Compare commits

..

3 Commits

Author SHA1 Message Date
00becf83d3 Blackified 2023-10-22 00:09:58 -04:00
412fbe592e Added gradient node to image.py 2023-10-22 00:08:07 -04:00
1e59645882 Add negative IP Adapter support 2023-10-20 23:01:13 -04:00
2049 changed files with 321709 additions and 155699 deletions

1
.gitattributes vendored
View File

@ -2,4 +2,3 @@
# Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto
docker/** text eol=lf

8
.github/CODEOWNERS vendored
View File

@ -1,5 +1,5 @@
# continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
# documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
@ -10,7 +10,7 @@
# installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
/docker/ @lstein @blessedcoolant @hipsterusername
/scripts/ @ebr @lstein @hipsterusername
/installer/ @lstein @ebr @hipsterusername
/invokeai/assets @lstein @ebr @hipsterusername
@ -26,7 +26,9 @@
# front ends
/invokeai/frontend/CLI @lstein @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/install @lstein @ebr @hipsterusername
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername

View File

@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body:
- type: markdown
attributes:
@ -14,9 +18,10 @@ body:
- type: checkboxes
attributes:
label: Is there an existing issue for this problem?
label: Is there an existing issue for this?
description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options:
- label: I have searched the existing issues
required: true
@ -28,119 +33,80 @@ body:
- type: dropdown
id: os_dropdown
attributes:
label: Operating system
description: Your computer's operating system.
label: OS
description: Which operating System did you use when the bug occured
multiple: false
options:
- 'Linux'
- 'Windows'
- 'macOS'
- 'other'
validations:
required: true
- type: dropdown
id: gpu_dropdown
attributes:
label: GPU vendor
description: Your GPU's vendor.
label: GPU
description: Which kind of Graphic-Adapter is your System using
multiple: false
options:
- 'Nvidia (CUDA)'
- 'AMD (ROCm)'
- 'Apple Silicon (MPS)'
- 'None (CPU)'
- 'cuda'
- 'amd'
- 'mps'
- 'cpu'
validations:
required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input
id: vram
attributes:
label: GPU VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
label: VRAM
description: Size of the VRAM if known
placeholder: 8GB
validations:
required: false
- type: input
id: version-number
attributes:
label: Version number
label: What version did you experience this issue on?
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: X.X.X
validations:
required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
placeholder: ex. Firefox 123.0b3
validations:
required: true
- type: textarea
id: python-deps
attributes:
label: Python dependencies
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened
label: What happened?
description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
placeholder: I clicked button X and then Y happened.
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations:
required: true
- type: textarea
id: what-you-expected
attributes:
label: What you expected to happen
description: Describe what you expected to happen.
placeholder: I expected Z to happen.
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
label: Screenshots
description: If applicable, add screenshots to help explain your problem
placeholder: this is what the result looked like <screenshot>
validations:
required: false
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Any other context that might help us to understand the problem.
description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations:
required: false
- type: input
id: discord-username
id: contact
attributes:
label: Discord username
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
placeholder: supercoolusername123
label: Contact Details
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: ex. email@example.com, discordname, twitter, ...
validations:
required: false

View File

@ -1,33 +0,0 @@
name: install frontend dependencies
description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
uses: actions/setup-node@v4
with:
node-version: '18'
- name: setup pnpm
uses: pnpm/action-setup@v2
with:
version: 8
run_install: false
- name: get pnpm store directory
shell: bash
run: |
echo "STORE_PATH=$(pnpm store path --silent)" >> $GITHUB_ENV
- name: setup cache
uses: actions/cache@v4
with:
path: ${{ env.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: install frontend dependencies
run: pnpm install --prefer-frozen-lockfile
shell: bash
working-directory: invokeai/frontend/web

59
.github/pr_labels.yml vendored
View File

@ -1,59 +0,0 @@
root:
- changed-files:
- any-glob-to-any-file: '*'
python-deps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
python-tests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
ci-cd:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
- changed-files:
- any-glob-to-any-file: docker/**
installer:
- changed-files:
- any-glob-to-any-file: installer/**
docs:
- changed-files:
- any-glob-to-any-file: docs/**
invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
frontend-deps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@ -1,21 +1,51 @@
## Summary
## What type of PR is this? (check all applicable)
<!--A description of the changes in this PR. Include the kind of change (fix, feature, docs, etc), the "why" and the "how". Screenshots or videos are useful for frontend changes.-->
- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Related Issues / Discussions
<!--WHEN APPLICABLE: List any related issues or discussions on github or discord. If this PR closes an issue, please use the "Closes #1234" format, so that the issue will be automatically closed when the PR merges.-->
## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:
## QA Instructions
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->
## Merge Plan
## Description
<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like DB schemas, may need some care when merging. For example, a careful rebase by the change author, timing to not interfere with a pending release, or a message to contributors on discord after merging.-->
## Checklist
## Related Tickets & Documents
- [ ] _The PR has a short but descriptive title, suitable for a changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Related Issue #
- Closes #
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [ ] No : _please replace this line with details on why tests
have not been included_
## [optional] Are there any post deployment tasks we need to perform?

View File

@ -11,7 +11,7 @@ on:
- 'docker/docker-entrypoint.sh'
- 'workflows/build-container.yml'
tags:
- 'v*.*.*'
- 'v*'
workflow_dispatch:
permissions:
@ -40,14 +40,10 @@ jobs:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: Checkout
uses: actions/checkout@v3
@ -95,7 +91,6 @@ jobs:
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container
timeout-minutes: 40
id: docker_build
uses: docker/build-push-action@v4
with:

View File

@ -1,45 +0,0 @@
# Builds and uploads the installer and python build artifacts.
name: build installer
on:
workflow_dispatch:
workflow_call:
jobs:
build-installer:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <2 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: setup python
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install pypa/build
run: pip install --upgrade build
- name: setup frontend
uses: ./.github/actions/install-frontend-deps
- name: create installer
id: create_installer
run: ./create_installer.sh
working-directory: installer
- name: upload python distribution artifact
uses: actions/upload-artifact@v4
with:
name: dist
path: ${{ steps.create_installer.outputs.DIST_PATH }}
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: installer
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

View File

@ -1,80 +0,0 @@
# Runs frontend code quality checks.
#
# Checks for changes to frontend files before running the checks.
# If always_run is true, always runs the checks.
name: 'frontend checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-checks:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: tsc
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:tsc'
shell: bash
- name: dpdm
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:dpdm'
shell: bash
- name: eslint
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:eslint'
shell: bash
- name: prettier
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:prettier'
shell: bash
- name: knip
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm lint:knip'
shell: bash

View File

@ -1,60 +0,0 @@
# Runs frontend tests.
#
# Checks for changes to frontend files before running the tests.
# If always_run is true, always runs the tests.
name: 'frontend tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
frontend-tests:
runs-on: ubuntu-latest
timeout-minutes: 10 # expected run time: <2 min
steps:
- uses: actions/checkout@v4
- name: check for changed frontend files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
frontend:
- 'invokeai/frontend/web/**'
- name: install dependencies
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
uses: ./.github/actions/install-frontend-deps
- name: vitest
if: ${{ steps.changed-files.outputs.frontend_any_changed == 'true' || inputs.always_run == true }}
run: 'pnpm test:no-watch'
shell: bash

View File

@ -1,18 +0,0 @@
name: 'label PRs'
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: label PRs
uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

33
.github/workflows/lint-frontend.yml vendored Normal file
View File

@ -0,0 +1,33 @@
name: Lint frontend
on:
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
push:
branches:
- 'main'
merge_group:
workflow_dispatch:
defaults:
run:
working-directory: invokeai/frontend/web
jobs:
lint-frontend:
if: github.event.pull_request.draft == false
runs-on: ubuntu-22.04
steps:
- name: Setup Node 18
uses: actions/setup-node@v3
with:
node-version: '18'
- uses: actions/checkout@v3
- run: 'yarn install --frozen-lockfile'
- run: 'yarn run lint:tsc'
- run: 'yarn run lint:madge'
- run: 'yarn run lint:eslint'
- run: 'yarn run lint:prettier'

View File

@ -1,49 +1,51 @@
# This is a mostly a copy-paste from https://github.com/squidfunk/mkdocs-material/blob/master/docs/publishing-your-site.md
name: mkdocs
name: mkdocs-material
on:
push:
branches:
- main
workflow_dispatch:
- 'refs/heads/main'
permissions:
contents: write
contents: write
jobs:
deploy:
mkdocs-material:
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps:
- name: checkout
uses: actions/checkout@v4
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: set cache id
run: echo "cache_id=$(date --utc '+%V')" >> $GITHUB_ENV
- name: install requirements
env:
PIP_USE_PEP517: 1
run: |
python -m \
pip install ".[docs]"
- name: use cache
uses: actions/cache@v4
with:
key: mkdocs-material-${{ env.cache_id }}
path: .cache
restore-keys: |
mkdocs-material-
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: install dependencies
run: python -m pip install ".[docs]"
- name: build & deploy
run: mkdocs gh-deploy --force
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

20
.github/workflows/pyflakes.yml vendored Normal file
View File

@ -0,0 +1,20 @@
on:
pull_request:
push:
branches:
- main
- development
- 'release-candidate-*'
jobs:
pyflakes:
name: runner / pyflakes
if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: pyflakes
uses: reviewdog/action-pyflakes@v1
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
reporter: github-pr-review

41
.github/workflows/pypi-release.yml vendored Normal file
View File

@ -0,0 +1,41 @@
name: PyPI Release
on:
push:
paths:
- 'invokeai/version/invokeai_version.py'
workflow_dispatch:
jobs:
release:
if: github.repository == 'invoke-ai/InvokeAI'
runs-on: ubuntu-22.04
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
TWINE_NON_INTERACTIVE: 1
steps:
- name: checkout sources
uses: actions/checkout@v3
- name: install deps
run: pip install --upgrade build twine
- name: build package
run: python3 -m build
- name: check distribution
run: twine check dist/*
- name: check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
run: |
pip install --upgrade requests
python -c "\
import scripts.pypi_helper; \
EXISTS=scripts.pypi_helper.local_on_pypi(); \
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
- name: upload package
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
run: twine upload dist/*

View File

@ -1,76 +0,0 @@
# Runs python code quality checks.
#
# Checks for changes to python files before running the checks.
# If always_run is true, always runs the checks.
#
# TODO: Add mypy or pyright to the checks.
name: 'python checks'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the checks'
required: true
type: boolean
default: true
jobs:
python-checks:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff
shell: bash
- name: ruff check
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff check --output-format=github .
shell: bash
- name: ruff format
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: ruff format --check .
shell: bash

View File

@ -1,106 +0,0 @@
# Runs python tests on a matrix of python versions and platforms.
#
# Checks for changes to python files before running the tests.
# If always_run is true, always runs the tests.
name: 'python tests'
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
workflow_call:
inputs:
always_run:
description: 'Always run the tests'
required: true
type: boolean
default: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
strategy:
matrix:
python-version:
- '3.10'
- '3.11'
platform:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- platform: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- platform: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- platform: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- platform: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- platform: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: 'py${{ matrix.python-version }}: ${{ matrix.platform }}'
runs-on: ${{ matrix.os }}
timeout-minutes: 15 # expected run time: 2-6 min, depending on platform
env:
PIP_USE_PEP517: '1'
steps:
- name: checkout
uses: actions/checkout@v4
- name: check for changed python files
if: ${{ inputs.always_run != true }}
id: changed-files
uses: tj-actions/changed-files@v42
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: setup python
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install dependencies
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install --editable=".[test]"
- name: run pytest
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pytest

View File

@ -1,108 +0,0 @@
# Main release workflow. Triggered on tag push or manual trigger.
#
# - Runs all code checks and tests
# - Verifies the app version matches the tag version.
# - Builds the installer and build, uploading them as artifacts.
# - Publishes to TestPyPI and PyPI. Both are conditional on the previous steps passing and require a manual approval.
#
# See docs/RELEASE.md for more information on the release process.
name: release
on:
push:
tags:
- 'v*'
workflow_dispatch:
jobs:
check-version:
runs-on: ubuntu-latest
steps:
- name: checkout
uses: actions/checkout@v4
- name: check python version
uses: samuelcolvin/check-python-version@v4
id: check-python-version
with:
version_file_path: invokeai/version/invokeai_version.py
frontend-checks:
uses: ./.github/workflows/frontend-checks.yml
with:
always_run: true
frontend-tests:
uses: ./.github/workflows/frontend-tests.yml
with:
always_run: true
python-checks:
uses: ./.github/workflows/python-checks.yml
with:
always_run: true
python-tests:
uses: ./.github/workflows/python-tests.yml
with:
always_run: true
build:
uses: ./.github/workflows/build-installer.yml
publish-testpypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: testpypi
url: https://test.pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/
publish-pypi:
runs-on: ubuntu-latest
timeout-minutes: 5 # expected run time: <1 min
needs:
[
check-version,
frontend-checks,
frontend-tests,
python-checks,
python-tests,
build,
]
environment:
name: pypi
url: https://pypi.org/p/invokeai
permissions:
id-token: write
steps:
- name: download distribution from build job
uses: actions/download-artifact@v4
with:
name: dist
path: dist/
- name: publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1

25
.github/workflows/style-checks.yml vendored Normal file
View File

@ -0,0 +1,25 @@
name: style checks
on:
pull_request:
push:
branches: main
jobs:
black:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies with pip
run: |
pip install black flake8 Flake8-pyproject isort
- run: isort --check-only .
- run: black --check .
- run: flake8

129
.github/workflows/test-invoke-pip.yml vendored Normal file
View File

@ -0,0 +1,129 @@
name: Test invoke.py pip
on:
push:
branches:
- 'main'
pull_request:
types:
- 'ready_for_review'
- 'opened'
- 'synchronize'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
# - '3.9'
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
github-env: $GITHUB_ENV
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/rocm5.2'
github-env: $GITHUB_ENV
- pytorch: linux-cpu
os: ubuntu-22.04
extra-index-url: 'https://download.pytorch.org/whl/cpu'
github-env: $GITHUB_ENV
- pytorch: macos-default
os: macOS-12
github-env: $GITHUB_ENV
- pytorch: windows-cpu
os: windows-2022
github-env: $env:GITHUB_ENV
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
env:
PIP_USE_PEP517: '1'
steps:
- name: Checkout sources
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v37
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
cache: pip
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
pip3 install
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest
# - name: run invokeai-configure
# env:
# HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGINGFACE_TOKEN }}
# run: >
# invokeai-configure
# --yes
# --default_only
# --full-precision
# # can't use fp16 weights without a GPU
# - name: run invokeai
# id: run-invokeai
# env:
# # Set offline mode to make sure configure preloaded successfully.
# HF_HUB_OFFLINE: 1
# HF_DATASETS_OFFLINE: 1
# TRANSFORMERS_OFFLINE: 1
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# run: >
# invokeai
# --no-patchmatch
# --no-nsfw_checker
# --precision=float32
# --always_use_cpu
# --use_memory_db
# --outdir ${{ env.INVOKEAI_OUTDIR }}/${{ matrix.python-version }}/${{ matrix.pytorch }}
# --from_file ${{ env.TEST_PROMPTS }}
# - name: Archive results
# env:
# INVOKEAI_OUTDIR: ${{ github.workspace }}/results
# uses: actions/upload-artifact@v3
# with:
# name: results
# path: ${{ env.INVOKEAI_OUTDIR }}

3
.gitignore vendored
View File

@ -16,7 +16,7 @@ __pycache__/
.Python
build/
develop-eggs/
dist/
# dist/
downloads/
eggs/
.eggs/
@ -187,4 +187,3 @@ installer/install.bat
installer/install.sh
installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/

View File

@ -7,7 +7,7 @@ embeddedLanguageFormatting: auto
overrides:
- files: '*.md'
options:
proseWrap: preserve
proseWrap: always
printWidth: 80
parser: markdown
cursorOffset: -1

