJob:
|
||||
"""
|
||||
Create and enqueue a multifile download job.
|
||||
|
||||
:param parts: Set of URL / filename pairs
|
||||
:param dest: Path to download to. See below.
|
||||
:param access_token: Access token to download the indicated files. If not provided,
|
||||
each file's URL may be matched to an access token using the config file matching
|
||||
system.
|
||||
:param submit_job: If true [default] then submit the job for execution. Otherwise,
|
||||
you will need to pass the job to submit_multifile_download().
|
||||
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
|
||||
events.
|
||||
:returns: A MultiFileDownloadJob object for monitoring the state of the download.
|
||||
|
||||
The `dest` argument is a Path object pointing to a directory. All downloads
|
||||
with be placed inside this directory. The callbacks will receive the
|
||||
MultiFileDownloadJob.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
|
||||
"""
|
||||
Enqueue a previously-created multi-file download job.
|
||||
|
||||
:param job: A MultiFileDownloadJob created with multifile_download()
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def submit_download_job(
|
||||
self,
|
||||
@ -317,7 +252,7 @@ class DownloadQueueServiceBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_job(self, job: DownloadJobBase) -> None:
|
||||
def cancel_job(self, job: DownloadJob) -> None:
|
||||
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
|
||||
pass
|
||||
|
||||
@ -327,7 +262,7 @@ class DownloadQueueServiceBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
|
||||
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
|
||||
"""Wait until the indicated download job has reached a terminal state.
|
||||
|
||||
This will block until the indicated install job has completed,
|
||||
|
@ -8,30 +8,29 @@ import time
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
from queue import Empty, PriorityQueue
|
||||
from typing import Any, Dict, List, Literal, Optional, Set
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
|
||||
|
||||
import requests
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.download.download_base import (
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .download_base import (
|
||||
DownloadEventHandler,
|
||||
DownloadExceptionHandler,
|
||||
DownloadJob,
|
||||
DownloadJobBase,
|
||||
DownloadJobCancelledException,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
MultiFileDownloadJob,
|
||||
ServiceInactiveException,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.model_manager.metadata import RemoteModelFile
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
# Maximum number of bytes to download during each call to requests.iter_content()
|
||||
DOWNLOAD_CHUNK_SIZE = 100000
|
||||
@ -43,24 +42,20 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
def __init__(
|
||||
self,
|
||||
max_parallel_dl: int = 5,
|
||||
app_config: Optional[InvokeAIAppConfig] = None,
|
||||
event_bus: Optional["EventServiceBase"] = None,
|
||||
requests_session: Optional[requests.sessions.Session] = None,
|
||||
):
|
||||
"""
|
||||
Initialize DownloadQueue.
|
||||
|
||||
:param app_config: InvokeAIAppConfig object
|
||||
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
|
||||
:param requests_session: Optional requests.sessions.Session object, for unit tests.
|
||||
"""
|
||||
self._app_config = app_config or get_config()
|
||||
self._jobs: Dict[int, DownloadJob] = {}
|
||||
self._download_part2parent: Dict[AnyHttpUrl, MultiFileDownloadJob] = {}
|
||||
self._next_job_id = 0
|
||||
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
|
||||
self._stop_event = threading.Event()
|
||||
self._job_terminated_event = threading.Event()
|
||||
self._job_completed_event = threading.Event()
|
||||
self._worker_pool: Set[threading.Thread] = set()
|
||||
self._lock = threading.Lock()
|
||||
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
|
||||
@ -112,16 +107,18 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
raise ServiceInactiveException(
|
||||
"The download service is not currently accepting requests. Please call start() to initialize the service."
|
||||
)
|
||||
job.id = self._next_id()
|
||||
job.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
self._jobs[job.id] = job
|
||||
self._queue.put(job)
|
||||
with self._lock:
|
||||
job.id = self._next_job_id
|
||||
self._next_job_id += 1
|
||||
job.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
self._jobs[job.id] = job
|
||||
self._queue.put(job)
|
||||
|
||||
def download(
|
||||
self,
|
||||
@ -144,7 +141,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
source=source,
|
||||
dest=dest,
|
||||
priority=priority,
|
||||
access_token=access_token or self._lookup_access_token(source),
|
||||
access_token=access_token,
|
||||
)
|
||||
self.submit_download_job(
|
||||
job,
|
||||
@ -156,63 +153,10 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
)
|
||||
return job
|
||||
|
||||
def multifile_download(
|
||||
self,
|
||||
parts: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadExceptionHandler] = None,
|
||||
) -> MultiFileDownloadJob:
|
||||
mfdj = MultiFileDownloadJob(dest=dest, id=self._next_id())
|
||||
mfdj.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
|
||||
for part in parts:
|
||||
url = part.url
|
||||
path = dest / part.path
|
||||
assert path.is_relative_to(dest), "only relative download paths accepted"
|
||||
job = DownloadJob(
|
||||
source=url,
|
||||
dest=path,
|
||||
access_token=access_token or self._lookup_access_token(url),
|
||||
)
|
||||
mfdj.download_parts.add(job)
|
||||
self._download_part2parent[job.source] = mfdj
|
||||
if submit_job:
|
||||
self.submit_multifile_download(mfdj)
|
||||
return mfdj
|
||||
|
||||
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
|
||||
for download_job in job.download_parts:
|
||||
self.submit_download_job(
|
||||
download_job,
|
||||
on_start=self._mfd_started,
|
||||
on_progress=self._mfd_progress,
|
||||
on_complete=self._mfd_complete,
|
||||
on_cancelled=self._mfd_cancelled,
|
||||
on_error=self._mfd_error,
|
||||
)
|
||||
|
||||
def join(self) -> None:
|
||||
"""Wait for all jobs to complete."""
|
||||
self._queue.join()
|
||||
|
||||
def _next_id(self) -> int:
|
||||
with self._lock:
|
||||
id = self._next_job_id
|
||||
self._next_job_id += 1
|
||||
return id
|
||||
|
||||
def list_jobs(self) -> List[DownloadJob]:
|
||||
"""List all the jobs."""
|
||||
return list(self._jobs.values())
|
||||
@ -234,14 +178,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
except KeyError as excp:
|
||||
raise UnknownJobIDException("Unrecognized job") from excp
|
||||
|
||||
def cancel_job(self, job: DownloadJobBase) -> None:
|
||||
def cancel_job(self, job: DownloadJob) -> None:
|
||||
"""
|
||||
Cancel the indicated job.
|
||||
|
||||
If it is running it will be stopped.
|
||||
job.status will be set to DownloadJobStatus.CANCELLED
|
||||
"""
|
||||
if job.status in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]:
|
||||
with self._lock:
|
||||
job.cancel()
|
||||
|
||||
def cancel_all_jobs(self) -> None:
|
||||
@ -250,12 +194,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
if not job.in_terminal_state:
|
||||
self.cancel_job(job)
|
||||
|
||||
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
|
||||
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
|
||||
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
|
||||
start = time.time()
|
||||
while not job.in_terminal_state:
|
||||
if self._job_terminated_event.wait(timeout=0.25): # in case we miss an event
|
||||
self._job_terminated_event.clear()
|
||||
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
|
||||
self._job_completed_event.clear()
|
||||
if timeout > 0 and time.time() - start > timeout:
|
||||
raise TimeoutError("Timeout exceeded")
|
||||
return job
|
||||
@ -284,25 +228,22 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
job.job_started = get_iso_timestamp()
|
||||
self._do_download(job)
|
||||
self._signal_job_complete(job)
|
||||
except DownloadJobCancelledException:
|
||||
self._signal_job_cancelled(job)
|
||||
self._cleanup_cancelled_job(job)
|
||||
except Exception as excp:
|
||||
except (OSError, HTTPError) as excp:
|
||||
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
|
||||
job.error = traceback.format_exc()
|
||||
self._signal_job_error(job, excp)
|
||||
except DownloadJobCancelledException:
|
||||
self._signal_job_cancelled(job)
|
||||
self._cleanup_cancelled_job(job)
|
||||
|
||||
finally:
|
||||
job.job_ended = get_iso_timestamp()
|
||||
self._job_terminated_event.set() # signal a change to terminal state
|
||||
self._download_part2parent.pop(job.source, None) # if this is a subpart of a multipart job, remove it
|
||||
self._job_terminated_event.set()
|
||||
self._job_completed_event.set() # signal a change to terminal state
|
||||
self._queue.task_done()
|
||||
|
||||
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
|
||||
|
||||
def _do_download(self, job: DownloadJob) -> None:
|
||||
"""Do the actual download."""