View File

@ -1,76 +0,0 @@
# simple Makefile with scripts that are otherwise hard to remember
# to use, run from the repo root `make <command>`
default: help
help:
@echo Developer commands:
@echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test Run the unit tests."
@echo "update-config-docstring Update the app's config docstring so mkdocs can autogenerate it correctly."
@echo "frontend-install Install the pnpm modules needed for the front end"
@echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-typegen Generate types for the frontend from the OpenAPI schema"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "openapi Generate the OpenAPI schema for the app, outputting to stdout"
# Runs ruff, fixing any safely-fixable errors and formatting
ruff:
ruff check . --fix
ruff format .
# Runs ruff, fixing all errors it can fix and formatting
ruff-unsafe:
ruff check . --fix --unsafe-fixes
ruff format .
# Runs mypy, using the config in pyproject.toml
mypy:
mypy scripts/invokeai-web.py
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files)
mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Run the unit tests
test:
pytest ./tests
# Update config docstring
update-config-docstring:
python scripts/update_config_docstring.py
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
cd invokeai/frontend/web && pnpm install
# Build the frontend
frontend-build:
cd invokeai/frontend/web && pnpm build
# Run the frontend in dev mode
frontend-dev:
cd invokeai/frontend/web && pnpm dev
frontend-typegen:
cd invokeai/frontend/web && python ../../../scripts/generate_openapi_schema.py | pnpm typegen
# Installer zip file
installer-zip:
cd installer && ./create_installer.sh
# Tag the release
tag-release:
cd installer && ./tag_release.sh
# Generate the OpenAPI Schema for the app
openapi:
python scripts/generate_openapi_schema.py

495
README.md
View File

@ -1,103 +1,22 @@
<div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
[![discord badge]][discord link]
</div>
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div>
## Quick Start
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
For more help, please join our [Discord][discord link].
## Features
Full details on features can be found in [our documentation][features docs].
### Web Server & UI
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
### Unified Canvas
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### Workflows & Nodes
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### Board & Gallery Management
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- Support for both ckpt and diffusers models
- SD1.5, SD2.0, and SDXL support
- Upscaling Tools
- Embedding Manager & Support
- Model Manager & Support
- Workflow creation & management
- Node-Based Architecture
## Contributing
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
## Thanks
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
Original portions of the software are Copyright © 2024 by respective contributors.
[features docs]: https://invoke-ai.github.io/InvokeAI/features/
[faq]: https://invoke-ai.github.io/InvokeAI/help/FAQ/
[contributors]: https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/
[invoke.com]: https://www.invoke.com/about
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
[docs home]: https://invoke-ai.github.io/InvokeAI
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
[discord link]: https://discord.gg/ZmtBAhwWhy
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
@ -111,6 +30,400 @@ Original portions of the software are Copyright © 2024 by respective contributo
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
</div>
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
[<a
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
<div align="center">
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
</div>
## Table of Contents
Table of Contents 📝
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
2. Download the .zip file for your OS (Windows/macOS/Linux).
3. Unzip the file.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
location with at least 15 GB of free memory. More if you plan on
installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
folder (if you didn't change it in step 5) is `~/invokeai` on
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
8. On Windows systems, double-click on the `invoke.bat` file. On
macOS, open a Terminal window, drag `invoke.sh` from the folder into
the Terminal, and press return. On Linux, run `invoke.sh`
9. Press 2 to open the "browser-based UI", press enter/return, wait a
minute or two for Stable Diffusion to start up, then open your browser
and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
```terminal
mkdir invokeai
````
3. Create a virtual environment named `.venv` inside this directory and activate it:
```terminal
cd invokeai
python -m venv .venv --prompt InvokeAI
```
4. Activate the virtual environment (do it every time you run InvokeAI)
_For Linux/Mac users:_
```sh
source .venv/bin/activate
```
_For Windows users:_
```ps
.venv\Scripts\activate
```
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_
```sh
pip install InvokeAI --use-pep517
```
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure --root .
```
Don't miss the dot at the end!
7. Launch the web server (do it every time you run InvokeAI):
```terminal
invokeai-web
```
8. Point your browser to http://localhost:9090 to bring up the web interface.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
If you wish, you can pass the 2.3 root directory to both `--from` and
`--to` in order to update in place. Warning: this directory will no
longer be usable with InvokeAI 2.3.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. ***This recipe does not work on
Windows platforms due to a bug in the Windows version of the 2.3
upgrade script.** See the next section for a Windows recipe.
##### For Mac and Linux Users:
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
##### For Windows Users:
Windows Users can upgrade with the
1. Enter the 2.3 root directory you wish to upgrade
2. Launch `invoke.sh` or `invoke.bat`
3. Select the "Developer's console" option [8]
4. Type the following commands
```
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
invokeai-configure --root .
```
(Replace `v3.0.0` with the current release number if this document is out of date).
The first command will install and upgrade new software to run
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
You may now launch the WebUI in the usual way, by selecting option [1]
from the launcher script
#### Migrating Images
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. To do this, you
need to run an additional step:
1. From a working InvokeAI 3.0 root directory, start the launcher and
enter menu option [8] to open the "developer's console".
2. At the developer's console command line, type the command:
```bash
invokeai-import-images
```
3. This will lead you through the process of confirming the desired
source and destination for the imported images. The images will
appear in the gallery board of your choice, and contain the
original prompt, model name, and other parameters used to generate
the image.
(Many kudos to **techjedi** for contributing this script.)
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver).
### System
You will need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
of VRAM is highly recommended for rendering using the Stable
Diffusion XL models
- An Apple computer with an M1 chip.
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
only), 6-8 GB for XL rendering.
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
**Memory** - At least 12 GB Main Memory RAM.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
### *Web Server & UI*
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
### *Unified Canvas*
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Workflows & Nodes*
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### *Board & Gallery Management*
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1, XL support*
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Workflow creation & management*
- *Node-Based Architecture*
### Latest Changes
For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
### Troubleshooting
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues. For more help, please join our [Discord][discord link]
## Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
If you are unfamiliar with how
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
We hope you enjoy using our software as much as we enjoy creating it,
and we hope that some of those of you who are reading this will elect
to become part of our community.
Welcome to InvokeAI!
### Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
Original portions of the software are Copyright (c) 2023 by respective contributors.

View File

@ -2,25 +2,14 @@
## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below.
## INVOKEAI_ROOT is the path *on the host system* where Invoke will store its data.
## It is mounted into the container and allows both containerized and non-containerized usage of Invoke.
# Usually this is the only variable you need to set. It can be relative or absolute.
# INVOKEAI_ROOT=~/invokeai
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default.
# This **must** be an absolute path.
INVOKEAI_ROOT=
## HOST_INVOKEAI_ROOT and CONTAINER_INVOKEAI_ROOT can be used to control the on-host
## and in-container paths separately, if needed.
## HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where Invoke will store data.
## If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
## CONTAINER_INVOKEAI_ROOT is the path within the container where Invoke will expect to find the runtime directory.
## It MUST be absolute. There is usually no need to change this.
# HOST_INVOKEAI_ROOT=../../invokeai-data
# CONTAINER_INVOKEAI_ROOT=/invokeai
# Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN=
## INVOKEAI_PORT is the port on which the InvokeAI web interface will be available
# INVOKEAI_PORT=9090
## GPU_DRIVER can be set to either `nvidia` or `rocm` to enable GPU support in the container accordingly.
# GPU_DRIVER=nvidia #| rocm
## CONTAINER_UID can be set to the UID of the user on the host system that should own the files in the container.
# CONTAINER_UID=1000
## optional variables specific to the docker setup.
# GPU_DRIVER=cuda
# CONTAINER_UID=1000

View File

@ -18,6 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.0.1
ARG TORCHVISION_VERSION=0.15.2
ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64"
# unused but available
@ -25,12 +27,7 @@ ARG BUILDPLATFORM
WORKDIR ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
# Install pytorch before all other pip packages
# NOTE: there are no pytorch builds for arm64 + cuda, only cpu
# x86_64/CUDA is default
RUN --mount=type=cache,target=/root/.cache/pip \
@ -38,30 +35,38 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\
pip install $extra_index_url_arg \
torch==$TORCH_VERSION \
torchvision==$TORCHVISION_VERSION
# Install the local package.
# Editable mode helps use the same image for development:
# the local working copy can be bind-mounted into the image
# at path defined by ${INVOKEAI_SRC}
COPY invokeai ./invokeai
COPY pyproject.toml ./
RUN --mount=type=cache,target=/root/.cache/pip \
# xformers + triton fails to install on arm64
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install $extra_index_url_arg -e ".[xformers]"; \
pip install -e ".[xformers]"; \
else \
pip install $extra_index_url_arg -e "."; \
pip install -e "."; \
fi
# #### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack enable
FROM node:18 AS web-builder
WORKDIR /build
COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile
RUN npx vite build
RUN --mount=type=cache,target=/usr/lib/node_modules \
npm install --include dev
RUN --mount=type=cache,target=/usr/lib/node_modules \
yarn vite build
#### Runtime stage ---------------------------------------
@ -94,11 +99,7 @@ RUN apt update && apt install -y --no-install-recommends \
ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV INVOKEAI_ROOT=/invokeai
ENV INVOKEAI_HOST=0.0.0.0
ENV INVOKEAI_PORT=9090
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
# --link requires buldkit w/ dockerfile syntax 1.4
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
@ -116,8 +117,8 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
CMD ["invokeai-web"]
CMD ["invokeai-web", "--host", "0.0.0.0"]

View File

@ -1,14 +1,6 @@
# InvokeAI Containerized
All commands should be run within the `docker` directory: `cd docker`
## Quickstart :rocket:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
## Detailed setup
All commands are to be run from the `docker` directory: `cd docker`
#### Linux
@ -26,12 +18,12 @@ For more configuration options (using an AMD GPU, custom root directory location
This is done via Docker Desktop preferences
### Configure Invoke environment
## Quickstart
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh`
1. `docker compose up`
The image will be built automatically if needed.
@ -45,26 +37,24 @@ The runtime directory (holding models and outputs) will be created in the locati
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
```bash
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000
GPU_DRIVER=nvidia
GPU_DRIVER=cuda
```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even More Customizing!
## Even Moar Customizing!
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.

11
docker/build.sh Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env bash
set -e
build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker compose build args:"
echo $build_args
docker compose build $build_args

View File

@ -2,38 +2,12 @@
version: '3.8'
x-invokeai: &invokeai
image: "local/invokeai:latest"
build:
context: ..
dockerfile: docker/Dockerfile
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
# variables without a default will automatically inherit from the host environment
environment:
# if set, CONTAINER_INVOKEAI_ROOT will override the Invoke runtime directory location *inside* the container
- INVOKEAI_ROOT=${CONTAINER_INVOKEAI_ROOT:-/invokeai}
- HF_HOME
ports:
- "${INVOKEAI_PORT:-9090}:${INVOKEAI_PORT:-9090}"
volumes:
- type: bind
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${CONTAINER_INVOKEAI_ROOT:-/invokeai}
bind:
create_host_path: true
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
tty: true
stdin_open: true
services:
invokeai-nvidia:
<<: *invokeai
invokeai:
image: "local/invokeai:latest"
# edit below to run on a container runtime other than nvidia-container-runtime.
# not yet tested with rocm/AMD GPUs
# Comment out the "deploy" section to run on CPU only
deploy:
resources:
reservations:
@ -41,16 +15,34 @@ services:
- driver: nvidia
count: 1
capabilities: [gpu]
build:
context: ..
dockerfile: docker/Dockerfile
invokeai-cpu:
<<: *invokeai
profiles:
- cpu
# variables without a default will automatically inherit from the host environment
environment:
- INVOKEAI_ROOT
- HF_HOME
invokeai-rocm:
<<: *invokeai
devices:
- /dev/kfd:/dev/kfd
- /dev/dri:/dev/dri
profiles:
- rocm
# Create a .env file in the same directory as this docker-compose.yml file
# and populate it with environment variables. See .env.sample
env_file:
- .env
ports:
- "${INVOKEAI_PORT:-9090}:9090"
volumes:
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
tty: true
stdin_open: true
# # Example of running alternative commands/scripts in the container
# command:
# - bash
# - -c
# - |
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
# invokeai-nodes-web --host 0.0.0.0

View File

@ -9,6 +9,10 @@ set -e -o pipefail
### Set INVOKEAI_ROOT pointing to a valid runtime directory
# Otherwise configure the runtime dir first.
### Configure the InvokeAI runtime directory (done by default)):
# docker run --rm -it <this image> --configure
# or skip with --no-configure
### Set the CONTAINER_UID envvar to match your user.
# Ensures files created in the container are owned by you:
# docker run --rm -it -v /some/path:/invokeai -e CONTAINER_UID=$(id -u) <this image>
@ -18,6 +22,27 @@ USER_ID=${CONTAINER_UID:-1000}
USER=ubuntu
usermod -u ${USER_ID} ${USER} 1>/dev/null
configure() {
# Configure the runtime directory
if [[ -f ${INVOKEAI_ROOT}/invokeai.yaml ]]; then
echo "${INVOKEAI_ROOT}/invokeai.yaml exists. InvokeAI is already configured."
echo "To reconfigure InvokeAI, delete the above file."
echo "======================================================================"
else
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}"
gosu ${USER} invokeai-configure --yes --default_only
fi
}
## Skip attempting to configure.
## Must be passed first, before any other args.
if [[ $1 != "--no-configure" ]]; then
configure
else
shift
fi
### Set the $PUBLIC_KEY env var to enable SSH access.
# We do not install openssh-server in the image by default to avoid bloat.
# but it is useful to have the full SSH server e.g. on Runpod.
@ -33,8 +58,7 @@ if [[ -v "PUBLIC_KEY" ]] && [[ ! -d "${HOME}/.ssh" ]]; then
service ssh start
fi
mkdir -p "${INVOKEAI_ROOT}"
chown --recursive ${USER} "${INVOKEAI_ROOT}"
cd "${INVOKEAI_ROOT}"
# Run the CMD as the Container User (not root).

View File

@ -1,32 +1,11 @@
#!/usr/bin/env bash
set -e -o pipefail
set -e
run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
cd "$scriptdir" || exit 1
# This script is provided for backwards compatibility with the old docker setup.
# it doesn't do much aside from wrapping the usual docker compose CLI.
local build_args=""
local profile=""
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1
touch .env
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then
printf "%s\n" "docker compose build args:"
printf "%s\n" "$build_args"
fi
docker compose build $build_args $service_name
unset build_args
printf "%s\n" "starting service $service_name"
docker compose --profile "$profile" up -d "$service_name"
docker compose logs -f
}
run
docker compose up --build -d
docker compose logs -f

View File

@ -1,173 +0,0 @@
# Release Process
The app is published in twice, in different build formats.
- A [PyPI] distribution. This includes both a source distribution and built distribution (a wheel). Users install with `pip install invokeai`. The updater uses this build.
- An installer on the [InvokeAI Releases Page]. This is a zip file with install scripts and a wheel. This is only used for new installs.
## General Prep
Make a developer call-out for PRs to merge. Merge and test things out.
While the release workflow does not include end-to-end tests, it does pause before publishing so you can download and test the final build.
## Release Workflow
The `release.yml` workflow runs a number of jobs to handle code checks, tests, build and publish on PyPI.
It is triggered on **tag push**, when the tag matches `v*`. It doesn't matter if you've prepped a release branch like `release/v3.5.0` or are releasing from `main` - it works the same.
> Because commits are reference-counted, it is safe to create a release branch, tag it, let the workflow run, then delete the branch. So long as the tag exists, that commit will exist.
### Triggering the Workflow
Run `make tag-release` to tag the current commit and kick off the workflow.
The release may also be dispatched [manually].
### Workflow Jobs and Process
The workflow consists of a number of concurrently-run jobs, and two final publish jobs.
The publish jobs require manual approval and are only run if the other jobs succeed.
#### `check-version` Job
This job checks that the git ref matches the app version. It matches the ref against the `__version__` variable in `invokeai/version/invokeai_version.py`.
When the workflow is triggered by tag push, the ref is the tag. If the workflow is run manually, the ref is the target selected from the **Use workflow from** dropdown.
This job uses [samuelcolvin/check-python-version].
> Any valid [version specifier] works, so long as the tag matches the version. The release workflow works exactly the same for `RC`, `post`, `dev`, etc.
#### Check and Test Jobs
- **`python-tests`**: runs `pytest` on matrix of platforms
- **`python-checks`**: runs `ruff` (format and lint)
- **`frontend-tests`**: runs `vitest`
- **`frontend-checks`**: runs `prettier` (format), `eslint` (lint), `dpdm` (circular refs), `tsc` (static type check) and `knip` (unused imports)
> **TODO** We should add `mypy` or `pyright` to the **`check-python`** job.
> **TODO** We should add an end-to-end test job that generates an image.
#### `build-installer` Job
This sets up both python and frontend dependencies and builds the python package. Internally, this runs `installer/create_installer.sh` and uploads two artifacts:
- **`dist`**: the python distribution, to be published on PyPI
- **`InvokeAI-installer-${VERSION}.zip`**: the installer to be included in the GitHub release
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval. Time to test the installer.
Because the installer pulls from PyPI, and we haven't published to PyPI yet, you will need to install from the wheel:
- Download and unzip `dist.zip` and the installer from the **Summary** tab of the workflow
- Run the installer script using the `--wheel` CLI arg, pointing at the wheel:
```sh
./install.sh --wheel ../InvokeAI-4.0.0rc6-py3-none-any.whl
```
- Install to a temporary directory so you get the new user experience
- Download a model and generate
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation as if the installer got the wheel from PyPI.
##### Something isn't right
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?).
Now you can start from the top:
- Fix the issues and PR the fixes per usual
- Get the PR approved and merged per usual
- Switch to `main` and pull in the fixes
- Run `make tag-release` to move the tag to `HEAD` (which has the fixes) and kick off the release workflow again
- Re-do the sanity check
#### PyPI Publish Jobs
The publish jobs will run if any of the previous jobs fail.
They use [GitHub environments], which are configured as [trusted publishers] on PyPI.
Both jobs require a maintainer to approve them from the workflow's **Summary** tab.
- Click the **Review deployments** button
- Select the environment (either `testpypi` or `pypi`)
- Click **Approve and deploy**
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
##### Failing PyPI Publish
Check the [python infrastructure status page] for incidents.
If there are no incidents, contact @hipsterusername or @lstein, who have owner access to GH and PyPI, to see if access has expired or something like that.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
This job is not required for the production PyPI publish, but included just in case you want to test the PyPI release.
If approved and successful, you could try out the test release like this:
```sh
# Create a new virtual environment
python -m venv ~/.test-invokeai-dist --prompt test-invokeai-dist
# Install the distribution from Test PyPI
pip install --index-url https://test.pypi.org/simple/ invokeai
# Run and test the app
invokeai-web
# Cleanup
deactivate
rm -rf ~/.test-invokeai-dist
```
#### `publish-pypi` Job
Publishes the distribution on the production PyPI index, using the `pypi` GitHub environment.
## Publish the GitHub Release with installer
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
1. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
1. Use `scripts/get_external_contributions.py` to get a list of external contributions to shout out in the release notes.
1. Upload the zip file created in **`build`** job into the Assets section of the release notes.
1. Check **Set as a pre-release** if it's a pre-release.
1. Check **Create a discussion for this release**.
1. Publish the release.
1. Announce the release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
## Manual Build
The `build installer` workflow can be dispatched manually. This is useful to test the installer for a given branch or tag.
No checks are run, it just builds.
## Manual Release
The `release` workflow can be dispatched manually. You must dispatch the workflow from the right tag, else it will fail the version check.
This functionality is available as a fallback in case something goes wonky. Typically, releases should be triggered via tag push as described above.
[InvokeAI Releases Page]: https://github.com/invoke-ai/InvokeAI/releases
[PyPI]: https://pypi.org/
[Draft a new release]: https://github.com/invoke-ai/InvokeAI/releases/new
[Test PyPI]: https://test.pypi.org/
[version specifier]: https://packaging.python.org/en/latest/specifications/version-specifiers/
[ncipollo/release-action]: https://github.com/ncipollo/release-action
[GitHub environments]: https://docs.github.com/en/actions/deployment/targeting-different-environments/using-environments-for-deployment
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release
[python infrastructure status page]: https://status.python.org/

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 221 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 786 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

View File

@ -1,334 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
Two job types are defined. `DownloadJob` and
`MultiFileDownloadJob`. The former is a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
The `MultiFileDownloadJob` is used for diffusers model downloads,
which contain multiple files and directories under a common root:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `download_parts` | Set[DownloadJob]| | Component download jobs |
| `dest` | Path | | Where to download to |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the root of the downloaded files |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
Note that the MultiFileDownloadJob does not support the `priority`,
`job_started`, `job_ended` or `content_type` attributes. You can get
these from the individual download jobs in `download_parts`.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
This is similar to download(), but instead of taking a single source,
it accepts a `parts` argument consisting of a list of
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
where the URL is the location of the remote file, and the Path is the
destination.
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
consists of a url/path pair. Note that the path *must* be relative.
The method returns a `MultiFileDownloadJob`.
```
from invokeai.backend.model_manager.metadata import RemoteModelFile
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
path='my_model/textencoder/pytorch_model.safetensors'
)
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
path='my_model/vae/diffusers_model.safetensors'
)
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
dest='/tmp/downloads',
on_progress=TqdmProgress().update)
queue.wait_for_job(job)
print(f"The files were downloaded to {job.download_path}")
```
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

View File

@ -1,6 +1,6 @@
# Nodes
# Invocations
Features in InvokeAI are added in the form of modular nodes systems called
Features in InvokeAI are added in the form of modular node-like systems called
**Invocations**.
An Invocation is simply a single operation that takes in some inputs and gives
@ -9,38 +9,13 @@ complex functionality.
## Invocations Directory
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These