|
||||
|
||||
url = job.source
|
||||
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
|
||||
open_mode = "wb"
|
||||
@ -394,29 +335,38 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
def _in_progress_path(self, path: Path) -> Path:
|
||||
return path.with_name(path.name + ".downloading")
|
||||
|
||||
def _lookup_access_token(self, source: AnyHttpUrl) -> Optional[str]:
|
||||
# Pull the token from config if it exists and matches the URL
|
||||
token = None
|
||||
for pair in self._app_config.remote_api_tokens or []:
|
||||
if re.search(pair.url_regex, str(source)):
|
||||
token = pair.token
|
||||
break
|
||||
return token
|
||||
|
||||
def _signal_job_started(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.RUNNING
|
||||
self._execute_cb(job, "on_start")
|
||||
if job.on_start:
|
||||
try:
|
||||
job.on_start(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_started(job)
|
||||
|
||||
def _signal_job_progress(self, job: DownloadJob) -> None:
|
||||
self._execute_cb(job, "on_progress")
|
||||
if job.on_progress:
|
||||
try:
|
||||
job.on_progress(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_progress(job)
|
||||
|
||||
def _signal_job_complete(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.COMPLETED
|
||||
self._execute_cb(job, "on_complete")
|
||||
if job.on_complete:
|
||||
try:
|
||||
job.on_complete(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_complete(job)
|
||||
|
||||
@ -424,21 +374,26 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
|
||||
return
|
||||
job.status = DownloadJobStatus.CANCELLED
|
||||
self._execute_cb(job, "on_cancelled")
|
||||
if job.on_cancelled:
|
||||
try:
|
||||
job.on_cancelled(job)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_cancelled(job)
|
||||
|
||||
# if multifile download, then signal the parent
|
||||
if parent_job := self._download_part2parent.get(job.source, None):
|
||||
if not parent_job.in_terminal_state:
|
||||
parent_job.status = DownloadJobStatus.CANCELLED
|
||||
self._execute_cb(parent_job, "on_cancelled")
|
||||
|
||||
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
job.status = DownloadJobStatus.ERROR
|
||||
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
|
||||
self._execute_cb(job, "on_error", excp)
|
||||
|
||||
if job.on_error:
|
||||
try:
|
||||
job.on_error(job, excp)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_error(job)
|
||||
|
||||
@ -451,97 +406,6 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
except OSError as excp:
|
||||
self._logger.warning(excp)
|
||||
|
||||
########################################
|
||||
# callbacks used for multifile downloads
|
||||
########################################
|
||||
def _mfd_started(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"File download started: {download_job.source}")
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
if mf_job.waiting:
|
||||
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
mf_job.status = DownloadJobStatus.RUNNING
|
||||
assert download_job.download_path is not None
|
||||
path_relative_to_destdir = download_job.download_path.relative_to(mf_job.dest)
|
||||
mf_job.download_path = (
|
||||
mf_job.dest / path_relative_to_destdir.parts[0]
|
||||
) # keep just the first component of the path
|
||||
self._execute_cb(mf_job, "on_start")
|
||||
|
||||
def _mfd_progress(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
if mf_job.cancelled:
|
||||
for part in mf_job.download_parts:
|
||||
self.cancel_job(part)
|
||||
elif mf_job.running:
|
||||
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
mf_job.bytes = sum(x.total_bytes for x in mf_job.download_parts)
|
||||
self._execute_cb(mf_job, "on_progress")
|
||||
|
||||
def _mfd_complete(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Download complete: {download_job.source}")
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
|
||||
# are there any more active jobs left in this task?
|
||||
if mf_job.running and all(x.complete for x in mf_job.download_parts):
|
||||
mf_job.status = DownloadJobStatus.COMPLETED
|
||||
self._execute_cb(mf_job, "on_complete")
|
||||
|
||||
# we're done with this sub-job
|
||||
self._job_terminated_event.set()
|
||||
|
||||
def _mfd_cancelled(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
assert mf_job is not None
|
||||
|
||||
if not mf_job.in_terminal_state:
|
||||
self._logger.warning(f"Download cancelled: {download_job.source}")
|
||||
mf_job.cancel()
|
||||
|
||||
for s in mf_job.download_parts:
|
||||
self.cancel_job(s)
|
||||
|
||||
def _mfd_error(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
with self._lock:
|
||||
mf_job = self._download_part2parent[download_job.source]
|
||||
assert mf_job is not None
|
||||
if not mf_job.in_terminal_state:
|
||||
mf_job.status = download_job.status
|
||||
mf_job.error = download_job.error
|
||||
mf_job.error_type = download_job.error_type
|
||||
self._execute_cb(mf_job, "on_error", excp)
|
||||
self._logger.error(
|
||||
f"Cancelling {mf_job.dest} due to an error while downloading {download_job.source}: {str(excp)}"
|
||||
)
|
||||
for s in [x for x in mf_job.download_parts if x.running]:
|
||||
self.cancel_job(s)
|
||||
self._download_part2parent.pop(download_job.source)
|
||||
self._job_terminated_event.set()
|
||||
|
||||
def _execute_cb(
|
||||
self,
|
||||
job: DownloadJob | MultiFileDownloadJob,
|
||||
callback_name: Literal[
|
||||
"on_start",
|
||||
"on_progress",
|
||||
"on_complete",
|
||||
"on_cancelled",
|
||||
"on_error",
|
||||
],
|
||||
excp: Optional[Exception] = None,
|
||||
) -> None:
|
||||
if callback := getattr(job, callback_name, None):
|
||||
args = [job, excp] if excp else [job]
|
||||
try:
|
||||
callback(*args)
|
||||
except Exception as e:
|
||||
self._logger.error(
|
||||
f"An error occurred while processing the {callback_name} callback: {traceback.format_exception(e)}"
|
||||
)
|
||||
|
||||
|
||||
def get_pc_name_max(directory: str) -> int:
|
||||
if hasattr(os, "pathconf"):
|
||||
|
@ -22,7 +22,6 @@ from invokeai.app.services.events.events_common import (
|
||||
ModelInstallCompleteEvent,
|
||||
ModelInstallDownloadProgressEvent,
|
||||
ModelInstallDownloadsCompleteEvent,
|
||||
ModelInstallDownloadStartedEvent,
|
||||
ModelInstallErrorEvent,
|
||||
ModelInstallStartedEvent,
|
||||
ModelLoadCompleteEvent,
|
||||
@ -35,6 +34,7 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineInterme
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.download.download_base import DownloadJob
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
@ -145,10 +145,6 @@ class EventServiceBase:
|
||||
|
||||
# region Model install
|
||||
|
||||
def emit_model_install_download_started(self, job: "ModelInstallJob") -> None:
|
||||
"""Emitted at intervals while the install job is started (remote models only)."""
|
||||
self.dispatch(ModelInstallDownloadStartedEvent.build(job))
|
||||
|
||||
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
|
||||
"""Emitted at intervals while the install job is in progress (remote models only)."""
|
||||
self.dispatch(ModelInstallDownloadProgressEvent.build(job))
|
||||
|
@ -3,8 +3,9 @@ from typing import TYPE_CHECKING, Any, ClassVar, Coroutine, Generic, Optional, P
|
||||
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.registry.payload_schema import registry as payload_schema
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field, SerializeAsAny, field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
@ -13,7 +14,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
SessionQueueItem,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.graph import AnyInvocation, AnyInvocationOutput
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, SubModelType
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
@ -98,9 +98,17 @@ class InvocationEventBase(QueueItemEventBase):
|
||||
item_id: int = Field(description="The ID of the queue item")
|
||||
batch_id: str = Field(description="The ID of the queue batch")
|
||||
session_id: str = Field(description="The ID of the session (aka graph execution state)")
|
||||
invocation: AnyInvocation = Field(description="The ID of the invocation")
|
||||
invocation: SerializeAsAny[BaseInvocation] = Field(description="The ID of the invocation")
|
||||
invocation_source_id: str = Field(description="The ID of the prepared invocation's source node")
|
||||
|
||||
@field_validator("invocation", mode="plain")
|
||||
@classmethod
|
||||
def validate_invocation(cls, v: Any):
|
||||
"""Validates the invocation using the dynamic type adapter."""
|
||||
|
||||
invocation = BaseInvocation.get_typeadapter().validate_python(v)
|
||||
return invocation
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class InvocationStartedEvent(InvocationEventBase):
|
||||
@ -109,7 +117,7 @@ class InvocationStartedEvent(InvocationEventBase):
|
||||
__event_name__ = "invocation_started"
|
||||
|
||||
@classmethod
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: AnyInvocation) -> "InvocationStartedEvent":
|
||||
def build(cls, queue_item: SessionQueueItem, invocation: BaseInvocation) -> "InvocationStartedEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
item_id=queue_item.item_id,
|
||||
@ -136,7 +144,7 @@ class InvocationDenoiseProgressEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: AnyInvocation,
|
||||
invocation: BaseInvocation,
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
progress_image: ProgressImage,
|
||||
) -> "InvocationDenoiseProgressEvent":
|
||||
@ -174,11 +182,19 @@ class InvocationCompleteEvent(InvocationEventBase):
|
||||
|
||||
__event_name__ = "invocation_complete"
|
||||
|
||||
result: AnyInvocationOutput = Field(description="The result of the invocation")
|
||||
result: SerializeAsAny[BaseInvocationOutput] = Field(description="The result of the invocation")
|
||||
|
||||
@field_validator("result", mode="plain")
|
||||
@classmethod
|
||||
def validate_results(cls, v: Any):
|
||||
"""Validates the invocation result using the dynamic type adapter."""
|
||||
|
||||
result = BaseInvocationOutput.get_typeadapter().validate_python(v)
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls, queue_item: SessionQueueItem, invocation: AnyInvocation, result: AnyInvocationOutput
|
||||
cls, queue_item: SessionQueueItem, invocation: BaseInvocation, result: BaseInvocationOutput
|
||||
) -> "InvocationCompleteEvent":
|
||||
return cls(
|
||||
queue_id=queue_item.queue_id,
|
||||
@ -207,7 +223,7 @@ class InvocationErrorEvent(InvocationEventBase):
|
||||
def build(
|
||||
cls,
|
||||
queue_item: SessionQueueItem,
|
||||
invocation: AnyInvocation,
|
||||
invocation: BaseInvocation,
|
||||
error_type: str,
|
||||
error_message: str,
|
||||
error_traceback: str,
|
||||
@ -417,42 +433,6 @@ class ModelLoadCompleteEvent(ModelEventBase):
|
||||
return cls(config=config, submodel_type=submodel_type)
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class ModelInstallDownloadStartedEvent(ModelEventBase):
|
||||
"""Event model for model_install_download_started"""
|
||||
|
||||
__event_name__ = "model_install_download_started"
|
||||
|
||||
id: int = Field(description="The ID of the install job")
|
||||
source: str = Field(description="Source of the model; local path, repo_id or url")
|
||||
local_path: str = Field(description="Where model is downloading to")
|
||||
bytes: int = Field(description="Number of bytes downloaded so far")
|
||||
total_bytes: int = Field(description="Total size of download, including all files")
|
||||
parts: list[dict[str, int | str]] = Field(
|
||||
description="Progress of downloading URLs that comprise the model, if any"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadStartedEvent":
|
||||
parts: list[dict[str, str | int]] = [
|
||||
{
|
||||
"url": str(x.source),
|
||||
"local_path": str(x.download_path),
|
||||
"bytes": x.bytes,
|
||||
"total_bytes": x.total_bytes,
|
||||
}
|
||||
for x in job.download_parts
|
||||
]
|
||||
return cls(
|
||||
id=job.id,
|
||||
source=str(job.source),
|
||||
local_path=job.local_path.as_posix(),
|
||||
parts=parts,
|
||||
bytes=job.bytes,
|
||||
total_bytes=job.total_bytes,
|
||||
)
|
||||
|
||||
|
||||
@payload_schema.register
|
||||
class ModelInstallDownloadProgressEvent(ModelEventBase):
|
||||
"""Event model for model_install_download_progress"""
|
||||
|
@ -1,44 +1,47 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import asyncio
|
||||
import threading
|
||||
from queue import Empty, Queue
|
||||
|
||||
from fastapi_events.dispatcher import dispatch
|
||||
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.events.events_common import EventBase
|
||||
from invokeai.app.services.events.events_common import (
|
||||
EventBase,
|
||||
)
|
||||
|
||||
from .events_base import EventServiceBase
|
||||
|
||||
|
||||
class FastAPIEventService(EventServiceBase):
|
||||
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
|
||||
def __init__(self, event_handler_id: int) -> None:
|
||||
self.event_handler_id = event_handler_id
|
||||
self._queue = asyncio.Queue[EventBase | None]()
|
||||
self._queue = Queue[EventBase | None]()
|
||||
self._stop_event = threading.Event()
|
||||
self._loop = loop
|
||||
|
||||
# We need to store a reference to the task so it doesn't get GC'd
|
||||
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
|
||||
self._background_tasks: set[asyncio.Task[None]] = set()
|
||||
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
|
||||
self._background_tasks.add(task)
|
||||
task.add_done_callback(self._background_tasks.remove)
|
||||
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
|
||||
|
||||
super().__init__()
|
||||
|
||||
def stop(self, *args, **kwargs):
|
||||
self._stop_event.set()
|
||||
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
|
||||
self._queue.put(None)
|
||||
|
||||
def dispatch(self, event: EventBase) -> None:
|
||||
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
|
||||
self._queue.put(event)
|
||||
|
||||
async def _dispatch_from_queue(self, stop_event: threading.Event):
|
||||
"""Get events on from the queue and dispatch them, from the correct thread"""
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
event = await self._queue.get()
|
||||
event = self._queue.get(block=False)
|
||||
if not event: # Probably stopping
|
||||
continue
|
||||
# Leave the payloads as live pydantic models
|
||||
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
|
||||
|
||||
except Empty:
|
||||
await asyncio.sleep(0.1)
|
||||
pass
|
||||
|
||||
except asyncio.CancelledError as e:
|
||||
raise e # Raise a proper error
|
||||
|
@ -1,30 +1,34 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from typing import Optional, Union
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from PIL import Image, PngImagePlugin
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
|
||||
|
||||
from .image_files_base import ImageFileStorageBase
|
||||
from .image_files_common import ImageFileDeleteException, ImageFileNotFoundException, ImageFileSaveException
|
||||
|
||||
|
||||
class DiskImageFileStorage(ImageFileStorageBase):
|
||||
"""Stores images on disk"""
|
||||
|
||||
__output_folder: Path
|
||||
__cache_ids: Queue # TODO: this is an incredibly naive cache
|
||||
__cache: Dict[Path, PILImageType]
|
||||
__max_cache_size: int
|
||||
__invoker: Invoker
|
||||
|
||||
def __init__(self, output_folder: Union[str, Path]):
|
||||
self.__cache: dict[Path, PILImageType] = {}
|
||||
self.__cache_ids = Queue[Path]()
|
||||
self.__cache = {}
|
||||
self.__cache_ids = Queue()
|
||||
self.__max_cache_size = 10 # TODO: get this from config
|
||||
|
||||
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
|
||||
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
|
||||
self.__thumbnails_folder = self.__output_folder / "thumbnails"
|
||||
# Validate required output folders at launch
|
||||
self.__validate_storage_folders()
|
||||
@ -96,7 +100,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
image_path = self.get_path(image_name)
|
||||
|
||||
if image_path.exists():
|
||||
image_path.unlink()
|
||||
send2trash(image_path)
|
||||
if image_path in self.__cache:
|
||||
del self.__cache[image_path]
|
||||
|
||||
@ -104,7 +108,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
|
||||
thumbnail_path = self.get_path(thumbnail_name, True)
|
||||
|
||||
if thumbnail_path.exists():
|
||||
thumbnail_path.unlink()
|
||||
send2trash(thumbnail_path)
|
||||
if thumbnail_path in self.__cache:
|
||||
del self.__cache[thumbnail_path]
|
||||
except Exception as e:
|
||||
|
@ -3,14 +3,9 @@ from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
from .image_records_common import ImageCategory, ImageRecord, ImageRecordChanges, ResourceOrigin
|
||||
|
||||
|
||||
class ImageRecordStorageBase(ABC):
|
||||
@ -42,13 +37,10 @@ class ImageRecordStorageBase(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
"""Gets a page of image records."""
|
||||
pass
|
||||
|
@ -4,8 +4,11 @@ from datetime import datetime
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .image_records_base import ImageRecordStorageBase
|
||||
from .image_records_common import (
|
||||
IMAGE_DTO_COLS,
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
@ -16,9 +19,6 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
ResourceOrigin,
|
||||
deserialize_image_record,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
|
||||
class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
@ -144,13 +144,10 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
@ -211,21 +208,9 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
# Search term condition
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND images.metadata LIKE ?
|
||||
"""
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
if starred_first:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
else:
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
query_pagination = """--sql
|
||||
ORDER BY images.starred DESC, images.created_at DESC LIMIT ? OFFSET ?
|
||||
"""
|
||||
|
||||
# Final images query with pagination
|
||||
images_query += query_conditions + query_pagination + ";"
|
||||
|
@ -12,7 +12,6 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
)
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
|
||||
|
||||
class ImageServiceABC(ABC):
|
||||
@ -117,13 +116,10 @@ class ImageServiceABC(ABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets a paginated list of image DTOs."""
|
||||
pass
|
||||
|
@ -3,12 +3,15 @@ from typing import Optional
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_files.image_files_common import (
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
|
||||
from ..image_files.image_files_common import (
|
||||
ImageFileDeleteException,
|
||||
ImageFileNotFoundException,
|
||||
ImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
from ..image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
@ -19,11 +22,8 @@ from invokeai.app.services.image_records.image_records_common import (
|
||||
InvalidOriginException,
|
||||
ResourceOrigin,
|
||||
)
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.images.images_common import ImageDTO, image_record_to_dto
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
||||
from .images_base import ImageServiceABC
|
||||
from .images_common import ImageDTO, image_record_to_dto
|
||||
|
||||
|
||||
class ImageService(ImageServiceABC):
|
||||
@ -73,12 +73,7 @@ class ImageService(ImageServiceABC):
|
||||
session_id=session_id,
|
||||
)
|
||||
if board_id is not None:
|
||||
try:
|
||||
self.__invoker.services.board_image_records.add_image_to_board(
|
||||
board_id=board_id, image_name=image_name
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.warn(f"Failed to add image to board {board_id}: {str(e)}")
|
||||
self.__invoker.services.board_image_records.add_image_to_board(board_id=board_id, image_name=image_name)
|
||||
self.__invoker.services.image_files.save(
|
||||
image_name=image_name, image=image, metadata=metadata, workflow=workflow, graph=graph
|
||||
)
|
||||
@ -207,25 +202,19 @@ class ImageService(ImageServiceABC):
|
||||
self,
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
try:
|
||||
results = self.__invoker.services.image_records.get_many(
|
||||
offset,
|
||||
limit,
|
||||
starred_first,
|
||||
order_dir,
|
||||
image_origin,
|
||||
categories,
|
||||
is_intermediate,
|
||||
board_id,
|
||||
search_term,
|
||||
)
|
||||
|
||||
image_dtos = [
|
||||
|
@ -4,36 +4,35 @@ from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
|
||||
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
|
||||
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from logging import Logger
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.app.services.board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from invokeai.app.services.board_images.board_images_base import BoardImagesServiceABC
|
||||
from invokeai.app.services.board_records.board_records_base import BoardRecordStorageBase
|
||||
from invokeai.app.services.boards.boards_base import BoardServiceABC
|
||||
from invokeai.app.services.bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.images.images_base import ImageServiceABC
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.names.names_base import NameServiceBase
|
||||
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
|
||||
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
|
||||
from invokeai.app.services.urls.urls_base import UrlServiceBase
|
||||
from invokeai.app.services.workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
|
||||
|
||||
from .board_image_records.board_image_records_base import BoardImageRecordStorageBase
|
||||
from .board_images.board_images_base import BoardImagesServiceABC
|
||||
from .board_records.board_records_base import BoardRecordStorageBase
|
||||
from .boards.boards_base import BoardServiceABC
|
||||
from .bulk_download.bulk_download_base import BulkDownloadBase
|
||||
from .config import InvokeAIAppConfig
|
||||
from .download import DownloadQueueServiceBase
|
||||
from .events.events_base import EventServiceBase
|
||||
from .image_files.image_files_base import ImageFileStorageBase
|
||||
from .image_records.image_records_base import ImageRecordStorageBase
|
||||
from .images.images_base import ImageServiceABC
|
||||
from .invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from .invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from .model_images.model_images_base import ModelImageFileStorageBase
|
||||
from .model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from .names.names_base import NameServiceBase
|
||||
from .session_processor.session_processor_base import SessionProcessorBase
|
||||
from .session_queue.session_queue_base import SessionQueueBase
|
||||
from .urls.urls_base import UrlServiceBase
|
||||
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
|
||||
|
||||
class InvocationServices:
|
||||
"""Services that can be used by invocations"""
|
||||
@ -63,8 +62,6 @@ class InvocationServices:
|
||||
workflow_records: "WorkflowRecordsStorageBase",
|
||||
tensors: "ObjectSerializerBase[torch.Tensor]",
|
||||
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
|
||||
style_preset_records: "StylePresetRecordsStorageBase",
|
||||
style_preset_image_files: "StylePresetImageFileStorageBase",
|
||||
):
|
||||
self.board_images = board_images
|
||||
self.board_image_records = board_image_records
|
||||
@ -89,5 +86,3 @@ class InvocationServices:
|
||||
self.workflow_records = workflow_records
|
||||
self.tensors = tensors
|
||||
self.conditioning = conditioning
|
||||
self.style_preset_records = style_preset_records
|
||||
self.style_preset_image_files = style_preset_image_files
|
||||
|
@ -9,8 +9,11 @@ import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_base import InvocationStatsServiceBase
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import (
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
from .invocation_stats_base import InvocationStatsServiceBase
|
||||
from .invocation_stats_common import (
|
||||
GESStatsNotFoundError,
|
||||
GraphExecutionStats,
|
||||
GraphExecutionStatsSummary,
|
||||
@ -19,8 +22,6 @@ from invokeai.app.services.invocation_stats.invocation_stats_common import (
|
||||
NodeExecutionStats,
|
||||
NodeExecutionStatsSummary,
|
||||
)