can be used as examples to create your own nodes.
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
New nodes should be added to a subfolder in `nodes` direction found at the root
level of the InvokeAI installation location. Nodes added to this folder will be
able to be used upon application startup.
You can add your new functionality to one of the existing Invocations in this
directory or create a new file in this directory as per your needs.
Example `nodes` subfolder structure:
```py
├── __init__.py # Invoke-managed custom node loader
├── cool_node
├── __init__.py # see example below
└── cool_node.py
└── my_node_pack
├── __init__.py # see example below
├── tasty_node.py
├── bodacious_node.py
├── utils.py
└── extra_nodes
└── fancy_node.py
```
Each node folder must have an `__init__.py` file that imports its nodes. Only
nodes imported in the `__init__.py` file are loaded. See the README in the nodes
folder for more examples:
```py
from .cool_node import CoolInvocation
```
**Note:** _All Invocations must be inside this directory for InvokeAI to
recognize them as valid Invocations._
## Creating A New Invocation
@ -69,7 +44,7 @@ The first set of things we need to do when creating a new Invocation are -
So let us do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from .baseinvocation import BaseInvocation, invocation
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@ -103,8 +78,8 @@ create your own custom field types later in this guide. For now, let's go ahead
and use it.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
@ -128,13 +103,14 @@ image: ImageField = InputField(description="The input image")
Great. Now let us create our other inputs for `width` and `height`
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -163,13 +139,14 @@ that are provided by it by InvokeAI.
Let us create this function first.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -191,14 +168,15 @@ all the necessary info related to image outputs. So let us use that.
We will cover how to create your own output types later in this guide.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation('resize')
class ResizeInvocation(BaseInvocation):
'''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -217,9 +195,9 @@ Perfect. Now that we have our Invocation setup, let us do what we want to do.
So let's do that.
```python
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
from .baseinvocation import BaseInvocation, InputField, invocation
from .primitives import ImageField
from .image import ImageOutput
@invocation("resize")
class ResizeInvocation(BaseInvocation):
@ -230,17 +208,30 @@ class ResizeInvocation(BaseInvocation):
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the input image as a PIL image
image = context.images.get_pil(self.image.image_name)
# Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
image = context.services.images.get_pil_image(self.image.image_name)
# Resize the image
# Resizing the image
resized_image = image.resize((self.width, self.height))
# Save the image
image_dto = context.images.save(image=resized_image)
# Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Return an ImageOutput
return ImageOutput.build(image_dto)
# Returning the Image
return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
),
width=output_image.width,
height=output_image.height,
)
```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
@ -331,25 +322,27 @@ class ImageColorStringOutput(BaseInvocationOutput):
That's all there is to it.
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics.
While creating your own Invocations, you might run into a scenario where the
existing fields in InvokeAI do not meet your requirements. In such cases, you
can create your own fields.
existing input types in InvokeAI do not meet your requirements. In such cases,
you can create your own input types.
Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some
general good practices to keep in mind.
### Best Practices
**Good Practices**
- There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your field.
`docstring` to describe your input field.
- Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant.
@ -364,13 +357,10 @@ class ColorField(BaseModel):
pass
```
Perfect. Now let us create the properties for our field. This is similar to how
you created input fields for your Invocation. All the same rules apply. Let us
create four fields representing the _red(r)_, _blue(b)_, _green(g)_ and
_alpha(a)_ channel of the color.
> Technically, the properties are _also_ called fields - but in this case, it
> refers to a `pydantic` field.
Perfect. Now let us create our custom inputs for our field. This is exactly
similar how you created input fields for your Invocation. All the same rules
apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_green(g)_ and _alpha(a)_ channel of the color.
```python
class ColorField(BaseModel):
@ -385,11 +375,25 @@ That's it. We now have a new input field type that we can use in our Invocations
like this.
```python
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
```
### Using the custom field
### Custom Components For Frontend
When you start the UI, your custom field will be automatically recognized.
Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
Custom fields only support connection inputs in the Workflow Editor.
If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
-->

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,75 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `yarn build`.

View File

@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
* #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md)

View File

@ -1,133 +0,0 @@
# Invoke UI
Invoke's UI is made possible by many contributors and open-source libraries. Thank you!
## Dev environment
### Setup
1. Install [node] and [pnpm].
1. Run `pnpm i` to install all packages.
#### Run in dev mode
1. From `invokeai/frontend/web/`, run `pnpm dev`.
1. From repo root, run `python scripts/invokeai-web.py`.
1. Point your browser to the dev server address, e.g. <http://localhost:5173/>
### Package scripts
- `dev`: run the frontend in dev mode, enabling hot reloading
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
- `typegen`: generate types from the OpenAPI schema (see [Type generation])
- `lint:dpdm`: check circular dependencies
- `lint:eslint`: check code quality
- `lint:prettier`: check code formatting
- `lint:tsc`: check type issues
- `lint:knip`: check for unused exports or objects (failures here are just suggestions, not hard fails)
- `lint`: run all checks concurrently
- `fix`: run `eslint` and `prettier`, fixing fixable issues
### Type generation
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
The generated types are committed to the repo in [schema.ts].
```sh
# from the repo root, start the server
python scripts/invokeai-web.py
# from invokeai/frontend/web/, run the script
pnpm typegen
```
### Localization
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
Only the English source strings should be changed on this repo.
### VSCode
#### Example debugger config
```jsonc
{
"version": "0.2.0",
"configurations": [
{
"type": "chrome",
"request": "launch",
"name": "Invoke UI",
"url": "http://localhost:5173",
"webRoot": "${workspaceFolder}/invokeai/frontend/web"
}
]
}
```
#### Remote dev
We've noticed an intermittent timeout issue with the VSCode remote dev port forwarding.
We suggest disabling the editor's port forwarding feature and doing it manually via SSH:
```sh
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
```
## Contributing Guidelines
Thanks for your interest in contributing to the Invoke Web UI!
Please follow these guidelines when contributing.
### Check in before investing your time
Please check in before you invest your time on anything besides a trivial fix, in case it conflicts with ongoing work or isn't aligned with the vision for the app.
If a feature request or issue doesn't already exist for the thing you want to work on, please create one.
Ping `@psychedelicious` on [discord] in the `#frontend-dev` channel or in the feature request / issue you want to work on - we're happy to chat.
### Code conventions
- This is a fairly complex app with a deep component tree. Please use memoization (`useCallback`, `useMemo`, `memo`) with enthusiasm.
- If you need to add some global, ephemeral state, please use [nanostores] if possible.
- Be careful with your redux selectors. If they need to be parameterized, consider creating them inside a `useMemo`.
- Feel free to use `lodash` (via `lodash-es`) to make the intent of your code clear.
- Please add comments describing the "why", not the "how" (unless it is really arcane).
### Commit format
Please use the [conventional commits] spec for the web UI, with a scope of "ui":
- `chore(ui): bump deps`
- `chore(ui): lint`
- `feat(ui): add some cool new feature`
- `fix(ui): fix some bug`
### Submitting a PR
- Ensure your branch is tidy. Use an interactive rebase to clean up the commit history and reword the commit messages if they are not descriptive.
- Run `pnpm lint`. Some issues are auto-fixable with `pnpm fix`.
- Fill out the PR form when creating the PR.
- It doesn't need to be super detailed, but a screenshot or video is nice if you changed something visually.
- If a section isn't relevant, delete it. There are no UI tests at this time.
## Other docs
- [Workflows - Design and Implementation]
- [State Management]
[node]: https://nodejs.org/en/download/
[pnpm]: https://github.com/pnpm/pnpm
[discord]: https://discord.gg/ZmtBAhwWhy
[i18next]: https://github.com/i18next/react-i18next
[Weblate]: https://hosted.weblate.org/engage/invokeai/
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
[Type generation]: #type-generation
[schema.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/services/api/schema.ts
[conventional commits]: https://www.conventionalcommits.org/en/v1.0.0/
[Workflows - Design and Implementation]: ./WORKFLOWS.md
[State Management]: ./STATE_MGMT.md

View File

@ -1,38 +0,0 @@
# State Management
The app makes heavy use of Redux Toolkit, its Query library, and `nanostores`.
## Redux
TODO
## `nanostores`
[nanostores] is a tiny state management library. It provides both imperative and declarative APIs.
### Example
```ts
export const $myStringOption = atom<string | null>(null);
// Outside a component, or within a callback for performance-critical logic
$myStringOption.get();
$myStringOption.set('new value');
// Inside a component
const myStringOption = useStore($myStringOption);
```
### Where to put nanostores
- For global application state, export your stores from `invokeai/frontend/web/src/app/store/nanostores/`.
- For feature state, create a file for the stores next to the redux slice definition (e.g. `invokeai/frontend/web/src/features/myFeature/myFeatureNanostores.ts`).
- For hooks with global state, export the store from the same file the hook is in, or put it next to the hook.
### When to use nanostores
- For non-serializable data that needs to be available throughout the app, use `nanostores` instead of a global.
- For ephemeral global state (i.e. state that does not need to be persisted), use `nanostores` instead of redux.
- For performance-critical code and in callbacks, redux selectors can be problematic due to the declarative reactivity system. Consider refactoring to use `nanostores` if there's a **measurable** performance issue.
[nanostores]: https://github.com/nanostores/nanostores/

View File

@ -1,314 +0,0 @@
# Workflows - Design and Implementation
> This document describes, at a high level, the design and implementation of workflows in the InvokeAI frontend. There are a substantial number of implementation details not included, but which are hopefully clear from the code.
InvokeAI's backend uses graphs, composed of **nodes** and **edges**, to process data and generate images.
Nodes have any number of **input fields** and **output fields**. Edges connect nodes together via their inputs and outputs. Fields have data types which dictate how they may be connected.
During execution, a nodes' outputs may be passed along to any number of other nodes' inputs.
Workflows are an enriched abstraction over a graph.
## Design
InvokeAI provide two ways to build graphs in the frontend: the [Linear UI](#linear-ui) and [Workflow Editor](#workflow-editor).
To better understand the use case and challenges related to workflows, we will review both of these modes.
### Linear UI
This includes the **Text to Image**, **Image to Image** and **Unified Canvas** tabs.
The user-managed parameters on these tabs are stored as simple objects in the application state. When the user invokes, adding a generation to the queue, we internally build a graph from these parameters.
This logic can be fairly complex due to the range of features available and their interactions. Depending on the parameters selected, the graph may be very different. Building graphs in code can be challenging - you are trying to construct a non-linear structure in a linear context.
The simplest graph building logic is for **Text to Image** with a SD1.5 model: [buildLinearTextToImageGraph.ts]
There are many other graph builders in the same directory for different tabs or base models (e.g. SDXL). Some are pretty hairy.
In the Linear UI, we go straight from **simple application state** to **graph** via these builders.
### Workflow Editor
The Workflow Editor is a visual graph editor, allowing users to draw edges from node to node to construct a graph. This _far_ more approachable way to create complex graphs.
InvokeAI uses the [reactflow] library to power the Workflow Editor. It provides both a graph editor UI and manages its own internal graph state.
#### Workflows
A workflow is a representation of a graph plus additional metadata:
- Name
- Description
- Version
- Notes
- [Exposed fields](#workflow-linear-view)
- Author, tags, category, etc.
Workflows should have other qualities:
- Portable: you should be able to load a workflow created by another person.
- Resilient: you should be able to "upgrade" a workflow as the application changes.
- Abstract: as much as is possible, workflows should not be married to the specific implementation details of the application.
To support these qualities, workflows are serializable, have a versioned schemas, and represent graphs as minimally as possible. Fortunately, the reactflow state for nodes and edges works perfectly for this.
##### Workflow -> reactflow state -> InvokeAI graph
Given a workflow, we need to be able to derive reactflow state and/or an InvokeAI graph from it.
The first step - workflow to reactflow state - is very simple. The logic is in [nodesSlice.ts], in the `workflowLoaded` reducer.
The reactflow state is, however, structurally incompatible with our backend's graph structure. When a user invokes on a Workflow, we need to convert the reactflow state into an InvokeAI graph. This is far simpler than the graph building logic from the Linear UI:
[buildNodesGraph.ts]
##### Nodes vs Invocations
We often use the terms "node" and "invocation" interchangeably, but they may refer to different things in the frontend.
reactflow [has its own definitions][reactflow-concepts] of "node", "edge" and "handle" which are closely related to InvokeAI graph concepts.
- A reactflow node is related to an InvokeAI invocation. It has a "data" property, which holds the InvokeAI-specific invocation data.
- A reactflow edge is roughly equivalent to an InvokeAI edge.
- A reactflow handle is roughly equivalent to an InvokeAI input or output field.
##### Workflow Linear View
Graphs are very capable data structures, but not everyone wants to work with them all the time.
To allow less technical users - or anyone who wants a less visually noisy workspace - to benefit from the power of nodes, InvokeAI has a workflow feature called the Linear View.
A workflow input field can be added to this Linear View, and its input component can be presented similarly to the Linear UI tabs. Internally, we add the field to the workflow's list of exposed fields.
#### OpenAPI Schema
OpenAPI is a schema specification that can represent complex data structures and relationships. The backend is capable of generating an OpenAPI schema for all invocations.
When the UI connects, it requests this schema and parses each invocation into an **invocation template**. Invocation templates have a number of properties, like title, description and type, but the most important ones are their input and output **field templates**.
Invocation and field templates are the "source of truth" for graphs, because they indicate what the backend is able to process.
When a user adds a new node to their workflow, these templates are used to instantiate a node with fields instantiated from the input and output field templates.
##### Field Instances and Templates
Field templates consist of:
- Name: the identifier of the field, its variable name in python
- Type: derived from the field's type annotation in python (e.g. IntegerField, ImageField, MainModelField)
- Constraints: derived from the field's creation args in python (e.g. minimum value for an integer)
- Default value: optionally provided in the field's creation args (e.g. 42 for an integer)
Field instances are created from the templates and have name, type and optionally a value.
The type of the field determines the UI components that are rendered for it.
A field instance's name associates it with its template.
##### Stateful vs Stateless Fields
**Stateful** fields store their value in the frontend graph. Think primitives, model identifiers, images, etc. Fields are only stateful if the frontend allows the user to directly input a value for them.
Many field types, however, are **stateless**. An example is a `UNetField`, which contains some data describing a UNet. Users cannot directly provide this data - it is created and consumed in the backend.
Stateless fields do not store their value in the node, so their field instances do not have values.
"Custom" fields will always be treated as stateless fields.
##### Single and Collection Fields
Field types have a name and cardinality property which may identify it as a **SINGLE**, **COLLECTION** or **SINGLE_OR_COLLECTION** field.
- If a field is annotated in python as a singular value or class, its field type is parsed as a **SINGLE** type (e.g. `int`, `ImageField`, `str`).
- If a field is annotated in python as a list, its field type is parsed as a **COLLECTION** type (e.g. `list[int]`).
- If it is annotated as a union of a type and list, the type will be parsed as a **SINGLE_OR_COLLECTION** type (e.g. `Union[int, list[int]]`). Fields may not be unions of different types (e.g. `Union[int, list[str]]` and `Union[int, str]` are not allowed).
## Implementation
The majority of data structures in the backend are [pydantic] models. Pydantic provides OpenAPI schemas for all models and we then generate TypeScript types from those.
The OpenAPI schema is parsed at runtime into our invocation templates.
Workflows and all related data are modeled in the frontend using [zod]. Related types are inferred from the zod schemas.
> In python, invocations are pydantic models with fields. These fields become node inputs. The invocation's `invoke()` function returns a pydantic model - its output. Like the invocation itself, the output model has any number of fields, which become node outputs.
### zod Schemas and Types
The zod schemas, inferred types, and type guards are in [types/].
Roughly order from lowest-level to highest:
- `common.ts`: stateful field data, and couple other misc types
- `field.ts`: fields - types, values, instances, templates
- `invocation.ts`: invocations and other node types
- `workflow.ts`: workflows and constituents
We customize the OpenAPI schema to include additional properties on invocation and field schemas. To facilitate parsing this schema into templates, we modify/wrap the types from [openapi-types] in `openapi.ts`.
### OpenAPI Schema Parsing
The entrypoint for OpenAPI schema parsing is [parseSchema.ts].
General logic flow:
- Iterate over all invocation schema objects
- Extract relevant invocation-level attributes (e.g. title, type, version, etc)
- Iterate over the invocation's input fields
- [Parse each field's type](#parsing-field-types)
- [Build a field input template](#building-field-input-templates) from the type - either a stateful template or "generic" stateless template
- Iterate over the invocation's output fields
- Parse the field's type (same as inputs)
- [Build a field output template](#building-field-output-templates)
- Assemble the attributes and fields into an invocation template
Most of these involve very straightforward `reduce`s, but the less intuitive steps are detailed below.
#### Parsing Field Types
Field types are represented as structured objects:
```ts
type FieldType = {
name: string;
cardinality: 'SINGLE' | 'COLLECTION' | 'SINGLE_OR_COLLECTION';
};
```
The parsing logic is in `parseFieldType.ts`.
There are 4 general cases for field type parsing.
##### Primitive Types
When a field is annotated as a primitive values (e.g. `int`, `str`, `float`), the field type parsing is fairly straightforward. The field is represented by a simple OpenAPI **schema object**, which has a `type` property.
We create a field type name from this `type` string (e.g. `string` -> `StringField`). The cardinality is `"SINGLE"`.
##### Complex Types
When a field is annotated as a pydantic model (e.g. `ImageField`, `MainModelField`, `ControlField`), it is represented as a **reference object**. Reference objects are pointers to another schema or reference object within the schema.
We need to **dereference** the schema to pull these out. Dereferencing may require recursion. We use the reference object's name directly for the field type name.
> Unfortunately, at this time, we've had limited success using external libraries to deference at runtime, so we do this ourselves.
##### Collection Types
When a field is annotated as a list of a single type, the schema object has an `items` property. They may be a schema object or reference object and must be parsed to determine the item type.
We use the item type for field type name. The cardinality is `"COLLECTION"`.
##### Single or Collection Types
When a field is annotated as a union of a type and list of that type, the schema object has an `anyOf` property, which holds a list of valid types for the union.
After verifying that the union has two members (a type and list of the same type), we use the type for field type name, with cardinality `"SINGLE_OR_COLLECTION"`.
##### Optional Fields
In OpenAPI v3.1, when an object is optional, it is put into an `anyOf` along with a primitive schema object with `type: 'null'`.
Handling this adds a fair bit of complexity, as we now must filter out the `'null'` types and work with the remaining types as described above.
If there is a single remaining schema object, we must recursively call to `parseFieldType()` to get parse it.
#### Building Field Input Templates
Now that we have a field type, we can build an input template for the field.
Stateful fields all get a function to build their template, while stateless fields are constructed directly. This is possible because stateless fields have no default value or constraints.
See [buildFieldInputTemplate.ts].
#### Building Field Output Templates
Field outputs are similar to stateless fields - they do not have any value in the frontend. When building their templates, we don't need a special function for each field type.
See [buildFieldOutputTemplate.ts].
### Managing reactflow State
As described above, the workflow editor state is the essentially the reactflow state, plus some extra metadata.
We provide reactflow with an array of nodes and edges via redux, and a number of [event handlers][reactflow-events]. These handlers dispatch redux actions, managing nodes and edges.
The pieces of redux state relevant to workflows are:
- `state.nodes.nodes`: the reactflow nodes state
- `state.nodes.edges`: the reactflow edges state
- `state.nodes.workflow`: the workflow metadata
#### Building Nodes and Edges
A reactflow node has a few important top-level properties:
- `id`: unique identifier
- `type`: a string that maps to a react component to render the node
- `position`: XY coordinates
- `data`: arbitrary data
When the user adds a node, we build **invocation node data**, storing it in `data`. Invocation properties (e.g. type, version, label, etc.) are copied from the invocation template. Inputs and outputs are built from the invocation template's field templates.
See [buildInvocationNode.ts].
Edges are managed by reactflow, but briefly, they consist of:
- `source`: id of the source node
- `sourceHandle`: id of the source node handle (output field)
- `target`: id of the target node
- `targetHandle`: id of the target node handle (input field)
> Edge creation is gated behind validation logic. This validation compares the input and output field types and overall graph state.
#### Building a Workflow
Building a workflow entity is as simple as dropping the nodes, edges and metadata into an object.
Each node and edge is parsed with a zod schema, which serves to strip out any unneeded data.
See [buildWorkflow.ts].
#### Loading a Workflow
Workflows may be loaded from external sources or the user's local instance. In all cases, the workflow needs to be handled with care, as an untrusted object.
Loading has a few stages which may throw or warn if there are problems:
- Parsing the workflow data structure itself, [migrating](#workflow-migrations) it if necessary (throws)
- Check for a template for each node (warns)
- Check each node's version against its template (warns)
- Validate the source and target of each edge (warns)
This validation occurs in [validateWorkflow.ts].
If there are no fatal errors, the workflow is then stored in redux state.
### Workflow Migrations
When the workflow schema changes, we may need to perform some data migrations. This occurs as workflows are loaded. zod schemas for each workflow schema version is retained to facilitate migrations.
Previous schemas are in folders in `invokeai/frontend/web/src/features/nodes/types/`, eg `v1/`.
Migration logic is in [migrations.ts].
<!-- links -->
[pydantic]: https://github.com/pydantic/pydantic 'pydantic'
[zod]: https://github.com/colinhacks/zod 'zod'
[openapi-types]: https://github.com/kogosoftwarellc/open-api/tree/main/packages/openapi-types 'openapi-types'
[reactflow]: https://github.com/xyflow/xyflow 'reactflow'
[reactflow-concepts]: https://reactflow.dev/learn/concepts/terms-and-definitions
[reactflow-events]: https://reactflow.dev/api-reference/react-flow#event-handlers
[buildWorkflow.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/buildWorkflow.ts
[nodesSlice.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/store/nodesSlice.ts
[buildLinearTextToImageGraph.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/graph/buildLinearTextToImageGraph.ts
[buildNodesGraph.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/graph/buildNodesGraph.ts
[buildInvocationNode.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/node/buildInvocationNode.ts
[validateWorkflow.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/validateWorkflow.ts
[migrations.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/workflow/migrations.ts
[parseSchema.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/parseSchema.ts
[buildFieldInputTemplate.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/buildFieldInputTemplate.ts
[buildFieldOutputTemplate.ts]: https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/src/features/nodes/util/schema/buildFieldOutputTemplate.ts

589
docs/deprecated/CLI.md Normal file
View File

@ -0,0 +1,589 @@
---
title: Command-Line Interface
---
# :material-bash: CLI
## **Interactive Command Line Interface**
The InvokeAI command line interface (CLI) provides scriptable access
to InvokeAI's features.Some advanced features are only available
through the CLI, though they eventually find their way into the WebUI.
The CLI is accessible from the `invoke.sh`/`invoke.bat` launcher by
selecting option (1). Alternatively, it can be launched directly from
the command line by activating the InvokeAI environment and giving the
command:
```bash
invokeai
```
After some startup messages, you will be presented with the `invoke> `
prompt. Here you can type prompts to generate images and issue other
commands to load and manipulate generative models. The CLI has a large
number of command-line options that control its behavior. To get a
concise summary of the options, call `invokeai` with the `--help` argument:
```bash
invokeai --help
```
The script uses the readline library to allow for in-line editing, command
history (++up++ and ++down++), autocompletion, and more. To help keep track of
which prompts generated which images, the script writes a log file of image
names and prompts to the selected output directory.
Here is a typical session
```bash
PS1:C:\Users\fred> invokeai
* Initializing, be patient...
* Initializing, be patient...
>> Initialization file /home/lstein/invokeai/invokeai.init found. Loading...
>> Internet connectivity is True
>> InvokeAI, version 2.3.0-rc5
>> InvokeAI runtime directory is "/home/lstein/invokeai"
>> GFPGAN Initialized
>> CodeFormer Initialized
>> ESRGAN Initialized
>> Using device_type cuda
>> xformers memory-efficient attention is available and enabled
(...more initialization messages...)
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
invoke> ashley judd riding a camel -n2 -s150
Outputs:
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
invoke> "there's a fly in my soup" -n6 -g
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
invoke> q
```
![invoke-py-demo](../assets/dream-py-demo.png)
## Arguments
The script recognizes a series of command-line switches that will
change important global defaults, such as the directory for image
outputs and the location of the model weight files.
### List of arguments recognized at the command line
These command-line arguments can be passed to `invoke.py` when you first run it
from the Windows, Mac or Linux command line. Some set defaults that can be
overridden on a per-prompt basis (see
[List of prompt arguments](#list-of-prompt-arguments). Others
| Argument <img width="240" align="right"/> | Shortcut <img width="100" align="right"/> | Default <img width="320" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------- |
| `--help` | `-h` | | Print a concise help message. |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Location for generated images. |
| `--prompt_as_dir` | `-p` | `False` | Name output directories using the prompt text. |
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
| `--model <modelname>` | | `stable-diffusion-1.5` | Loads the initial model specified in configs/models.yaml. |
| `--ckpt_convert ` | | `False` | If provided both .ckpt and .safetensors files will be auto-converted into diffusers format in memory |
| `--autoconvert <path>` | | `None` | On startup, scan the indicated directory for new .ckpt/.safetensor files and automatically convert and import them |
| `--precision` | | `fp16` | Provide `fp32` for full precision mode, `fp16` for half-precision. `fp32` needed for Macintoshes and some NVidia cards. |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--safety-checker` | | `False` | Activate safety checker for NSFW and other potentially disturbing imagery |
| `--patchmatch`, `--no-patchmatch` | | `--patchmatch` | Load/Don't load the PatchMatch inpainting extension |
| `--xformers`, `--no-xformers` | | `--xformers` | Load/Don't load the Xformers memory-efficient attention module (CUDA only) |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
| `--config <path>` | | `configs/models.yaml` | Configuration file for models and their weights. |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate per prompt. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image | `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--strength <float>` | `-s<float>` | `0.75` | For img2img: how hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
| `--fit` | `-F` | `False` | For img2img: scale the init image to fit into the specified -H and -W dimensions |
| `--grid` | `-g` | `False` | Save all image series as a grid rather than individually. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use `-h` to get list of available samplers. |
| `--seamless` | | `False` | Create interesting effects by tiling elements of the image. |
| `--embedding_path <path>` | | `None` | Path to pre-trained embedding manager checkpoints, for custom models |
| `--gfpgan_model_path` | | `experiments/pretrained_models/GFPGANv1.4.pth` | Path to GFPGAN model file. |
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
!!! warning "These arguments are deprecated but still work"
<div align="center" markdown>
| Argument | Shortcut | Default | Description |
|--------------------|------------|---------------------|--------------|
| `--full_precision` | | `False` | Same as `--precision=fp32`|
| `--weights <path>` | | `None` | Path to weights file; use `--model stable-diffusion-1.4` instead |
| `--laion400m` | `-l` | `False` | Use older LAION400m weights; use `--model=laion400m` instead |
</div>
!!! tip
On Windows systems, you may run into
problems when passing the invoke script standard backslashed path
names because the Python interpreter treats "\" as an escape.
You can either double your slashes (ick): `C:\\path\\to\\my\\file`, or
use Linux/Mac style forward slashes (better): `C:/path/to/my/file`.
## The .invokeai initialization file
To start up invoke.py with your preferred settings, place your desired
startup options in a file in your home directory named `.invokeai` The
file should contain the startup options as you would type them on the
command line (`--steps=10 --grid`), one argument per line, or a
mixture of both using any of the accepted command switch formats:
!!! example "my unmodified initialization file"
```bash title="~/.invokeai" linenums="1"
# InvokeAI initialization file
# This is the InvokeAI initialization file, which contains command-line default values.
# Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting
# or renaming it and then running invokeai-configure again.
# The --root option below points to the folder in which InvokeAI stores its models, configs and outputs.
--root="/Users/mauwii/invokeai"
# the --outdir option controls the default location of image files.
--outdir="/Users/mauwii/invokeai/outputs"
# You may place other frequently-used startup commands here, one or more per line.
# Examples:
# --web --host=0.0.0.0
# --steps=20
# -Ak_euler_a -C10.0
```
!!! note
The initialization file only accepts the command line arguments.
There are additional arguments that you can provide on the `invoke>` command
line (such as `-n` or `--iterations`) that cannot be entered into this file.
Also be alert for empty blank lines at the end of the file, which will cause
an arguments error at startup time.
## List of prompt arguments
After the invoke.py script initializes, it will present you with a `invoke>`
prompt. Here you can enter information to generate images from text
([txt2img](#txt2img)), to embellish an existing image or sketch
([img2img](#img2img)), or to selectively alter chosen regions of the image
([inpainting](#inpainting)).
### txt2img
!!! example ""
```bash
invoke> waterfall and rainbow -W640 -H480
```
This will create the requested image with the dimensions 640 (width)
and 480 (height).
Here are the invoke> command that apply to txt2img:
| Argument <img width="680" align="right"/> | Shortcut <img width="420" align="right"/> | Default <img width="480" align="right"/> | Description |
| ----------------------------------------- | ----------------------------------------- | ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| "my prompt" | | | Text prompt to use. The quotation marks are optional. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate from this prompt |
| `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--cfg_scale <float>` | `-C<float>` | `7.5` | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| `--seed <int>` | `-S<int>` | `None` | Set the random seed for the next series of images. This can be used to recreate an image generated previously. |
| `--sampler <sampler>` | `-A<sampler>` | `k_lms` | Sampler to use. Use -h to get list of available samplers. |
| `--karras_max <int>` | | `29` | When using k\_\* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| `--hires_fix` | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--png_compression <0-9>` | `-z<0-9>` | `6` | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--grid` | `-g` | `False` | Turn on grid mode to return a single image combining all the images generated by this prompt |
| `--individual` | `-i` | `True` | Turn off grid mode (deprecated; leave off --grid instead) |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Temporarily change the location of these images |
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--seamless_axes` | | `x,y` | Specify which axes to use circular convolution on. |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization` | `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](../features/OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75` | Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--facetool_strength <float>` | `-G <float> ` | `-G0` | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
!!! note
the width and height of the image must be multiples of 64. You can
provide different values, but they will be rounded down to the nearest multiple
of 64.
!!! example "This is a example of img2img"
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
This will modify the indicated vacation photograph by making it more like the
prompt. Results will vary greatly depending on what is in the image. We also ask
to --fit the image into a box no bigger than 640x480. Otherwise the image size
will be identical to the provided photo and you may run out of memory if it is
large.
In addition to the command-line options recognized by txt2img, img2img accepts
additional options:
| Argument <img width="160" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ----------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `--init_img <path>` | `-I<path>` | `None` | Path to the initialization image |
| `--fit` | `-F` | `False` | Scale the image to fit into the specified -H and -W dimensions |
| `--strength <float>` | `-s<float>` | `0.75` | How hard to try to match the prompt to the initial image. Ranges from 0.0-0.99, with higher values replacing the initial image completely. |
### inpainting
!!! example ""
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -M./vacation-mask.png -W640 -H480 --fit
```
This will do the same thing as img2img, but image alterations will
only occur within transparent areas defined by the mask file specified
by `-M`. You may also supply just a single initial image with the areas
to overpaint made transparent, but you must be careful not to destroy
the pixels underneath when you create the transparent areas. See
[Inpainting](INPAINTING.md) for details.
inpainting accepts all the arguments used for txt2img and img2img, as well as
the --mask (-M) and --text_mask (-tm) arguments:
| Argument <img width="100" align="right"/> | Shortcut | Default | Description |
| ----------------------------------------- | ------------------------ | ------- | ------------------------------------------------------------------------------------------------ |
| `--init_mask <path>` | `-M<path>` | `None` | Path to an image the same size as the initial_image, with areas for inpainting made transparent. |
| `--invert_mask ` | | False | If true, invert the mask so that transparent areas are opaque and vice versa. |
| `--text_mask <prompt> [<float>]` | `-tm <prompt> [<float>]` | <none> | Create a mask from a text prompt describing part of the image |
The mask may either be an image with transparent areas, in which case the
inpainting will occur in the transparent areas only, or a black and white image,
in which case all black areas will be painted into.
`--text_mask` (short form `-tm`) is a way to generate a mask using a text
description of the part of the image to replace. For example, if you have an
image of a breakfast plate with a bagel, toast and scrambled eggs, you can
selectively mask the bagel and replace it with a piece of cake this way:
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel
```
The algorithm uses <a
href="https://github.com/timojl/clipseg">clipseg</a> to classify different
regions of the image. The classifier puts out a confidence score for each region
it identifies. Generally regions that score above 0.5 are reliable, but if you
are getting too much or too little masking you can adjust the threshold down (to
get more mask), or up (to get less). In this example, by passing `-tm` a higher
value, we are insisting on a more stringent classification.
```bash
invoke> a piece of cake -I /path/to/breakfast.png -tm bagel 0.6
```
### Custom Styles and Subjects
You can load and use hundreds of community-contributed Textual
Inversion models just by typing the appropriate trigger phrase. Please
see [Concepts Library](../features/CONCEPTS.md) for more details.
## Other Commands
The CLI offers a number of commands that begin with "!".
### Postprocessing images
To postprocess a file using face restoration or upscaling, use the `!fix`
command.
#### `!fix`
This command runs a post-processor on a previously-generated image. It takes a
PNG filename or path and applies your choice of the `-U`, `-G`, or `--embiggen`
switches in order to fix faces or upscale. If you provide a filename, the script
will look for it in the current output directory. Otherwise you can provide a
full or partial path to the desired file.
Some examples:
!!! example "Upscale to 4X its original size and fix faces using codeformer"
```bash
invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer
```
!!! example "Use the GFPGAN algorithm to fix faces, then upscale to 3X using --embiggen"
```bash
invoke> !fix 0000045.4829112.png -G0.8 -ft gfpgan
>> fixing outputs/img-samples/0000045.4829112.png
>> retrieved seed 4829112 and prompt "boy enjoying a banana split"
>> GFPGAN - Restoring Faces for image seed:4829112
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
```
#### `!mask`
This command takes an image, a text prompt, and uses the `clipseg` algorithm to
automatically generate a mask of the area that matches the text prompt. It is
useful for debugging the text masking process prior to inpainting with the
`--text_mask` argument. See [INPAINTING.md] for details.
### Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script. There are several
different model formats, each described in the [Model Installation
Guide](../installation/050_INSTALLING_MODELS.md).
#### `!models`
This prints out a list of the models defined in `config/models.yaml'. The active
model is bold-faced
Example:
<pre>
inpainting-1.5 not loaded Stable Diffusion inpainting model
<b>stable-diffusion-1.5 active Stable Diffusion v1.5</b>
waifu-diffusion not loaded Waifu Diffusion v1.4
</pre>
#### `!switch <model>`
This quickly switches from one model to another without leaving the CLI script.
`invoke.py` uses a memory caching system; once a model has been loaded,
switching back and forth is quick. The following example shows this in action.
Note how the second column of the `!models` table changes to `cached` after a
model is first loaded, and that the long initialization step is not needed when
loading a cached model.
#### `!import_model <hugging_face_repo_ID>`
This imports and installs a `diffusers`-style model that is stored on
the [HuggingFace Web Site](https://huggingface.co). You can look up
any [Stable Diffusion diffusers
model](https://huggingface.co/models?library=diffusers) and install it
with a command like the following:
```bash
!import_model prompthero/openjourney
```
#### `!import_model <path/to/diffusers/directory>`
If you have a copy of a `diffusers`-style model saved to disk, you can
import it by passing the path to model's top-level directory.
#### `!import_model <url>`
For a `.ckpt` or `.safetensors` file, if you have a direct download
URL for the file, you can provide it to `!import_model` and the file
will be downloaded and installed for you.
#### `!import_model <path/to/model/weights.ckpt>`
This command imports a new model weights file into InvokeAI, makes it available
for image generation within the script, and writes out the configuration for the
model into `config/models.yaml` for use in subsequent sessions.
Provide `!import_model` with the path to a weights file ending in `.ckpt`. If
you type a partial path and press tab, the CLI will autocomplete. Although it
will also autocomplete to `.vae` files, these are not currenty supported (but
will be soon).
When you hit return, the CLI will prompt you to fill in additional information
about the model, including the short name you wish to use for it with the
`!switch` command, a brief description of the model, the default image width and
height to use with this model, and the model's configuration file. The latter
three fields are automatically filled with reasonable defaults. In the example
below, the bold-faced text shows what the user typed in with the exception of
the width, height and configuration file paths, which were filled in
automatically.
#### `!import_model <path/to/directory_of_models>`
If you provide the path of a directory that contains one or more
`.ckpt` or `.safetensors` files, the CLI will scan the directory and
interactively offer to import the models it finds there. Also see the
`--autoconvert` command-line option.
#### `!edit_model <name_of_model>`
The `!edit_model` command can be used to modify a model that is already defined
in `config/models.yaml`. Call it with the short name of the model you wish to
modify, and it will allow you to modify the model's `description`, `weights` and
other fields.
Example:
<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
>> New configuration:
waifu-diffusion:
config: configs/stable-diffusion/v1-inference.yaml
description: Waifu diffusion v1.4beta
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
height: 512
width: 512
OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
### History processing
The CLI provides a series of convenient commands for reviewing previous actions,
retrieving them, modifying them, and re-running them.
#### `!history`
The invoke script keeps track of all the commands you issue during a session,
allowing you to re-run them. On Mac and Linux systems, it also writes the
command-line history out to disk, giving you access to the most recent 1000
commands issued.
The `!history` command will return a numbered list of all the commands issued
during the session (Windows), or the most recent 1000 commands (Mac|Linux). You
can then repeat a command by using the command `!NNN`, where "NNN" is the
history line number. For example:
!!! example ""
```bash
invoke> !history
...
[14] happy woman sitting under tree wearing broad hat and flowing garment
[15] beautiful woman sitting under tree wearing broad hat and flowing garment
[18] beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6
[20] watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
...
invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
####`!fetch`
This command retrieves the generation parameters from a previously generated
image and either loads them into the command line (Linux|Mac), or prints them
out in a comment for copy-and-paste (Windows). You may provide either the name
of a file in the current output directory, or a full file path. Specify path to
a folder with image png files, and wildcard \*.png to retrieve the dream command
used to generate the images, and save them to a file commands.txt for further
processing.
!!! example "load the generation command for a single png file"
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
```
!!! example "fetch the generation commands from a batch of files and store them into `selected.txt`"
```bash
invoke> !fetch outputs\selected-imgs\*.png selected.txt
```
#### `!replay`
This command replays a text file generated by !fetch or created manually
!!! example
```bash
invoke> !replay outputs\selected-imgs\selected.txt
```
!!! note
These commands may behave unexpectedly if given a PNG file that was
not generated by InvokeAI.
#### `!search <search string>`
This is similar to !history but it only returns lines that contain
`search string`. For example:
```bash
invoke> !search surreal
[21] surrealist painting of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
#### `!clear`
This clears the search history from memory and disk. Be advised that this
operation is irreversible and does not issue any warnings!
## Command-line editing and completion
The command-line offers convenient history tracking, editing, and command
completion.
- To scroll through previous commands and potentially edit/reuse them, use the
++up++ and ++down++ keys.
- To edit the current command, use the ++left++ and ++right++ keys to position
the cursor, and then ++backspace++, ++delete++ or insert characters.
- To move to the very beginning of the command, type ++ctrl+a++ (or
++command+a++ on the Mac)
- To move to the end of the command, type ++ctrl+e++.
- To cut a section of the command, position the cursor where you want to start
cutting and type ++ctrl+k++
- To paste a cut section back in, position the cursor where you want to paste,
and type ++ctrl+y++
Windows users can get similar, but more limited, functionality if they launch
`invoke.py` with the `winpty` program and have the `pyreadline3` library
installed:
```batch
> winpty python scripts\invoke.py
```
On the Mac and Linux platforms, when you exit invoke.py, the last 1000 lines of
your command-line history will be saved. When you restart `invoke.py`, you can
access the saved history using the ++up++ key.
In addition, limited command-line completion is installed. In various contexts,
you can start typing your command and press ++tab++. A list of potential
completions will be presented to you. You can then type a little more, hit
++tab++ again, and eventually autocomplete what you want.
When specifying file paths using the one-letter shortcuts, the CLI will attempt
to complete pathnames for you. This is most handy for the `-I` (init image) and
`-M` (init mask) paths. To initiate completion, start the path with a slash
(`/`) or `./`. For example:
```bash
invoke> zebra with a mustache -I./test-pictures<TAB>
-I./test-pictures/Lincoln-and-Parrot.png -I./test-pictures/zebra.jpg -I./test-pictures/madonna.png
-I./test-pictures/bad-sketch.png -I./test-pictures/man_with_eagle/
```
You can then type ++z++, hit ++tab++ again, and it will autofill to `zebra.jpg`.
More text completion features (such as autocompleting seeds) are on their way.