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
# Size of 1GB in bytes.
|
||||
GB = 2**30
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from .invocation_services import InvocationServices
|
||||
|
||||
|
||||
class Invoker:
|
||||
|
@ -2,16 +2,18 @@ from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as PILImageType
|
||||
from send2trash import send2trash
|
||||
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
|
||||
from invokeai.app.services.model_images.model_images_common import (
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
from .model_images_base import ModelImageFileStorageBase
|
||||
from .model_images_common import (
|
||||
ModelImageFileDeleteException,
|
||||
ModelImageFileNotFoundException,
|
||||
ModelImageFileSaveException,
|
||||
)
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.app.util.thumbnails import make_thumbnail
|
||||
|
||||
|
||||
class ModelImageFileStorageDisk(ModelImageFileStorageBase):
|
||||
@ -69,7 +71,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
|
||||
if not self._validate_path(path):
|
||||
raise ModelImageFileNotFoundException
|
||||
|
||||
path.unlink()
|
||||
send2trash(path)
|
||||
|
||||
except Exception as e:
|
||||
raise ModelImageFileDeleteException from e
|
||||
|
@ -1,7 +1,9 @@
|
||||
"""Initialization file for model install service package."""
|
||||
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
from .model_install_base import (
|
||||
ModelInstallServiceBase,
|
||||
)
|
||||
from .model_install_common import (
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
@ -10,7 +12,7 @@ from invokeai.app.services.model_install.model_install_common import (
|
||||
UnknownInstallJobException,
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
from .model_install_default import ModelInstallService
|
||||
|
||||
__all__ = [
|
||||
"ModelInstallServiceBase",
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
|
||||
@ -12,8 +12,8 @@ from invokeai.app.services.download import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
|
||||
from invokeai.app.services.model_records import ModelRecordChanges, ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager import AnyModelConfig
|
||||
from invokeai.app.services.model_records import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig
|
||||
|
||||
|
||||
class ModelInstallServiceBase(ABC):
|
||||
@ -64,7 +64,7 @@ class ModelInstallServiceBase(ABC):
|
||||
def register_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Probe and register the model at model_path.
|
||||
@ -72,7 +72,7 @@ class ModelInstallServiceBase(ABC):
|
||||
This keeps the model in its current location.
|
||||
|
||||
:param model_path: Filesystem Path to the model.
|
||||
:param config: ModelRecordChanges object that will override autoassigned model record values.
|
||||
:param config: Dict of attributes that will override autoassigned values.
|
||||
:returns id: The string ID of the registered model.
|
||||
"""
|
||||
|
||||
@ -92,7 +92,7 @@ class ModelInstallServiceBase(ABC):
|
||||
def install_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Probe, register and install the model in the models directory.
|
||||
@ -101,7 +101,7 @@ class ModelInstallServiceBase(ABC):
|
||||
the models directory handled by InvokeAI.
|
||||
|
||||
:param model_path: Filesystem Path to the model.
|
||||
:param config: ModelRecordChanges object that will override autoassigned model record values.
|
||||
:param config: Dict of attributes that will override autoassigned values.
|
||||
:returns id: The string ID of the registered model.
|
||||
"""
|
||||
|
||||
@ -109,14 +109,14 @@ class ModelInstallServiceBase(ABC):
|
||||
def heuristic_import(
|
||||
self,
|
||||
source: str,
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
inplace: Optional[bool] = False,
|
||||
) -> ModelInstallJob:
|
||||
r"""Install the indicated model using heuristics to interpret user intentions.
|
||||
|
||||
:param source: String source
|
||||
:param config: Optional ModelRecordChanges object. Any fields in this object
|
||||
:param config: Optional dict. Any fields in this dict
|
||||
will override corresponding autoassigned probe fields in the
|
||||
model's config record as described in `import_model()`.
|
||||
:param access_token: Optional access token for remote sources.
|
||||
@ -147,7 +147,7 @@ class ModelInstallServiceBase(ABC):
|
||||
def import_model(
|
||||
self,
|
||||
source: ModelSource,
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> ModelInstallJob:
|
||||
"""Install the indicated model.
|
||||
|
||||
@ -243,11 +243,12 @@ class ModelInstallServiceBase(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def download_and_cache_model(self, source: str | AnyHttpUrl) -> Path:
|
||||
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
|
||||
"""
|
||||
Download the model file located at source to the models cache and return its Path.
|
||||
|
||||
:param source: A string representing a URL or repo_id.
|
||||
:param source: A Url or a string that can be converted into one.
|
||||
:param access_token: Optional access token to access restricted resources.
|
||||
|
||||
The model file will be downloaded into the system-wide model cache
|
||||
(`models/.cache`) if it isn't already there. Note that the model cache
|
||||
|
@ -2,14 +2,13 @@ import re
|
||||
import traceback
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Literal, Optional, Set, Union
|
||||
from typing import Any, Dict, Literal, Optional, Set, Union
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr, field_validator
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
|
||||
from invokeai.app.services.model_records import ModelRecordChanges
|
||||
from invokeai.app.services.download import DownloadJob
|
||||
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
|
||||
from invokeai.backend.model_manager.config import ModelSourceType
|
||||
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
|
||||
@ -27,6 +26,13 @@ class InstallStatus(str, Enum):
|
||||
CANCELLED = "cancelled" # terminated with an error message
|
||||
|
||||
|
||||
class ModelInstallPart(BaseModel):
|
||||
url: AnyHttpUrl
|
||||
path: Path
|
||||
bytes: int = 0
|
||||
total_bytes: int = 0
|
||||
|
||||
|
||||
class UnknownInstallJobException(Exception):
|
||||
"""Raised when the status of an unknown job is requested."""
|
||||
|
||||
@ -134,9 +140,8 @@ class ModelInstallJob(BaseModel):
|
||||
id: int = Field(description="Unique ID for this job")
|
||||
status: InstallStatus = Field(default=InstallStatus.WAITING, description="Current status of install process")
|
||||
error_reason: Optional[str] = Field(default=None, description="Information about why the job failed")
|
||||
config_in: ModelRecordChanges = Field(
|
||||
default_factory=ModelRecordChanges,
|
||||
description="Configuration information (e.g. 'description') to apply to model.",
|
||||
config_in: Dict[str, Any] = Field(
|
||||
default_factory=dict, description="Configuration information (e.g. 'description') to apply to model."
|
||||
)
|
||||
config_out: Optional[AnyModelConfig] = Field(
|
||||
default=None, description="After successful installation, this will hold the configuration object."
|
||||
@ -164,7 +169,6 @@ class ModelInstallJob(BaseModel):
|
||||
)
|
||||
# internal flags and transitory settings
|
||||
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
|
||||
_multifile_job: Optional[MultiFileDownloadJob] = PrivateAttr(default=None)
|
||||
_exception: Optional[Exception] = PrivateAttr(default=None)
|
||||
|
||||
def set_error(self, e: Exception) -> None:
|
||||
|
@ -5,34 +5,23 @@ import os
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
from hashlib import sha256
|
||||
from pathlib import Path
|
||||
from queue import Empty, Queue
|
||||
from shutil import copyfile, copytree, move, rmtree
|
||||
from tempfile import mkdtemp
|
||||
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from huggingface_hub import HfFolder
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from pydantic_core import Url
|
||||
from requests import Session
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
|
||||
from invokeai.backend.model_manager.config import (
|
||||
@ -55,10 +44,23 @@ from invokeai.backend.model_manager.search import ModelSearch
|
||||
from invokeai.backend.util import InvokeAILogger
|
||||
from invokeai.backend.util.catch_sigint import catch_sigint
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.util import slugify
|
||||
|
||||
from .model_install_common import (
|
||||
MODEL_SOURCE_TO_TYPE_MAP,
|
||||
HFModelSource,
|
||||
InstallStatus,
|
||||
LocalModelSource,
|
||||
ModelInstallJob,
|
||||
ModelSource,
|
||||
StringLikeSource,
|
||||
URLModelSource,
|
||||
)
|
||||
|
||||
TMPDIR_PREFIX = "tmpinstall_"
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
|
||||
|
||||
class ModelInstallService(ModelInstallServiceBase):
|
||||
"""class for InvokeAI model installation."""
|
||||
@ -89,7 +91,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._downloads_changed_event = threading.Event()
|
||||
self._install_completed_event = threading.Event()
|
||||
self._download_queue = download_queue
|
||||
self._download_cache: Dict[int, ModelInstallJob] = {}
|
||||
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
|
||||
self._running = False
|
||||
self._session = session
|
||||
self._install_thread: Optional[threading.Thread] = None
|
||||
@ -163,27 +165,26 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def register_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
model_path = Path(model_path)
|
||||
config = config or ModelRecordChanges()
|
||||
if not config.source:
|
||||
config.source = model_path.resolve().as_posix()
|
||||
config.source_type = ModelSourceType.Path
|
||||
config = config or {}
|
||||
if not config.get("source"):
|
||||
config["source"] = model_path.resolve().as_posix()
|
||||
config["source_type"] = ModelSourceType.Path
|
||||
return self._register(model_path, config)
|
||||
|
||||
def install_path(
|
||||
self,
|
||||
model_path: Union[Path, str],
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
) -> str: # noqa D102
|
||||
model_path = Path(model_path)
|
||||
config = config or ModelRecordChanges()
|
||||
info: AnyModelConfig = ModelProbe.probe(
|
||||
Path(model_path), config.model_dump(), hash_algo=self._app_config.hashing_algorithm
|
||||
) # type: ignore
|
||||
config = config or {}
|
||||
|
||||
if preferred_name := config.name:
|
||||
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config, hash_algo=self._app_config.hashing_algorithm)
|
||||
|
||||
if preferred_name := config.get("name"):
|
||||
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
|
||||
|
||||
dest_path = (
|
||||
@ -205,19 +206,40 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def heuristic_import(
|
||||
self,
|
||||
source: str,
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
config: Optional[Dict[str, Any]] = None,
|
||||
access_token: Optional[str] = None,
|
||||
inplace: Optional[bool] = False,
|
||||
) -> ModelInstallJob:
|
||||
"""Install a model using pattern matching to infer the type of source."""
|
||||
source_obj = self._guess_source(source)
|
||||
if isinstance(source_obj, LocalModelSource):
|
||||
source_obj.inplace = inplace
|
||||
elif isinstance(source_obj, HFModelSource) or isinstance(source_obj, URLModelSource):
|
||||
source_obj.access_token = access_token
|
||||
variants = "|".join(ModelRepoVariant.__members__.values())
|
||||
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
|
||||
source_obj: Optional[StringLikeSource] = None
|
||||
|
||||
if Path(source).exists(): # A local file or directory
|
||||
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
|
||||
elif match := re.match(hf_repoid_re, source):
|
||||
source_obj = HFModelSource(
|
||||
repo_id=match.group(1),
|
||||
variant=match.group(2) if match.group(2) else None, # pass None rather than ''
|
||||
subfolder=Path(match.group(3)) if match.group(3) else None,
|
||||
access_token=access_token,
|
||||
)
|
||||
elif re.match(r"^https?://[^/]+", source):
|
||||
# Pull the token from config if it exists and matches the URL
|
||||
_token = access_token
|
||||
if _token is None:
|
||||
for pair in self.app_config.remote_api_tokens or []:
|
||||
if re.search(pair.url_regex, source):
|
||||
_token = pair.token
|
||||
break
|
||||
source_obj = URLModelSource(
|
||||
url=AnyHttpUrl(source),
|
||||
access_token=_token,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported model source: '{source}'")
|
||||
return self.import_model(source_obj, config)
|
||||
|
||||
def import_model(self, source: ModelSource, config: Optional[ModelRecordChanges] = None) -> ModelInstallJob: # noqa D102
|
||||
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
|
||||
similar_jobs = [x for x in self.list_jobs() if x.source == source and not x.in_terminal_state]
|
||||
if similar_jobs:
|
||||
self._logger.warning(f"There is already an active install job for {source}. Not enqueuing.")
|
||||
@ -275,9 +297,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def cancel_job(self, job: ModelInstallJob) -> None:
|
||||
"""Cancel the indicated job."""
|
||||
job.cancel()
|
||||
self._logger.warning(f"Cancelling {job.source}")
|
||||
if dj := job._multifile_job:
|
||||
self._download_queue.cancel_job(dj)
|
||||
with self._lock:
|
||||
self._cancel_download_parts(job)
|
||||
|
||||
def prune_jobs(self) -> None:
|
||||
"""Prune all completed and errored jobs."""
|
||||
@ -319,17 +340,16 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
model_path = self._app_config.models_path / model_path
|
||||
model_path = model_path.resolve()
|
||||
|
||||
config = ModelRecordChanges(
|
||||
name=model_name,
|
||||
description=stanza.get("description"),
|
||||
)
|
||||
config: dict[str, Any] = {}
|
||||
config["name"] = model_name
|
||||
config["description"] = stanza.get("description")
|
||||
legacy_config_path = stanza.get("config")
|
||||
if legacy_config_path:
|
||||
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
|
||||
legacy_config_path = self._app_config.root_path / legacy_config_path
|
||||
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
|
||||
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
|
||||
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
|
||||
config.config_path = str(legacy_config_path)
|
||||
config["config_path"] = str(legacy_config_path)
|
||||
try:
|
||||
id = self.register_path(model_path=model_path, config=config)
|
||||
self._logger.info(f"Migrated {model_name} with id {id}")
|
||||
@ -366,95 +386,38 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
rmtree(model_path)
|
||||
self.unregister(key)
|
||||
|
||||
@classmethod
|
||||
def _download_cache_path(cls, source: Union[str, AnyHttpUrl], app_config: InvokeAIAppConfig) -> Path:
|
||||
escaped_source = slugify(str(source))
|
||||
return app_config.download_cache_path / escaped_source
|
||||
|
||||
def download_and_cache_model(
|
||||
def download_and_cache(
|
||||
self,
|
||||
source: str | AnyHttpUrl,
|
||||
source: Union[str, AnyHttpUrl],
|
||||
access_token: Optional[str] = None,
|
||||
timeout: int = 0,
|
||||
) -> Path:
|
||||
"""Download the model file located at source to the models cache and return its Path."""
|
||||
model_path = self._download_cache_path(str(source), self._app_config)
|
||||
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
|
||||
model_path = self._app_config.convert_cache_path / model_hash
|
||||
|
||||
# We expect the cache directory to contain one and only one downloaded file or directory.
|
||||
# We expect the cache directory to contain one and only one downloaded file.
|
||||
# We don't know the file's name in advance, as it is set by the download
|
||||
# content-disposition header.
|
||||
if model_path.exists():
|
||||
contents: List[Path] = list(model_path.iterdir())
|
||||
contents = [x for x in model_path.iterdir() if x.is_file()]
|
||||
if len(contents) > 0:
|
||||
return contents[0]
|
||||
|
||||
model_path.mkdir(parents=True, exist_ok=True)
|
||||
model_source = self._guess_source(str(source))
|
||||
remote_files, _ = self._remote_files_from_source(model_source)
|
||||
job = self._multifile_download(
|
||||
job = self._download_queue.download(
|
||||
source=AnyHttpUrl(str(source)),
|
||||
dest=model_path,
|
||||
remote_files=remote_files,
|
||||
subfolder=model_source.subfolder if isinstance(model_source, HFModelSource) else None,
|
||||
access_token=access_token,
|
||||
on_progress=TqdmProgress().update,
|
||||
)
|
||||
files_string = "file" if len(remote_files) == 1 else "files"
|
||||
self._logger.info(f"Queuing model download: {source} ({len(remote_files)} {files_string})")
|
||||
self._download_queue.wait_for_job(job)
|
||||
self._download_queue.wait_for_job(job, timeout)
|
||||
if job.complete:
|
||||
assert job.download_path is not None
|
||||
return job.download_path
|
||||
else:
|
||||
raise Exception(job.error)
|
||||
|
||||
def _remote_files_from_source(
|
||||
self, source: ModelSource
|
||||
) -> Tuple[List[RemoteModelFile], Optional[AnyModelRepoMetadata]]:
|
||||
metadata = None
|
||||
if isinstance(source, HFModelSource):
|
||||
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
return (
|
||||
metadata.download_urls(
|
||||
variant=source.variant or self._guess_variant(),
|
||||
subfolder=source.subfolder,
|
||||
session=self._session,
|
||||
),
|
||||
metadata,
|
||||
)
|
||||
|
||||
if isinstance(source, URLModelSource):
|
||||
try:
|
||||
fetcher = self.get_fetcher_from_url(str(source.url))
|
||||
kwargs: dict[str, Any] = {"session": self._session}
|
||||
metadata = fetcher(**kwargs).from_url(source.url)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
return metadata.download_urls(session=self._session), metadata
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return [RemoteModelFile(url=source.url, path=Path("."), size=0)], None
|
||||
|
||||
raise Exception(f"No files associated with {source}")
|
||||
|
||||
def _guess_source(self, source: str) -> ModelSource:
|
||||
"""Turn a source string into a ModelSource object."""