167
docs/deprecated/EMBIGGEN.md Normal file
View File

@ -0,0 +1,167 @@
---
title: Embiggen
---
# :material-loupe: Embiggen
**upscale your images on limited memory machines**
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid
crashes and memory overloads during the Stable Diffusion process,
these effects are applied after Stable Diffusion has completed its
work.
In single image generations, you will see the output right away but
when you are using multiple iterations, the images will first be
generated and then upscaled and face restored after that process is
complete. While the image generation is taking place, you will still
be able to preview the base images.
If you wish to stop during the image generation but want to upscale or
face restore a particular generated image, pass it again with the same
prompt and generated seed along with the `-U` and `-G` prompt
arguments to perform those actions.
## Embiggen
If you wanted to be able to do more (pixels) without running out of VRAM,
or you want to upscale with details that couldn't possibly appear
without the context of a prompt, this is the feature to try out.
Embiggen automates the process of taking an init image, upscaling it,
cutting it into smaller tiles that slightly overlap, running all the
tiles through img2img to refine details with respect to the prompt,
and "stitching" the tiles back together into a cohesive image.
It automatically computes how many tiles are needed, and so it can be fed
*ANY* size init image and perform Img2Img on it (though it will be run only
one tile at a time, which can cause problems, see the Note at the end).
If you're familiar with "GoBig" (ala [progrock-stable](https://github.com/lowfuel/progrock-stable))
it's similar to that, except it can work up to an arbitrarily large size
(instead of just 2x), with tile overlaps configurable as a ratio, and
has extra logic to re-run any number of the tile sub-sections of the image
if for example a small part of a huge run got messed up.
### Usage
`-embiggen <scaling_factor> <esrgan_strength> <overlap_ratio OR overlap_pixels>`
Takes a scaling factor relative to the size of the `--init_img` (`-I`), followed by
ESRGAN upscaling strength (0 - 1.0), followed by minimum amount of overlap
between tiles as a decimal ratio (0 - 1.0) *OR* a number of pixels.
The scaling factor is how much larger than the `--init_img` the output
should be, and will multiply both x and y axis, so an image that is a
scaling factor of 3.0 has 3*3= 9 times as many pixels, and will take
(at least) 9 times as long (see overlap for why it might be
longer). If the `--init_img` is already the right size `-embiggen 1`,
and it can also be less than one if the init_img is too big.
Esrgan_strength defaults to 0.75, and the overlap_ratio defaults to
0.25, both are optional.
Unlike Img2Img, the `--width` (`-W`) and `--height` (`-H`) arguments
do not control the size of the image as a whole, but the size of the
tiles used to Embiggen the image.
ESRGAN is used to upscale the `--init_img` prior to cutting it into
tiles/pieces to run through img2img and then stitch back
together. Embiggen can be run without ESRGAN; just set the strength to
zero (e.g. `-embiggen 1.75 0`). The output of Embiggen can also be
upscaled after it's finished (`-U`).
The overlap is the minimum that tiles will overlap with adjacent
tiles, specified as either a ratio or a number of pixels. How much the
tiles overlap determines the likelihood the tiling will be noticable,
really small overlaps (e.g. a couple of pixels) may produce noticeable
grid-like fuzzy distortions in the final stitched image. Though, as
the overlapping space doesn't contribute to making the image bigger,
and the larger the overlap the more tiles (and the more time) it will
take to finish.
Because the overlapping parts of tiles don't "contribute" to
increasing size, every tile after the first in a row or column
effectively only covers an extra `1 - overlap_ratio` on each axis. If
the input/`--init_img` is same size as a tile, the ideal (for time)
scaling factors with the default overlap (0.25) are 1.75, 2.5, 3.25,
4.0, etc.
`-embiggen_tiles <spaced list of tiles>`
An advanced usage useful if you only want to alter parts of the image
while running Embiggen. It takes a list of tiles by number to run and
replace onto the initial image e.g. `1 3 5`. It's useful for either
fixing problem spots from a previous Embiggen run, or selectively
altering the prompt for sections of an image - for creative or
coherency reasons.
Tiles are numbered starting with one, and left-to-right,
top-to-bottom. So, if you are generating a 3x3 tiled image, the
middle row would be `4 5 6`.
`-embiggen_strength <strength>`
Another advanced option if you want to experiment with the strength parameter
that embiggen uses when it calls Img2Img. Values range from 0.0 to 1.0
and lower values preserve more of the character of the initial image.
Values that are too high will result in a completely different end image,
while values that are too low will result in an image not dissimilar to one
you would get with ESRGAN upscaling alone. The default value is 0.4.
### Examples
!!! example ""
Running Embiggen with 512x512 tiles on an existing image, scaling up by a factor of 2.5x;
and doing the same again (default ESRGAN strength is 0.75, default overlap between tiles is 0.25):
```bash
invoke > a photo of a forest at sunset -s 100 -W 512 -H 512 -I outputs/forest.png -f 0.4 -embiggen 2.5
invoke > a photo of a forest at sunset -s 100 -W 512 -H 512 -I outputs/forest.png -f 0.4 -embiggen 2.5 0.75 0.25
```
If your starting image was also 512x512 this should have taken 9 tiles.
!!! example ""
If there weren't enough clouds in the sky of that forest you just made
(and that image is about 1280 pixels (512*2.5) wide A.K.A. three
512x512 tiles with 0.25 overlaps wide) we can replace that top row of
tiles:
```bash
invoke> a photo of puffy clouds over a forest at sunset -s 100 -W 512 -H 512 -I outputs/000002.seed.png -f 0.5 -embiggen_tiles 1 2 3
```
## Fixing Previously-Generated Images
It is easy to apply embiggen to any previously-generated file without having to
look up the original prompt and provide an initial image. Just use the
syntax `!fix path/to/file.png <embiggen>`. For example, you can rewrite the
previous command to look like this:
```bash
invoke> !fix ./outputs/000002.seed.png -embiggen_tiles 1 2 3
```
A new file named `000002.seed.fixed.png` will be created in the output directory. Note that
the `!fix` command does not replace the original file, unlike the behavior at generate time.
You do not need to provide the prompt, and `!fix` automatically selects a good strength for
embiggen-ing.
!!! note
Because the same prompt is used on all the tiled images, and the model
doesn't have the context of anything outside the tile being run - it
can end up creating repeated pattern (also called 'motifs') across all
the tiles based on that prompt. The best way to combat this is
lowering the `--strength` (`-f`) to stay more true to the init image,
and increasing the number of steps so there is more compute-time to
create the detail. Anecdotally `--strength` 0.35-0.45 works pretty
well on most things. It may also work great in some examples even with
the `--strength` set high for patterns, landscapes, or subjects that
are more abstract. Because this is (relatively) fast, you can also
preserve the best parts from each.
Author: [Travco](https://github.com/travco)

View File

@ -0,0 +1,310 @@
---
title: Inpainting
---
# :octicons-paintbrush-16: Inpainting
## **Creating Transparent Regions for Inpainting**
Inpainting is really cool. To do it, you start with an initial image and use a
photoeditor to make one or more regions transparent (i.e. they have a "hole" in
them). You then provide the path to this image at the dream> command line using
the `-I` switch. Stable Diffusion will only paint within the transparent region.
There's a catch. In the current implementation, you have to prepare the initial
image correctly so that the underlying colors are preserved under the
transparent area. Many imaging editing applications will by default erase the
color information under the transparent pixels and replace them with white or
black, which will lead to suboptimal inpainting. It often helps to apply
incomplete transparency, such as any value between 1 and 99%
You also must take care to export the PNG file in such a way that the color
information is preserved. There is often an option in the export dialog that
lets you specify this.
If your photoeditor is erasing the underlying color information, `dream.py` will
give you a big fat warning. If you can't find a way to coax your photoeditor to
retain color values under transparent areas, then you can combine the `-I` and
`-M` switches to provide both the original unedited image and the masked
(partially transparent) image:
```bash
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
```
## **Masking using Text**
You can also create a mask using a text prompt to select the part of the image
you want to alter, using the [clipseg](https://github.com/timojl/clipseg)
algorithm. This works on any image, not just ones generated by InvokeAI.
The `--text_mask` (short form `-tm`) option takes two arguments. The first
argument is a text description of the part of the image you wish to mask (paint
over). If the text description contains a space, you must surround it with
quotation marks. The optional second argument is the minimum threshold for the
mask classifier's confidence score, described in more detail below.
To see how this works in practice, here's an image of a still life painting that
I got off the web.
<figure markdown>
![still life scaled](../assets/still-life-scaled.jpg)
</figure>
You can selectively mask out the orange and replace it with a baseball in this
way:
```bash
invoke> a baseball -I /path/to/still_life.png -tm orange
```
<figure markdown>
![](../assets/still-life-inpainted.png)
</figure>
The clipseg classifier produces a confidence score for each region it
identifies. Generally regions that score above 0.5 are reliable, but if you are
getting too much or too little masking you can adjust the threshold down (to get
more mask), or up (to get less). In this example, by passing `-tm` a higher
value, we are insisting on a tigher mask. However, if you make it too high, the
orange may not be picked up at all!
```bash
invoke> a baseball -I /path/to/breakfast.png -tm orange 0.6
```
The `!mask` command may be useful for debugging problems with the text2mask
feature. The syntax is `!mask /path/to/image.png -tm <text> <threshold>`
It will generate three files:
- The image with the selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.selected.png
- The image with the un-selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.deselected.png
- The image with the selected area converted into a black and white image
according to the threshold level
- it will be named XXXXX.<imagename>.<prompt>.masked.png
The `.masked.png` file can then be directly passed to the `invoke>` prompt in
the CLI via the `-M` argument. Do not attempt this with the `selected.png` or
`deselected.png` files, as they contain some transparency throughout the image
and will not produce the desired results.
Here is an example of how `!mask` works:
```bash
invoke> !mask ./test-pictures/curly.png -tm hair 0.5
>> generating masks from ./test-pictures/curly.png
>> Initializing clipseg model for text to mask inference
Outputs:
[941.1] outputs/img-samples/000019.curly.hair.deselected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.2] outputs/img-samples/000019.curly.hair.selected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.3] outputs/img-samples/000019.curly.hair.masked.png: !mask ./test-pictures/curly.png -tm hair 0.5
```
<figure markdown>
![curly](../assets/outpainting/curly.png)
<figcaption>Original image "curly.png"</figcaption>
</figure>
<figure markdown>
![curly hair selected](../assets/inpainting/000019.curly.hair.selected.png)
<figcaption>000019.curly.hair.selected.png</figcaption>
</figure>
<figure markdown>
![curly hair deselected](../assets/inpainting/000019.curly.hair.deselected.png)
<figcaption>000019.curly.hair.deselected.png</figcaption>
</figure>
<figure markdown>
![curly hair masked](../assets/inpainting/000019.curly.hair.masked.png)
<figcaption>000019.curly.hair.masked.png</figcaption>
</figure>
It looks like we selected the hair pretty well at the 0.5 threshold (which is
the default, so we didn't actually have to specify it), so let's have some fun:
```bash
invoke> medusa with cobras -I ./test-pictures/curly.png -M 000019.curly.hair.masked.png -C20
>> loaded input image of size 512x512 from ./test-pictures/curly.png
...
Outputs:
[946] outputs/img-samples/000024.801380492.png: "medusa with cobras" -s 50 -S 801380492 -W 512 -H 512 -C 20.0 -I ./test-pictures/curly.png -A k_lms -f 0.75
```
<figure markdown>
![](../assets/inpainting/000024.801380492.png)
</figure>
You can also skip the `!mask` creation step and just select the masked
region directly:
```bash
invoke> medusa with cobras -I ./test-pictures/curly.png -tm hair -C20
```
## Using the RunwayML inpainting model
The
[RunwayML Inpainting Model v1.5](https://huggingface.co/runwayml/stable-diffusion-inpainting)
is a specialized version of
[Stable Diffusion v1.5](https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5)
that contains extra channels specifically designed to enhance inpainting and
outpainting. While it can do regular `txt2img` and `img2img`, it really shines
when filling in missing regions. It has an almost uncanny ability to blend the
new regions with existing ones in a semantically coherent way.
To install the inpainting model, follow the
[instructions](../installation/050_INSTALLING_MODELS.md) for installing a new model.
You may use either the CLI (`invoke.py` script) or directly edit the
`configs/models.yaml` configuration file to do this. The main thing to watch out
for is that the the model `config` option must be set up to use
`v1-inpainting-inference.yaml` rather than the `v1-inference.yaml` file that is
used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that looks like
this one:
```yml
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
```
As shown in the example, you may include a VAE fine-tuning weights file as well.
This is strongly recommended.
To use the custom inpainting model, launch `invoke.py` with the argument
`--model inpainting-1.5` or alternatively from within the script use the
`!switch inpainting-1.5` command to load and switch to the inpainting model.
You can now do inpainting and outpainting exactly as described above, but there
will (likely) be a noticeable improvement in coherence. Txt2img and Img2img will
work as well.
There are a few caveats to be aware of:
1. The inpainting model is larger than the standard model, and will use nearly 4
GB of GPU VRAM. This makes it unlikely to run on a 4 GB graphics card.
2. When operating in Img2img mode, the inpainting model is much less steerable
than the standard model. It is great for making small changes, such as
changing the pattern of a fabric, or slightly changing a subject's expression
or hair, but the model will resist making the dramatic alterations that the
standard model lets you do.
3. While the `--hires` option works fine with the inpainting model, some special
features, such as `--embiggen` are disabled.
4. Prompt weighting (`banana++ sushi`) and merging work well with the inpainting
model, but prompt swapping
(`a ("fluffy cat").swap("smiling dog") eating a hotdog`) will not have any
effect due to the way the model is set up. You may use text masking (with
`-tm thing-to-mask`) as an effective replacement.
5. The model tends to oversharpen image if you use high step or CFG values. If
you need to do large steps, use the standard model.
6. The `--strength` (`-f`) option has no effect on the inpainting model due to
its fundamental differences with the standard model. It will always take the
full number of steps you specify.
## Troubleshooting
Here are some troubleshooting tips for inpainting and outpainting.
## Inpainting is not changing the masked region enough!
One of the things to understand about how inpainting works is that it is
equivalent to running img2img on just the masked (transparent) area. img2img
builds on top of the existing image data, and therefore will attempt to preserve
colors, shapes and textures to the best of its ability. Unfortunately this means
that if you want to make a dramatic change in the inpainted region, for example
replacing a red wall with a blue one, the algorithm will fight you.
You have a couple of options. The first is to increase the values of the
requested steps (`-sXXX`), strength (`-f0.XX`), and/or condition-free guidance
(`-CXX.X`). If this is not working for you, a more extreme step is to provide
the `--inpaint_replace 0.X` (`-r0.X`) option. This value ranges from 0.0 to 1.0.
The higher it is the less attention the algorithm will pay to the data
underneath the masked region. At high values this will enable you to replace
colored regions entirely, but beware that the masked region mayl not blend in
with the surrounding unmasked regions as well.
---
## Recipe for GIMP
[GIMP](https://www.gimp.org/) is a popular Linux photoediting tool.
1. Open image in GIMP.
2. Layer->Transparency->Add Alpha Channel
3. Use lasso tool to select region to mask
4. Choose Select -> Float to create a floating selection
5. Open the Layers toolbar (^L) and select "Floating Selection"
6. Set opacity to a value between 0% and 99%
7. Export as PNG
8. In the export dialogue, Make sure the "Save colour values from transparent
pixels" checkbox is selected.
---
## Recipe for Adobe Photoshop
1. Open image in Photoshop
<figure markdown>
![step1](../assets/step1.png)
</figure>
2. Use any of the selection tools (Marquee, Lasso, or Wand) to select the area
you desire to inpaint.
<figure markdown>
![step2](../assets/step2.png)
</figure>
3. Because we'll be applying a mask over the area we want to preserve, you
should now select the inverse by using the ++shift+ctrl+i++ shortcut, or
right clicking and using the "Select Inverse" option.
4. You'll now create a mask by selecting the image layer, and Masking the
selection. Make sure that you don't delete any of the underlying image, or
your inpainting results will be dramatically impacted.
<figure markdown>
![step4](../assets/step4.png)
</figure>
5. Make sure to hide any background layers that are present. You should see the
mask applied to your image layer, and the image on your canvas should display
the checkered background.
<figure markdown>
![step5](../assets/step5.png)
</figure>
6. Save the image as a transparent PNG by using `File`-->`Save a Copy` from the
menu bar, or by using the keyboard shortcut ++alt+ctrl+s++
<figure markdown>
![step6](../assets/step6.png)
</figure>
7. After following the inpainting instructions above (either through the CLI or
the Web UI), marvel at your newfound ability to selectively invoke. Lookin'
good!
<figure markdown>
![step7](../assets/step7.png)
</figure>
8. In the export dialogue, Make sure the "Save colour values from transparent
pixels" checkbox is selected.