|
||||
variants = "|".join(ModelRepoVariant.__members__.values())
|
||||
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
|
||||
source_obj: Optional[StringLikeSource] = None
|
||||
|
||||
if Path(source).exists(): # A local file or directory
|
||||
source_obj = LocalModelSource(path=Path(source))
|
||||
elif match := re.match(hf_repoid_re, source):
|
||||
source_obj = HFModelSource(
|
||||
repo_id=match.group(1),
|
||||
variant=ModelRepoVariant(match.group(2)) if match.group(2) else None, # pass None rather than ''
|
||||
subfolder=Path(match.group(3)) if match.group(3) else None,
|
||||
)
|
||||
elif re.match(r"^https?://[^/]+", source):
|
||||
source_obj = URLModelSource(
|
||||
url=Url(source),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported model source: '{source}'")
|
||||
return source_obj
|
||||
|
||||
# --------------------------------------------------------------------------------------------
|
||||
# Internal functions that manage the installer threads
|
||||
# --------------------------------------------------------------------------------------------
|
||||
@ -502,11 +465,11 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
job.total_bytes = self._stat_size(job.local_path)
|
||||
job.bytes = job.total_bytes
|
||||
self._signal_job_running(job)
|
||||
job.config_in.source = str(job.source)
|
||||
job.config_in.source_type = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
|
||||
job.config_in["source"] = str(job.source)
|
||||
job.config_in["source_type"] = MODEL_SOURCE_TO_TYPE_MAP[job.source.__class__]
|
||||
# enter the metadata, if there is any
|
||||
if isinstance(job.source_metadata, (HuggingFaceMetadata)):
|
||||
job.config_in.source_api_response = job.source_metadata.api_response
|
||||
job.config_in["source_api_response"] = job.source_metadata.api_response
|
||||
|
||||
if job.inplace:
|
||||
key = self.register_path(job.local_path, job.config_in)
|
||||
@ -515,19 +478,16 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
job.config_out = self.record_store.get_model(key)
|
||||
self._signal_job_completed(job)
|
||||
|
||||
def _set_error(self, install_job: ModelInstallJob, excp: Exception) -> None:
|
||||
multifile_download_job = install_job._multifile_job
|
||||
if multifile_download_job and any(
|
||||
x.content_type is not None and "text/html" in x.content_type for x in multifile_download_job.download_parts
|
||||
):
|
||||
install_job.set_error(
|
||||
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
|
||||
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
|
||||
job.set_error(
|
||||
InvalidModelConfigException(
|
||||
f"At least one file in {install_job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
|
||||
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
|
||||
)
|
||||
)
|
||||
else:
|
||||
install_job.set_error(excp)
|
||||
self._signal_job_errored(install_job)
|
||||
job.set_error(excp)
|
||||
self._signal_job_errored(job)
|
||||
|
||||
# --------------------------------------------------------------------------------------------
|
||||
# Internal functions that manage the models directory
|
||||
@ -553,6 +513,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
This is typically only used during testing with a new DB or when using the memory DB, because those are the
|
||||
only situations in which we may have orphaned models in the models directory.
|
||||
"""
|
||||
|
||||
installed_model_paths = {
|
||||
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
|
||||
}
|
||||
@ -564,13 +525,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
if resolved_path in installed_model_paths:
|
||||
return True
|
||||
# Skip core models entirely - these aren't registered with the model manager.
|
||||
for special_directory in [
|
||||
self.app_config.models_path / "core",
|
||||
self.app_config.convert_cache_dir,
|
||||
self.app_config.download_cache_dir,
|
||||
]:
|
||||
if resolved_path.is_relative_to(special_directory):
|
||||
return False
|
||||
if str(resolved_path).startswith(str(self.app_config.models_path / "core")):
|
||||
return False
|
||||
try:
|
||||
model_id = self.register_path(model_path)
|
||||
self._logger.info(f"Registered {model_path.name} with id {model_id}")
|
||||
@ -641,11 +597,11 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
return new_path
|
||||
|
||||
def _register(
|
||||
self, model_path: Path, config: Optional[ModelRecordChanges] = None, info: Optional[AnyModelConfig] = None
|
||||
self, model_path: Path, config: Optional[Dict[str, Any]] = None, info: Optional[AnyModelConfig] = None
|
||||
) -> str:
|
||||
config = config or ModelRecordChanges()
|
||||
config = config or {}
|
||||
|
||||
info = info or ModelProbe.probe(model_path, config.model_dump(), hash_algo=self._app_config.hashing_algorithm) # type: ignore
|
||||
info = info or ModelProbe.probe(model_path, config, hash_algo=self._app_config.hashing_algorithm)
|
||||
|
||||
model_path = model_path.resolve()
|
||||
|
||||
@ -676,26 +632,29 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
precision = TorchDevice.choose_torch_dtype()
|
||||
return ModelRepoVariant.FP16 if precision == torch.float16 else None
|
||||
|
||||
def _import_local_model(
|
||||
self, source: LocalModelSource, config: Optional[ModelRecordChanges] = None
|
||||
) -> ModelInstallJob:
|
||||
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
return ModelInstallJob(
|
||||
id=self._next_id(),
|
||||
source=source,
|
||||
config_in=config or ModelRecordChanges(),
|
||||
config_in=config or {},
|
||||
local_path=Path(source.path),
|
||||
inplace=source.inplace or False,
|
||||
)
|
||||
|
||||
def _import_from_hf(
|
||||
self,
|
||||
source: HFModelSource,
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
) -> ModelInstallJob:
|
||||
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
# Add user's cached access token to HuggingFace requests
|
||||
if source.access_token is None:
|
||||
source.access_token = HfFolder.get_token()
|
||||
remote_files, metadata = self._remote_files_from_source(source)
|
||||
source.access_token = source.access_token or HfFolder.get_token()
|
||||
if not source.access_token:
|
||||
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
|
||||
|
||||
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
|
||||
assert isinstance(metadata, ModelMetadataWithFiles)
|
||||
remote_files = metadata.download_urls(
|
||||
variant=source.variant or self._guess_variant(),
|
||||
subfolder=source.subfolder,
|
||||
session=self._session,
|
||||
)
|
||||
|
||||
return self._import_remote_model(
|
||||
source=source,
|
||||
config=config,
|
||||
@ -703,12 +662,22 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
def _import_from_url(
|
||||
self,
|
||||
source: URLModelSource,
|
||||
config: Optional[ModelRecordChanges] = None,
|
||||
) -> ModelInstallJob:
|
||||
remote_files, metadata = self._remote_files_from_source(source)
|
||||
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
# URLs from HuggingFace will be handled specially
|
||||
metadata = None
|
||||
fetcher = None
|
||||
try:
|
||||
fetcher = self.get_fetcher_from_url(str(source.url))
|
||||
except ValueError:
|
||||
pass
|
||||
kwargs: dict[str, Any] = {"session": self._session}
|
||||
if fetcher is not None:
|
||||
metadata = fetcher(**kwargs).from_url(source.url)
|
||||
self._logger.debug(f"metadata={metadata}")
|
||||
if metadata and isinstance(metadata, ModelMetadataWithFiles):
|
||||
remote_files = metadata.download_urls(session=self._session)
|
||||
else:
|
||||
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
|
||||
return self._import_remote_model(
|
||||
source=source,
|
||||
config=config,
|
||||
@ -721,11 +690,14 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
source: HFModelSource | URLModelSource,
|
||||
remote_files: List[RemoteModelFile],
|
||||
metadata: Optional[AnyModelRepoMetadata],
|
||||
config: Optional[ModelRecordChanges],
|
||||
config: Optional[Dict[str, Any]],
|
||||
) -> ModelInstallJob:
|
||||
# TODO: Replace with tempfile.tmpdir() when multithreading is cleaned up.
|
||||
# Currently the tmpdir isn't automatically removed at exit because it is
|
||||
# being held in a daemon thread.
|
||||
if len(remote_files) == 0:
|
||||
raise ValueError(f"{source}: No downloadable files found")
|
||||
destdir = Path(
|
||||
tmpdir = Path(
|
||||
mkdtemp(
|
||||
dir=self._app_config.models_path,
|
||||
prefix=TMPDIR_PREFIX,
|
||||
@ -734,30 +706,57 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
install_job = ModelInstallJob(
|
||||
id=self._next_id(),
|
||||
source=source,
|
||||
config_in=config or ModelRecordChanges(),
|
||||
config_in=config or {},
|
||||
source_metadata=metadata,
|
||||
local_path=destdir, # local path may change once the download has started due to content-disposition handling
|
||||
local_path=tmpdir, # local path may change once the download has started due to content-disposition handling
|
||||
bytes=0,
|
||||
total_bytes=0,
|
||||
)
|
||||
# remember the temporary directory for later removal
|
||||
install_job._install_tmpdir = destdir
|
||||
install_job.total_bytes = sum((x.size or 0) for x in remote_files)
|
||||
# In the event that there is a subfolder specified in the source,
|
||||
# we need to remove it from the destination path in order to avoid
|
||||
# creating unwanted subfolders
|
||||
if isinstance(source, HFModelSource) and source.subfolder:
|
||||
root = Path(remote_files[0].path.parts[0])
|
||||
subfolder = root / source.subfolder
|
||||
else:
|
||||
root = Path(".")
|
||||
subfolder = Path(".")