View File

@ -0,0 +1,171 @@
---
title: Outpainting
---
# :octicons-paintbrush-16: Outpainting
## Outpainting and outcropping
Outpainting is a process by which the AI generates parts of the image that are
outside its original frame. It can be used to fix up images in which the subject
is off center, or when some detail (often the top of someone's head!) is cut
off.
InvokeAI supports two versions of outpainting, one called "outpaint" and the
other "outcrop." They work slightly differently and each has its advantages and
drawbacks.
### Outpainting
Outpainting is the same as inpainting, except that the painting occurs in the
regions outside of the original image. To outpaint using the `invoke.py` command
line script, prepare an image in which the borders to be extended are pure
black. Add an alpha channel (if there isn't one already), and make the borders
completely transparent and the interior completely opaque. If you wish to modify
the interior as well, you may create transparent holes in the transparency
layer, which `img2img` will paint into as usual.
Pass the image as the argument to the `-I` switch as you would for regular
inpainting:
```bash
invoke> a stream by a river -I /path/to/transparent_img.png
```
You'll likely be delighted by the results.
### Tips
1. Do not try to expand the image too much at once. Generally it is best to
expand the margins in 64-pixel increments. 128 pixels often works, but your
mileage may vary depending on the nature of the image you are trying to
outpaint into.
2. There are a series of switches that can be used to adjust how the inpainting
algorithm operates. In particular, you can use these to minimize the seam
that sometimes appears between the original image and the extended part.
These switches are:
| switch | default | description |
| -------------------------- | ------- | ---------------------------------------------------------------------- |
| `--seam_size SEAM_SIZE ` | `0` | Size of the mask around the seam between original and outpainted image |
| `--seam_blur SEAM_BLUR` | `0` | The amount to blur the seam inwards |
| `--seam_strength STRENGTH` | `0.7` | The img2img strength to use when filling the seam |
| `--seam_steps SEAM_STEPS` | `10` | The number of steps to use to fill the seam. |
| `--tile_size TILE_SIZE` | `32` | The tile size to use for filling outpaint areas |
### Outcrop
The `outcrop` extension gives you a convenient `!fix` postprocessing command
that allows you to extend a previously-generated image in 64 pixel increments in
any direction. You can apply the module to any image previously-generated by
InvokeAI. Note that it works with arbitrary PNG photographs, but not currently
with JPG or other formats. Outcropping is particularly effective when combined
with the
[runwayML custom inpainting model](INPAINTING.md#using-the-runwayml-inpainting-model).
Consider this image:
<figure markdown>
![curly_woman](../assets/outpainting/curly.png)
</figure>
Pretty nice, but it's annoying that the top of her head is cut off. She's also a
bit off center. Let's fix that!
```bash
invoke> !fix images/curly.png --outcrop top 128 right 64 bottom 64
```
This is saying to apply the `outcrop` extension by extending the top of the
image by 128 pixels, and the right and bottom of the image by 64 pixels. You can
use any combination of top|left|right|bottom, and specify any number of pixels
to extend. You can also abbreviate `--outcrop` to `-c`.
The result looks like this:
<figure markdown>
![curly_woman_outcrop](../assets/outpainting/curly-outcrop-2.png)
</figure>
The new image is larger than the original (576x704) because 64 pixels were added
to the top and right sides. You will need enough VRAM to process an image of
this size.
#### Outcropping non-InvokeAI images
You can outcrop an arbitrary image that was not generated by InvokeAI,
but your results will vary. The `inpainting-1.5` model is highly
recommended, but if not feasible, then you may be able to improve the
output by conditioning the outcropping with a text prompt that
describes the scene using the `--new_prompt` argument:
```bash
invoke> !fix images/vacation.png --outcrop top 128 --new_prompt "family vacation"
```
You may also provide a different seed for outcropping to use by passing
`-S<seed>`. A negative seed will generate a new random seed.
A number of caveats:
1. Although you can specify any pixel values, they will be rounded up to the
nearest multiple of 64. Smaller values are better. Larger extensions are more
likely to generate artefacts. However, if you wish you can run the !fix
command repeatedly to cautiously expand the image.
2. The extension is stochastic, meaning that each time you run it you'll get a
slightly different result. You can run it repeatedly until you get an image
you like. Unfortunately `!fix` does not currently respect the `-n`
(`--iterations`) argument.
3. Your results will be _much_ better if you use the `inpaint-1.5` model
released by runwayML and installed by default by `invokeai-configure`.
This model was trained specifically to harmoniously fill in image gaps. The
standard model will work as well, but you may notice color discontinuities at
the border.
4. When using the `inpaint-1.5` model, you may notice subtle changes to the area
outside the masked region. This is because the model performs an
encoding/decoding on the image as a whole. This does not occur with the
standard model.
## Outpaint
The `outpaint` extension does the same thing, but with subtle differences.
Starting with the same image, here is how we would add an additional 64 pixels
to the top of the image:
```bash
invoke> !fix images/curly.png --out_direction top 64
```
(you can abbreviate `--out_direction` as `-D`.
The result is shown here:
<figure markdown>
![curly_woman_outpaint](../assets/outpainting/curly-outpaint.png)
</figure>
Although the effect is similar, there are significant differences from
outcropping:
- You can only specify one direction to extend at a time.
- The image is **not** resized. Instead, the image is shifted by the specified
number of pixels. If you look carefully, you'll see that less of the lady's
torso is visible in the image.
- Because the image dimensions remain the same, there's no rounding to multiples
of 64.
- Attempting to outpaint larger areas will frequently give rise to ugly ghosting
effects.
- For best results, try increasing the step number.
- If you don't specify a pixel value in `-D`, it will default to half of the
whole image, which is likely not what you want.
!!! tip
Neither `outpaint` nor `outcrop` are perfect, but we continue to tune
and improve them. If one doesn't work, try the other. You may also
wish to experiment with other `img2img` arguments, such as `-C`, `-f`
and `-s`.

View File

@ -0,0 +1,19 @@
# Translation
InvokeAI uses [Weblate](https://weblate.org) for translation. Weblate is a FOSS project providing a scalable translation service. Weblate automates the tedious parts of managing translation of a growing project, and the service is generously provided at no cost to FOSS projects like InvokeAI.
## Contributing
If you'd like to contribute by adding or updating a translation, please visit our [Weblate project](https://hosted.weblate.org/engage/invokeai/). You'll need to sign in with your GitHub account (a number of other accounts are supported, including Google).
Once signed in, select a language and then the Web UI component. From here you can Browse and Translate strings from English to your chosen language. Zen mode offers a simpler translation experience.
Your changes will be attributed to you in the automated PR process; you don't need to do anything else.
## Help & Questions
Please check Weblate's [documentation](https://docs.weblate.org/en/latest/index.html) or ping @psychedelicious or @blessedcoolant on Discord if you have any questions.
## Thanks
Thanks to the InvokeAI community for their efforts to translate the project!