|
||||
|
||||
multifile_job = self._multifile_download(
|
||||
remote_files=remote_files,
|
||||
dest=destdir,
|
||||
subfolder=source.subfolder if isinstance(source, HFModelSource) else None,
|
||||
access_token=source.access_token,
|
||||
submit_job=False, # Important! Don't submit the job until we have set our _download_cache dict
|
||||
)
|
||||
self._download_cache[multifile_job.id] = install_job
|
||||
install_job._multifile_job = multifile_job
|
||||
# we remember the path up to the top of the tmpdir so that it may be
|
||||
# removed safely at the end of the install process.
|
||||
install_job._install_tmpdir = tmpdir
|
||||
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
|
||||
|
||||
files_string = "file" if len(remote_files) == 1 else "files"
|
||||
self._logger.info(f"Queueing model install: {source} ({len(remote_files)} {files_string})")
|
||||
files_string = "file" if len(remote_files) == 1 else "file"
|
||||
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
|
||||
self._logger.debug(f"remote_files={remote_files}")
|
||||
self._download_queue.submit_multifile_download(multifile_job)
|
||||
for model_file in remote_files:
|
||||
url = model_file.url
|
||||
path = root / model_file.path.relative_to(subfolder)
|
||||
self._logger.debug(f"Downloading {url} => {path}")
|
||||
install_job.total_bytes += model_file.size
|
||||
assert hasattr(source, "access_token")
|
||||
dest = tmpdir / path.parent
|
||||
dest.mkdir(parents=True, exist_ok=True)
|
||||
download_job = DownloadJob(
|
||||
source=url,
|
||||
dest=dest,
|
||||
access_token=source.access_token,
|
||||
)
|
||||
self._download_cache[download_job.source] = install_job # matches a download job to an install job
|
||||
install_job.download_parts.add(download_job)
|
||||
|
||||
# only start the jobs once install_job.download_parts is fully populated
|
||||
for download_job in install_job.download_parts:
|
||||
self._download_queue.submit_download_job(
|
||||
download_job,
|
||||
on_start=self._download_started_callback,
|
||||
on_progress=self._download_progress_callback,
|
||||
on_complete=self._download_complete_callback,
|
||||
on_error=self._download_error_callback,
|
||||
on_cancelled=self._download_cancelled_callback,
|
||||
)
|
||||
|
||||
return install_job
|
||||
|
||||
def _stat_size(self, path: Path) -> int:
|
||||
@ -769,104 +768,87 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
size += sum(self._stat_size(Path(root, x)) for x in files)
|
||||
return size
|
||||
|
||||
def _multifile_download(
|
||||
self,
|
||||
remote_files: List[RemoteModelFile],
|
||||
dest: Path,
|
||||
subfolder: Optional[Path] = None,
|
||||
access_token: Optional[str] = None,
|
||||
submit_job: bool = True,
|
||||
) -> MultiFileDownloadJob:
|
||||
# HuggingFace repo subfolders are a little tricky. If the name of the model is "sdxl-turbo", and
|
||||
# we are installing the "vae" subfolder, we do not want to create an additional folder level, such
|
||||
# as "sdxl-turbo/vae", nor do we want to put the contents of the vae folder directly into "sdxl-turbo".
|
||||
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
|
||||
if subfolder:
|
||||
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
|
||||
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
|
||||
path_to_add = Path(f"{top}_{subfolder}")
|
||||
else:
|
||||
path_to_remove = Path(".")
|
||||
path_to_add = Path(".")
|
||||
|
||||
parts: List[RemoteModelFile] = []
|
||||
for model_file in remote_files:
|
||||
assert model_file.size is not None
|
||||
parts.append(
|
||||
RemoteModelFile(
|
||||
url=model_file.url, # if a subfolder, then sdxl-turbo_vae/config.json
|
||||
path=path_to_add / model_file.path.relative_to(path_to_remove),
|
||||
)
|
||||
)
|
||||
|
||||
return self._download_queue.multifile_download(
|
||||
parts=parts,
|
||||
dest=dest,
|
||||
access_token=access_token,
|
||||
submit_job=submit_job,
|
||||
on_start=self._download_started_callback,
|
||||
on_progress=self._download_progress_callback,
|
||||
on_complete=self._download_complete_callback,
|
||||
on_error=self._download_error_callback,
|
||||
on_cancelled=self._download_cancelled_callback,
|
||||
)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Callbacks are executed by the download queue in a separate thread
|
||||
# ------------------------------------------------------------------
|
||||
def _download_started_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
def _download_started_callback(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Model download started: {download_job.source}")
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.get(download_job.id, None):
|
||||
install_job.status = InstallStatus.DOWNLOADING
|
||||
install_job = self._download_cache[download_job.source]
|
||||
install_job.status = InstallStatus.DOWNLOADING
|
||||
|
||||
if install_job.local_path == install_job._install_tmpdir: # first time
|
||||
assert download_job.download_path
|
||||
install_job.local_path = download_job.download_path
|
||||
install_job.download_parts = download_job.download_parts
|
||||
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
|
||||
install_job.total_bytes = download_job.total_bytes
|
||||
self._signal_job_download_started(install_job)
|
||||
assert download_job.download_path
|
||||
if install_job.local_path == install_job._install_tmpdir:
|
||||
partial_path = download_job.download_path.relative_to(install_job._install_tmpdir)
|
||||
dest_name = partial_path.parts[0]
|
||||
install_job.local_path = install_job._install_tmpdir / dest_name
|
||||
|
||||
def _download_progress_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
# Update the total bytes count for remote sources.
|
||||
if not install_job.total_bytes:
|
||||
install_job.total_bytes = sum(x.total_bytes for x in install_job.download_parts)
|
||||
|
||||
def _download_progress_callback(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.get(download_job.id, None):
|
||||
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
|
||||
self._download_queue.cancel_job(download_job)
|
||||
else:
|
||||
# update sizes
|
||||
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
|
||||
install_job.total_bytes = sum(x.total_bytes for x in download_job.download_parts)
|
||||
self._signal_job_downloading(install_job)
|
||||
install_job = self._download_cache[download_job.source]
|
||||
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
|
||||
self._cancel_download_parts(install_job)
|
||||
else:
|
||||
# update sizes
|
||||
install_job.bytes = sum(x.bytes for x in install_job.download_parts)
|
||||
self._signal_job_downloading(install_job)
|
||||
|
||||
def _download_complete_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
def _download_complete_callback(self, download_job: DownloadJob) -> None:
|
||||
self._logger.info(f"Model download complete: {download_job.source}")
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
install_job = self._download_cache[download_job.source]
|
||||
|
||||
# are there any more active jobs left in this task?
|
||||
if install_job.downloading and all(x.complete for x in install_job.download_parts):
|
||||
self._signal_job_downloads_done(install_job)
|
||||
self._put_in_queue(install_job) # this starts the installation and registration
|
||||
self._put_in_queue(install_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._download_cache.pop(download_job.source, None)
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _download_error_callback(self, download_job: MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
def _download_error_callback(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
assert excp is not None
|
||||
self._set_error(install_job, excp)
|
||||
self._download_queue.cancel_job(download_job)
|
||||
install_job = self._download_cache.pop(download_job.source, None)
|
||||
assert install_job is not None
|
||||
assert excp is not None
|
||||
install_job.set_error(excp)
|
||||
self._logger.error(
|
||||
f"Cancelling {install_job.source} due to an error while downloading {download_job.source}: {str(excp)}"
|
||||
)
|
||||
self._cancel_download_parts(install_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _download_cancelled_callback(self, download_job: MultiFileDownloadJob) -> None:
|
||||
def _download_cancelled_callback(self, download_job: DownloadJob) -> None:
|
||||
with self._lock:
|
||||
if install_job := self._download_cache.pop(download_job.id, None):
|
||||
self._downloads_changed_event.set()
|
||||
# if install job has already registered an error, then do not replace its status with cancelled
|
||||
if not install_job.errored:
|
||||
install_job.cancel()
|
||||
install_job = self._download_cache.pop(download_job.source, None)
|
||||
if not install_job:
|
||||
return
|
||||
self._downloads_changed_event.set()
|
||||
self._logger.warning(f"Model download canceled: {download_job.source}")
|
||||
# if install job has already registered an error, then do not replace its status with cancelled
|
||||
if not install_job.errored:
|
||||
install_job.cancel()
|
||||
self._cancel_download_parts(install_job)
|
||||
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
# Let other threads know that the number of downloads has changed
|
||||
self._downloads_changed_event.set()
|
||||
|
||||
def _cancel_download_parts(self, install_job: ModelInstallJob) -> None:
|
||||
# on multipart downloads, _cancel_components() will get called repeatedly from the download callbacks
|
||||
# do not lock here because it gets called within a locked context
|
||||
for s in install_job.download_parts:
|
||||
self._download_queue.cancel_job(s)
|
||||
|
||||
if all(x.in_terminal_state for x in install_job.download_parts):
|
||||
# When all parts have reached their terminal state, we finalize the job to clean up the temporary directory and other resources
|
||||
self._put_in_queue(install_job)
|
||||
|
||||
# ------------------------------------------------------------------------------------------------
|
||||
# Internal methods that put events on the event bus
|
||||
@ -877,18 +859,8 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_model_install_started(job)
|
||||
|
||||
def _signal_job_download_started(self, job: ModelInstallJob) -> None:
|
||||
if self._event_bus:
|
||||
assert job._multifile_job is not None
|
||||
assert job.bytes is not None
|
||||
assert job.total_bytes is not None
|
||||
self._event_bus.emit_model_install_download_started(job)
|
||||
|
||||
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
|
||||
if self._event_bus:
|
||||
assert job._multifile_job is not None
|
||||
assert job.bytes is not None
|
||||
assert job.total_bytes is not None
|
||||
self._event_bus.emit_model_install_download_progress(job)
|
||||
|
||||
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
|
||||
@ -903,8 +875,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._logger.info(f"Model install complete: {job.source}")
|
||||
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
|
||||
if self._event_bus:
|
||||
assert job.local_path is not None
|
||||
assert job.config_out is not None
|
||||
self._event_bus.emit_model_install_complete(job)
|
||||
|
||||
def _signal_job_errored(self, job: ModelInstallJob) -> None:
|
||||
@ -920,13 +890,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._event_bus.emit_model_install_cancelled(job)
|
||||
|
||||
@staticmethod
|
||||
def get_fetcher_from_url(url: str) -> Type[ModelMetadataFetchBase]:
|
||||
"""
|
||||
Return a metadata fetcher appropriate for provided url.
|
||||
|
||||
This used to be more useful, but the number of supported model
|
||||
sources has been reduced to HuggingFace alone.
|
||||
"""
|
||||
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
|
||||
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
|
||||
return HuggingFaceMetadataFetch
|
||||
raise ValueError(f"Unsupported model source: '{url}'")
|
||||
|
@ -1,6 +1,6 @@
|
||||
"""Initialization file for model load service module."""
|
||||
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
from .model_load_default import ModelLoadService
|
||||
|
||||
__all__ = ["ModelLoadServiceBase", "ModelLoadService"]
|
||||
|
@ -2,11 +2,11 @@
|
||||
"""Base class for model loader."""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
|
||||
|
||||
@ -27,25 +27,7 @@ class ModelLoadServiceBase(ABC):
|
||||
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
||||
"""Return the RAM cache used by this loader."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
) -> LoadedModelWithoutConfig:
|
||||
"""
|
||||
Load the model file or directory located at the indicated Path.
|
||||
|
||||
This will load an arbitrary model file into the RAM cache. If the optional loader
|
||||
argument is provided, the loader will be invoked to load the model into
|
||||
memory. Otherwise the method will call safetensors.torch.load_file() or
|
||||
torch.load() as appropriate to the file suffix.
|
||||
|
||||
Be aware that this returns a LoadedModelWithoutConfig object, which is the same as
|
||||
LoadedModel, but without the config attribute.
|
||||
|
||||
Args:
|
||||
model_path: A pathlib.Path to a checkpoint-style models file
|
||||
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
|
||||
|
||||
Returns:
|
||||
A LoadedModel object.
|
||||
"""
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
|
@ -1,28 +1,22 @@
|
||||
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
|
||||
"""Implementation of model loader service."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, Type
|
||||
|
||||
from picklescan.scanner import scan_file_path
|
||||
from safetensors.torch import load_file as safetensors_load_file
|
||||
from torch import load as torch_load
|
||||
from typing import Optional, Type
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
||||
from invokeai.backend.model_manager.load import (
|
||||
LoadedModel,
|
||||
LoadedModelWithoutConfig,
|
||||
ModelLoaderRegistry,
|
||||
ModelLoaderRegistryBase,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_load_base import ModelLoadServiceBase
|
||||
|
||||
|
||||
class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Wrapper around ModelLoaderRegistry."""
|
||||
@ -31,6 +25,7 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self,
|
||||
app_config: InvokeAIAppConfig,
|
||||
ram_cache: ModelCacheBase[AnyModel],
|
||||
convert_cache: ModelConvertCacheBase,
|
||||
registry: Optional[Type[ModelLoaderRegistryBase]] = ModelLoaderRegistry,
|
||||
):
|
||||
"""Initialize the model load service."""
|
||||
@ -39,6 +34,7 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
self._logger = logger
|
||||
self._app_config = app_config
|
||||
self._ram_cache = ram_cache
|
||||
self._convert_cache = convert_cache
|
||||
self._registry = registry
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
@ -49,6 +45,11 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
"""Return the RAM cache used by this loader."""
|
||||
return self._ram_cache
|
||||
|
||||
@property
|
||||
def convert_cache(self) -> ModelConvertCacheBase:
|
||||
"""Return the checkpoint convert cache used by this loader."""
|
||||
return self._convert_cache
|
||||
|
||||
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
||||
"""
|
||||
Given a model's configuration, load it and return the LoadedModel object.
|
||||
@ -67,47 +68,10 @@ class ModelLoadService(ModelLoadServiceBase):
|
||||
app_config=self._app_config,
|
||||
logger=self._logger,
|
||||
ram_cache=self._ram_cache,
|
||||
convert_cache=self._convert_cache,
|
||||
).load_model(model_config, submodel_type)
|
||||
|
||||
if hasattr(self, "_invoker"):
|
||||
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
|
||||
|
||||
return loaded_model
|
||||
|
||||
def load_model_from_path(
|
||||
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
|
||||
) -> LoadedModelWithoutConfig:
|
||||
cache_key = str(model_path)
|
||||
ram_cache = self.ram_cache
|
||||
try:
|
||||
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
def torch_load_file(checkpoint: Path) -> AnyModel:
|
||||
scan_result = scan_file_path(checkpoint)
|
||||
if scan_result.infected_files != 0:
|
||||
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
|
||||
result = torch_load(checkpoint, map_location="cpu")
|
||||
return result
|
||||
|
||||
def diffusers_load_directory(directory: Path) -> AnyModel:
|
||||
load_class = GenericDiffusersLoader(
|
||||
app_config=self._app_config,
|
||||
logger=self._logger,
|
||||
ram_cache=self._ram_cache,
|
||||
convert_cache=self.convert_cache,
|
||||
).get_hf_load_class(directory)
|
||||
return load_class.from_pretrained(model_path, torch_dtype=TorchDevice.choose_torch_dtype())
|
||||
|
||||
loader = loader or (
|
||||
diffusers_load_directory
|
||||
if model_path.is_dir()
|
||||
else torch_load_file
|
||||
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
|
||||
else lambda path: safetensors_load_file(path, device="cpu")
|
||||
)
|
||||
assert loader is not None
|
||||
raw_model = loader(model_path)
|
||||
ram_cache.put(key=cache_key, model=raw_model)
|
||||
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
|
||||
|
@ -1,9 +1,10 @@
|
||||
"""Initialization file for model manager service."""
|
||||
|
||||
from invokeai.app.services.model_manager.model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.load import LoadedModel
|
||||
|
||||
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||
|
||||
__all__ = [
|
||||
"ModelManagerServiceBase",
|
||||
"ModelManagerService",
|
||||
|
@ -5,13 +5,14 @@ from abc import ABC, abstractmethod
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
|
||||
|
||||
class ModelManagerServiceBase(ABC):
|
||||
|
@ -6,20 +6,19 @@ from typing import Optional
|
||||
import torch
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.download.download_base import DownloadQueueServiceBase
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_install.model_install_default import ModelInstallService
|
||||
from invokeai.app.services.model_load.model_load_base import ModelLoadServiceBase
|
||||
from invokeai.app.services.model_load.model_load_default import ModelLoadService
|
||||
from invokeai.app.services.model_manager.model_manager_base import ModelManagerServiceBase
|
||||
from invokeai.app.services.model_records.model_records_base import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from ..config import InvokeAIAppConfig
|
||||
from ..download import DownloadQueueServiceBase
|
||||
from ..events.events_base import EventServiceBase
|
||||
from ..model_install import ModelInstallService, ModelInstallServiceBase
|
||||
from ..model_load import ModelLoadService, ModelLoadServiceBase
|
||||
from ..model_records import ModelRecordServiceBase
|
||||
from .model_manager_base import ModelManagerServiceBase
|
||||
|
||||
|
||||
class ModelManagerService(ModelManagerServiceBase):
|
||||
"""
|
||||
@ -87,9 +86,11 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
logger=logger,
|
||||
execution_device=execution_device or TorchDevice.choose_torch_device(),
|
||||
)
|
||||
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
|
||||
loader = ModelLoadService(
|
||||
app_config=app_config,
|
||||
ram_cache=ram_cache,
|
||||
convert_cache=convert_cache,
|
||||
registry=ModelLoaderRegistry,
|
||||
)
|
||||
installer = ModelInstallService(
|
||||
|
@ -12,14 +12,15 @@ from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
|
||||
from invokeai.backend.model_manager.config import (
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import (
|
||||
ControlAdapterDefaultSettings,
|
||||
MainModelDefaultSettings,
|
||||
ModelFormat,
|
||||
ModelSourceType,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
SchedulerPredictionType,
|
||||
)
|
||||
@ -67,16 +68,10 @@ class ModelRecordChanges(BaseModelExcludeNull):
|
||||
"""A set of changes to apply to a model."""
|
||||
|
||||
# Changes applicable to all models
|
||||
source: Optional[str] = Field(description="original source of the model", default=None)
|
||||
source_type: Optional[ModelSourceType] = Field(description="type of model source", default=None)
|
||||
source_api_response: Optional[str] = Field(description="metadata from remote source", default=None)
|
||||
name: Optional[str] = Field(description="Name of the model.", default=None)
|
||||
path: Optional[str] = Field(description="Path to the model.", default=None)
|
||||
description: Optional[str] = Field(description="Model description", default=None)
|
||||
base: Optional[BaseModelType] = Field(description="The base model.", default=None)
|
||||
type: Optional[ModelType] = Field(description="Type of model", default=None)
|
||||
key: Optional[str] = Field(description="Database ID for this model", default=None)
|
||||
hash: Optional[str] = Field(description="hash of model file", default=None)
|
||||
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
|
||||
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
|
||||
description="Default settings for this model", default=None
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user