View File

@ -0,0 +1,131 @@
---
title: Variations
---
# :material-tune-variant: Variations
## Intro
InvokeAI's support for variations enables you to do the following:
1. Generate a series of systematic variations of an image, given a prompt. The
amount of variation from one image to the next can be controlled.
2. Given two or more variations that you like, you can combine them in a
weighted fashion.
!!! Information ""
This cheat sheet provides a quick guide for how this works in practice, using
variations to create the desired image of Xena, Warrior Princess.
## Step 1 -- Find a base image that you like
The prompt we will use throughout is:
`#!bash "lucy lawless as xena, warrior princess, character portrait, high resolution."`
This will be indicated as `#!bash "prompt"` in the examples below.
First we let SD create a series of images in the usual way, in this case
requesting six iterations.
<figure markdown>
![var1](../assets/variation_walkthru/000001.3357757885.png)
<figcaption> Seed 3357757885 looks nice </figcaption>
</figure>
---
## Step 2 - Generating Variations
Let's try to generate some variations on this image. We select the "*"
symbol in the line of icons above the image in order to fix the prompt
and seed. Then we open up the "Variations" section of the generation
panel and use the slider to set the variation amount to 0.2. The
higher this value, the more each generated image will differ from the
previous one.
Now we run the prompt a second time, requesting six iterations. You
will see six images that are thematically related to each other. Try
increasing and decreasing the variation amount and see what happens.
### **Variation Sub Seeding**
Note that the output for each image has a `-V` option giving the "variant
subseed" for that image, consisting of a seed followed by the variation amount
used to generate it.
This gives us a series of closely-related variations, including the two shown
here.
<figure markdown>
![var2](../assets/variation_walkthru/000002.3647897225.png)
<figcaption>subseed 3647897225</figcaption>
</figure>
<figure markdown>
![var3](../assets/variation_walkthru/000002.1614299449.png)
<figcaption>subseed 1614299449</figcaption>
</figure>
I like the expression on Xena's face in the first one (subseed 3647897225), and
the armor on her shoulder in the second one (subseed 1614299449). Can we combine
them to get the best of both worlds?
We combine the two variations using `-V` (`--with_variations`). Again, we must
provide the seed for the originally-chosen image in order for this to work.
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1
Outputs:
./outputs/Xena/000003.1614299449.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1 -S3357757885
```
Here we are providing equal weights (0.1 and 0.1) for both the subseeds. The
resulting image is close, but not exactly what I wanted:
<figure markdown>
![var4](../assets/variation_walkthru/000003.1614299449.png)
<figcaption> subseed 1614299449 </figcaption>
</figure>
We could either try combining the images with different weights, or we can
generate more variations around the almost-but-not-quite image. We do the
latter, using both the `-V` (combining) and `-v` (variation strength) options.
Note that we use `-n6` to generate 6 variations:
```bash
invoke> "prompt" -S3357757885 -V3647897225,0.1,1614299449,0.1 -v0.05 -n6
Outputs:
./outputs/Xena/000004.3279757577.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3279757577:0.05 -S3357757885
./outputs/Xena/000004.2853129515.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2853129515:0.05 -S3357757885
./outputs/Xena/000004.3747154981.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,3747154981:0.05 -S3357757885
./outputs/Xena/000004.2664260391.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2664260391:0.05 -S3357757885
./outputs/Xena/000004.1642517170.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,1642517170:0.05 -S3357757885
./outputs/Xena/000004.2183375608.png: "prompt" -s50 -W512 -H512 -C7.5 -Ak_lms -V 3647897225:0.1,1614299449:0.1,2183375608:0.05 -S3357757885
```
This produces six images, all slight variations on the combination of the chosen
two images. Here's the one I like best:
<figure markdown>
![var5](../assets/variation_walkthru/000004.3747154981.png)
<figcaption> subseed 3747154981 </figcaption>
</figure>
As you can see, this is a very powerful tool, which when combined with subprompt
weighting, gives you great control over the content and quality of your
generated images.
## Variations and Samplers
The sampler you choose has a strong effect on variation strength. Some
samplers, such as `k_euler_a` are very "creative" and produce significant
amounts of image-to-image variation even when the seed is fixed and the
`-v` argument is very low. Others are more deterministic. Feel free to
experiment until you find the combination that you like.
Also be aware of the [Perlin Noise](../features/OTHER.md#thresholding-and-perlin-noise-initialization-options)
feature, which provides another way of introducing variability into your
image generation requests.

89
docs/features/CONCEPTS.md Normal file
View File

@ -0,0 +1,89 @@
---
title: Textual Inversion Embeddings and LoRAs
---
# :material-library-shelves: Textual Inversions and LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
Stable Diffusion image generation. They can augment SD with specialized subjects
and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TRAINING.md) produces `.pt`.
[Hugging Face](https://huggingface.co/sd-concepts-library) has
amassed a large library of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. You can also install your own or others' TI files
by placing them in the designated directory for the compatible model type
### An Example
Here are a few examples to illustrate how it works. All these images
were generated using the legacy command-line client and the Stable
Diffusion 1.5 model:
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
| ![](../assets/concepts/image1.png) | ![](../assets/concepts/image2.png) | ![](../assets/concepts/image3.png) | ![](../assets/concepts/image4.png) |
You can also combine styles and concepts:
<figure markdown>
| A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style |
| :--------------------------------------------------------: |
| ![](../assets/concepts/image5.png) |
</figure>
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
files it finds there for compatible models. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
## Using LoRAs
LoRA files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights. You may
install any number of `.safetensors` LoRA files simply by copying them
into the `autoimport/lora` directory of the corresponding InvokeAI models
directory (usually `invokeai` in your home directory).
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.

View File

@ -6,151 +6,257 @@ title: Configuration
## Intro
Runtime settings, including the location of files and
directories, memory usage, and performance, are managed via the
`invokeai.yaml` config file or environment variables. A subset
of settings may be set via commandline arguments.
InvokeAI has numerous runtime settings which can be used to adjust
many aspects of its operations, including the location of files and
directories, memory usage, and performance. These settings can be
viewed and customized in several ways:
Settings sources are used in this order:
1. By editing settings in the `invokeai.yaml` file.
2. By setting environment variables.
3. On the command-line, when InvokeAI is launched.
- CLI args
- Environment variables
- `invokeai.yaml` settings
- Fallback: defaults
In addition, the most commonly changed settings are accessible
graphically via the `invokeai-configure` script.
### InvokeAI Root Directory
### How the Configuration System Works
On startup, InvokeAI searches for its "root" directory. This is the directory
that contains models, images, the database, and so on. It also contains
a configuration file called `invokeai.yaml`.
When InvokeAI is launched, the very first thing it needs to do is to
find its "root" directory, which contains its configuration files,
installed models, its database of images, and the folder(s) of
generated images themselves. In this document, the root directory will
be referred to as ROOT.
InvokeAI searches for the root directory in this order:
#### Finding the Root Directory
1. The `--root <path>` CLI arg.
2. The environment variable INVOKEAI_ROOT.
3. The directory containing the currently active virtual environment.
4. Fallback: a directory in the current user's home directory named `invokeai`.
To find its root directory, InvokeAI uses the following recipe:
### InvokeAI Configuration File
1. It first looks for the argument `--root <path>` on the command line
it was launched from, and uses the indicated path if present.
Inside the root directory, we read settings from the `invokeai.yaml` file.
2. Next it looks for the environment variable INVOKEAI_ROOT, and uses
the directory path found there if present.
It has two sections - one for internal use and one for user settings:
3. If neither of these are present, then InvokeAI looks for the
folder containing the `.venv` Python virtual environment directory for
the currently active environment. This directory is checked for files
expected inside the InvokeAI root before it is used.
```yaml
# Internal metadata - do not edit:
schema_version: 4
4. Finally, InvokeAI looks for a directory in the current user's home
directory named `invokeai`.
# Put user settings here - see https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/:
host: 0.0.0.0 # serve the app on your local network
models_dir: D:\invokeai\models # store models on an external drive
precision: float16 # always use fp16 precision
#### Reading the InvokeAI Configuration File
Once the root directory has been located, InvokeAI looks for a file
named `ROOT/invokeai.yaml`, and if present reads configuration values
from it. The top of this file looks like this:
```
InvokeAI:
Web Server:
host: localhost
port: 9090
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
Features:
esrgan: true
internet_available: true
log_tokenization: false
patchmatch: true
restore: true
...
```
The settings in this file will override the defaults. You only need
to change this file if the default for a particular setting doesn't
work for you.
This lines in this file are used to establish default values for
Invoke's settings. In the above fragment, the Web Server's listening
port is set to 9090 by the `port` setting.
You'll find an example file next to `invokeai.yaml` that shows the default values.
You can edit this file with a text editor such as "Notepad" (do not
use Word or any other word processor). When editing, be careful to
maintain the indentation, and do not add extraneous text, as syntax
errors will prevent InvokeAI from launching. A basic guide to the
format of YAML files can be found
[here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/).
Some settings, like [Model Marketplace API Keys], require the YAML
to be formatted correctly. Here is a [basic guide to YAML files].
You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [6] in the launcher, "Re-run the
configure script".
#### Custom Config File Location
#### Reading Environment Variables
You can use any config file with the `--config` CLI arg. Pass in the path to the `invokeai.yaml` file you want to use.
Next InvokeAI looks for defined environment variables in the format
`INVOKEAI_<setting_name>`, for example `INVOKEAI_port`. Environment
variable values take precedence over configuration file variables. On
a Macintosh system, for example, you could change the port that the
web server listens on by setting the environment variable this way:
Note that environment variables will trump any settings in the config file.
### Environment Variables
All settings may be set via environment variables by prefixing `INVOKEAI_`
to the variable name. For example, `INVOKEAI_HOST` would set the `host`
setting.
For non-primitive values, pass a JSON-encoded string:
```sh
export INVOKEAI_REMOTE_API_TOKENS='[{"url_regex":"modelmarketplace", "token": "12345"}]'
```
export INVOKEAI_port=8000
invokeai-web
```
We suggest using `invokeai.yaml`, as it is more user-friendly.
Please check out these
[Macintosh](https://phoenixnap.com/kb/set-environment-variable-mac)
and
[Windows](https://phoenixnap.com/kb/windows-set-environment-variable)
guides for setting temporary and permanent environment variables.
### CLI Args
#### Reading the Command Line
A subset of settings may be specified using CLI args:
Lastly, InvokeAI takes settings from the command line, which override
everything else. The command-line settings have the same name as the
corresponding configuration file settings, preceded by a `--`, for
example `--port 8000`.
- `--root`: specify the root directory
- `--config`: override the default `invokeai.yaml` file location
If you are using the launcher (`invoke.sh` or `invoke.bat`) to launch
InvokeAI, then just pass the command-line arguments to the launcher:
### All Settings
Following the table are additional explanations for certain settings.
<!-- prettier-ignore-start -->
::: invokeai.app.services.config.config_default.InvokeAIAppConfig
options:
heading_level: 4
members: false
show_docstring_description: false
group_by_category: true
show_category_heading: false
<!-- prettier-ignore-end -->
#### Model Marketplace API Keys
Some model marketplaces require an API key to download models. You can provide a URL pattern and appropriate token in your `invokeai.yaml` file to provide that API key.
The pattern can be any valid regex (you may need to surround the pattern with quotes):
```yaml
remote_api_tokens:
# Any URL containing `models.com` will automatically use `your_models_com_token`
- url_regex: models.com
token: your_models_com_token
# Any URL matching this contrived regex will use `some_other_token`
- url_regex: '^[a-z]{3}whatever.*\.com$'
token: some_other_token
```
invoke.bat --port 8000 --host 0.0.0.0
```
The provided token will be added as a `Bearer` token to the network requests to download the model files. As far as we know, this works for all model marketplaces that require authorization.
The arguments will be applied when you select the web server option
(and the other options as well).
#### Model Hashing
If, on the other hand, you prefer to launch InvokeAI directly from the
command line, you would first activate the virtual environment (known
as the "developer's console" in the launcher), and run `invokeai-web`:
Models are hashed during installation, providing a stable identifier for models across all platforms. Hashing is a one-time operation.
```yaml
hashing_algorithm: blake3_single # default value
```
> C:\Users\Fred\invokeai\.venv\scripts\activate
(.venv) > invokeai-web --port 8000 --host 0.0.0.0
```
You might want to change this setting, depending on your system:
You can get a listing and brief instructions for each of the
command-line options by giving the `--help` argument:
- `blake3_single` (default): Single-threaded - best for spinning HDDs, still OK for SSDs
- `blake3_multi`: Parallelized, memory-mapped implementation - best for SSDs, terrible for spinning disks
- `random`: Skip hashing entirely - fastest but of course no hash
```
(.venv) > invokeai-web --help
usage: InvokeAI [-h] [--host HOST] [--port PORT] [--allow_origins [ALLOW_ORIGINS ...]] [--allow_credentials | --no-allow_credentials] [--allow_methods [ALLOW_METHODS ...]]
[--allow_headers [ALLOW_HEADERS ...]] [--esrgan | --no-esrgan] [--internet_available | --no-internet_available] [--log_tokenization | --no-log_tokenization]
[--patchmatch | --no-patchmatch] [--restore | --no-restore]
[--always_use_cpu | --no-always_use_cpu] [--free_gpu_mem | --no-free_gpu_mem] [--max_loaded_models MAX_LOADED_MODELS] [--max_cache_size MAX_CACHE_SIZE]
[--max_vram_cache_size MAX_VRAM_CACHE_SIZE] [--gpu_mem_reserved GPU_MEM_RESERVED] [--precision {auto,float16,float32,autocast}]
[--sequential_guidance | --no-sequential_guidance] [--xformers_enabled | --no-xformers_enabled] [--tiled_decode | --no-tiled_decode] [--root ROOT]
[--autoimport_dir AUTOIMPORT_DIR] [--lora_dir LORA_DIR] [--embedding_dir EMBEDDING_DIR] [--controlnet_dir CONTROLNET_DIR] [--conf_path CONF_PATH]
[--models_dir MODELS_DIR] [--legacy_conf_dir LEGACY_CONF_DIR] [--db_dir DB_DIR] [--outdir OUTDIR] [--from_file FROM_FILE]
[--use_memory_db | --no-use_memory_db] [--model MODEL] [--log_handlers [LOG_HANDLERS ...]] [--log_format {plain,color,syslog,legacy}]
[--log_level {debug,info,warning,error,critical}] [--version | --no-version]
```
During the first startup after upgrading to v4, all of your models will be hashed. This can take a few minutes.
## The Configuration Settings
Most common algorithms are supported, like `md5`, `sha256`, and `sha512`. These are typically much, much slower than either of the BLAKE3 variants.
The configuration settings are divided into several distinct
groups in `invokeia.yaml`:
#### Path Settings
### Web Server
These options set the paths of various directories and files used by InvokeAI. Any user-defined paths should be absolute paths.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
| `port` | `9090` | Network port number that the web server will listen on |
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
#### Logging
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
### Features
These configuration settings allow you to enable and disable various InvokeAI features:
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `esrgan` | `true` | Activate the ESRGAN upscaling options|
| `internet_available` | `true` | When a resource is not available locally, try to fetch it via the internet |
| `log_tokenization` | `false` | Before each text2image generation, print a color-coded representation of the prompt to the console; this can help understand why a prompt is not working as expected |
| `patchmatch` | `true` | Activate the "patchmatch" algorithm for improved inpainting |
### Generation
These options tune InvokeAI's memory and performance characteristics.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `sequential_guidance` | `false` | Calculate guidance in serial rather than in parallel, lowering memory requirements at the cost of some performance loss |
| `attention_type` | `auto` | Select the type of attention to use. One of `auto`,`normal`,`xformers`,`sliced`, or `torch-sdp` |
| `attention_slice_size` | `auto` | When "sliced" attention is selected, set the slice size. One of `auto`, `balanced`, `max` or the integers 1-8|
| `force_tiled_decode` | `false` | Force the VAE step to decode in tiles, reducing memory consumption at the cost of performance |
### Device
These options configure the generation execution device.
| Setting | Default Value | Description |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `device` | `auto` | Preferred execution device. One of `auto`, `cpu`, `cuda`, `cuda:1`, `mps`. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. |
| `precision` | `auto` | Floating point precision. One of `auto`, `float16` or `float32`. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system |
### Paths
These options set the paths of various directories and files used by
InvokeAI. Relative paths are interpreted relative to INVOKEAI_ROOT, so
if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
`autoimport/main`, then the corresponding directory will be located at
`/home/fred/invokeai/autoimport/main`.
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory |
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory |
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
| `outdir` | `outputs` | Location of the directory in which the gallery of generated and uploaded images will be stored |
| `use_memory_db` | `false` | Keep database information in memory rather than on disk; this will not preserve image gallery information across restarts |
Note that the autoimport directories will be searched recursively,
allowing you to organize the models into folders and subfolders in any
way you wish. In addition, while we have split up autoimport
directories by the type of model they contain, this isn't
necessary. You can combine different model types in the same folder
and InvokeAI will figure out what they are. So you can easily use just
one autoimport directory by commenting out the unneeded paths:
```
Paths:
autoimport_dir: autoimport
# lora_dir: null
# embedding_dir: null
# controlnet_dir: null
```
### Logging
These settings control the information, warning, and debugging
messages printed to the console log while InvokeAI is running:
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `log_handlers` | `console` | This controls where log messages are sent, and can be a list of one or more destinations. Values include `console`, `file`, `syslog` and `http`. These are described in more detail below |
| `log_format` | `color` | This controls the formatting of the log messages. Values are `plain`, `color`, `legacy` and `syslog` |
| `log_level` | `debug` | This filters messages according to the level of severity and can be one of `debug`, `info`, `warning`, `error` and `critical`. For example, setting to `warning` will display all messages at the warning level or higher, but won't display "debug" or "info" messages |
Several different log handler destinations are available, and multiple destinations are supported by providing a list:
```yaml
log_handlers:
- console
- syslog=localhost
- file=/var/log/invokeai.log
```
log_handlers:
- console
- syslog=localhost
- file=/var/log/invokeai.log
```
- `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
* `console` is the default. It prints log messages to the command-line window from which InvokeAI was launched.
- `syslog` is only available on Linux and Macintosh systems. It uses
* `syslog` is only available on Linux and Macintosh systems. It uses
the operating system's "syslog" facility to write log file entries
locally or to a remote logging machine. `syslog` offers a variety
of configuration options:
@ -163,7 +269,7 @@ log_handlers:
- Log to LAN-connected server "fredserver" using the facility LOG_USER and datagram packets.
```
- `http` can be used to log to a remote web server. The server must be
* `http` can be used to log to a remote web server. The server must be
properly configured to receive and act on log messages. The option
accepts the URL to the web server, and a `method` argument
indicating whether the message should be submitted using the GET or
@ -175,10 +281,7 @@ log_handlers:
The `log_format` option provides several alternative formats:
- `color` - default format providing time, date and a message, using text colors to distinguish different log severities
- `plain` - same as above, but monochrome text only
- `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
- `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.
[basic guide to yaml files]: https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
[Model Marketplace API Keys]: #model-marketplace-api-keys
* `color` - default format providing time, date and a message, using text colors to distinguish different log severities
* `plain` - same as above, but monochrome text only
* `syslog` - the log level and error message only, allowing the syslog system to attach the time and date
* `legacy` - a format similar to the one used by the legacy 2.3 InvokeAI releases.

View File

@ -94,8 +94,6 @@ A model that helps generate creative QR codes that still scan. Can also be used
**Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
**Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
@ -152,6 +150,7 @@ Start/End - 0 represents the start of the generation, 1 represents the end. The
Additionally, each section can be expanded with the "Show Advanced" button in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in during the generation process.
**Note:** T2I-Adapter models and ControlNet models cannot currently be used together.
## IP-Adapter
@ -165,7 +164,7 @@ Additionally, each section can be expanded with the "Show Advanced" button in o
There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [models.invoke.ai](https://models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter

View File

@ -1,35 +0,0 @@
---
title: Database
---
# Invoke's SQLite Database
Invoke uses a SQLite database to store image, workflow, model, and execution data.
We take great care to ensure your data is safe, by utilizing transactions and a database migration system.
Even so, when testing an prerelease version of the app, we strongly suggest either backing up your database or using an in-memory database. This ensures any prelease hiccups or databases schema changes will not cause problems for your data.
## Database Backup
Backing up your database is very simple. Invoke's data is stored in an `$INVOKEAI_ROOT` directory - where your `invoke.sh`/`invoke.bat` and `invokeai.yaml` files live.
To back up your database, copy the `invokeai.db` file from `$INVOKEAI_ROOT/databases/invokeai.db` to somewhere safe.
If anything comes up during prelease testing, you can simply copy your backup back into `$INVOKEAI_ROOT/databases/`.
## In-Memory Database
SQLite can run on an in-memory database. Your existing database is untouched when this mode is enabled, but your existing data won't be accessible.
This is very useful for testing, as there is no chance of a database change modifying your "physical" database.
To run Invoke with a memory database, edit your `invokeai.yaml` file, and add `use_memory_db: true` to the `Paths:` stanza:
```yaml
InvokeAI:
Development:
use_memory_db: true
```
Delete this line (or set it to `false`) to use your main database.

View File

@ -1,92 +0,0 @@
---
title: InvokeAI Gallery Panel
---
# :material-web: InvokeAI Gallery Panel
## Quick guided walkthrough of the Gallery Panel's features
The Gallery Panel is a fast way to review, find, and make use of images you've
generated and loaded. The Gallery is divided into Boards. The Uncategorized board is always
present but you can create your own for better organization.
![image](../assets/gallery/gallery.png)
### Board Display and Settings
At the very top of the Gallery Panel are the boards disclosure and settings buttons.
![image](../assets/gallery/top_controls.png)
The disclosure button shows the name of the currently selected board and allows you to show and hide the board thumbnails (shown in the image below).
![image](../assets/gallery/board_thumbnails.png)
The settings button opens a list of options.
![image](../assets/gallery/board_settings.png)
- ***Image Size*** this slider lets you control the size of the image previews (images of three different sizes).
- ***Auto-Switch to New Images*** if you turn this on, whenever a new image is generated, it will automatically be loaded into the current image panel on the Text to Image tab and into the result panel on the [Image to Image](IMG2IMG.md) tab. This will happen invisibly if you are on any other tab when the image is generated.
- ***Auto-Assign Board on Click*** whenever an image is generated or saved, it always gets put in a board. The board it gets put into is marked with AUTO (image of board marked). Turning on Auto-Assign Board on Click will make whichever board you last selected be the destination when you click Invoke. That means you can click Invoke, select a different board, and then click Invoke again and the two images will be put in two different boards. (bold)It's the board selected when Invoke is clicked that's used, not the board that's selected when the image is finished generating.(bold) Turning this off, enables the Auto-Add Board drop down which lets you set one specific board to always put generated images into. This also enables and disables the Auto-add to this Board menu item described below.
- ***Always Show Image Size Badge*** this toggles whether to show image sizes for each image preview (show two images, one with sizes shown, one without)
Below these two buttons, you'll see the Search Boards text entry area. You use this to search for specific boards by the name of the board.
Next to it is the Add Board (+) button which lets you add new boards. Boards can be renamed by clicking on the name of the board under its thumbnail and typing in the new name.
### Board Thumbnail Menu
Each board has a context menu (ctrl+click / right-click).
![image](../assets/gallery/thumbnail_menu.png)
- ***Auto-add to this Board*** if you've disabled Auto-Assign Board on Click in the board settings, you can use this option to set this board to be where new images are put.
- ***Download Board*** this will add all the images in the board into a zip file and provide a link to it in a notification (image of notification)
- ***Delete Board*** this will delete the board
> [!CAUTION]
> This will delete all the images in the board and the board itself.
### Board Contents
Every board is organized by two tabs, Images and Assets.
![image](../assets/gallery/board_tabs.png)
Images are the Invoke-generated images that are placed into the board. Assets are images that you upload into Invoke to be used as an [Image Prompt](https://support.invoke.ai/support/solutions/articles/151000159340-using-the-image-prompt-adapter-ip-adapter-) or in the [Image to Image](IMG2IMG.md) tab.
### Image Thumbnail Menu
Every image generated by Invoke has its generation information stored as text inside the image file itself. This can be read directly by selecting the image and clicking on the Info button ![image](../assets/gallery/info_button.png) in any of the image result panels.
Each image also has a context menu (ctrl+click / right-click).
![image](../assets/gallery/image_menu.png)
The options are (items marked with an * will not work with images that lack generation information):
- ***Open in New Tab*** this will open the image alone in a new browser tab, separate from the Invoke interface.
- ***Download Image*** this will trigger your browser to download the image.
- ***Load Workflow **** this will load any workflow settings into the Workflow tab and automatically open it.
- ***Remix Image **** this will load all of the image's generation information, (bold)excluding its Seed, into the left hand control panel
- ***Use Prompt **** this will load only the image's text prompts into the left-hand control panel
- ***Use Seed **** this will load only the image's Seed into the left-hand control panel
- ***Use All **** this will load all of the image's generation information into the left-hand control panel
- ***Send to Image to Image*** this will put the image into the left-hand panel in the Image to Image tab ana automatically open it
- ***Send to Unified Canvas*** This will (bold)replace whatever is already present(bold) in the Unified Canvas tab with the image and automatically open the tab
- ***Change Board*** this will oipen a small window that will let you move the image to a different board. This is the same as dragging the image to that board's thumbnail.
- ***Star Image*** this will add the image to the board's list of starred images that are always kept at the top of the gallery. This is the same as clicking on the star on the top right-hand side of the image that appears when you hover over the image with the mouse
- ***Delete Image*** this will delete the image from the board
> [!CAUTION]
> This will delete the image entirely from Invoke.
## Summary
This walkthrough only covers the Gallery interface and Boards. Actually generating images is handled by [Prompts](PROMPTS.md), the [Image to Image](IMG2IMG.md) tab, and the [Unified Canvas](UNIFIED_CANVAS.md).
## Acknowledgements
A huge shout-out to the core team working to make the Web GUI a reality,
including [psychedelicious](https://github.com/psychedelicious),
[Kyle0654](https://github.com/Kyle0654) and
[blessedcoolant](https://github.com/blessedcoolant).
[hipsterusername](https://github.com/hipsterusername) was the team's unofficial
cheerleader and added tooltips/docs.

View File

@ -1,50 +0,0 @@
---
title: LoRAs & LCM-LoRAs
---
# :material-library-shelves: LoRAs & LCM-LoRAs
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
## LoRAs
Low-Rank Adaptation (LoRA) files are models that customize the output of Stable Diffusion
image generation. Larger than embeddings, but much smaller than full
models, they augment SD with improved understanding of subjects and
artistic styles.
Unlike TI files, LoRAs do not introduce novel vocabulary into the
model's known tokens. Instead, LoRAs augment the model's weights that
are applied to generate imagery. LoRAs may be supplied with a
"trigger" word that they have been explicitly trained on, or may
simply apply their effect without being triggered.
LoRAs are typically stored in .safetensors files, which are the most
secure way to store and transmit these types of weights.
To use these when generating, open the LoRA menu item in the options
panel, select the LoRAs you want to apply and ensure that they have
the appropriate weight recommended by the model provider. Typically,
most LoRAs perform best at a weight of .75-1.
## LCM-LoRAs
Latent Consistency Models (LCMs) allowed a reduced number of steps to be used to generate images with Stable Diffusion. These are created by distilling base models, creating models that only require a small number of steps to generate images. However, LCMs require that any fine-tune of a base model be distilled to be used as an LCM.
LCM-LoRAs are models that provide the benefit of LCMs but are able to be used as LoRAs and applied to any fine tune of a base model. LCM-LoRAs are created by training a small number of adapters, rather than distilling the entire fine-tuned base model. The resulting LoRA can be used the same way as a standard LoRA, but with a greatly reduced step count. This enables SDXL images to be generated up to 10x faster than without the use of LCM-LoRAs.
**Using LCM-LoRAs**
LCM-LoRAs are natively supported in InvokeAI throughout the application. To get started, install any diffusers format LCM-LoRAs using the model manager and select it in the LoRA field.
There are a number parameter differences when using LCM-LoRAs and standard generation:
- When using LCM-LoRAs, the LoRA strength should be lower than if using a standard LoRA, with 0.35 recommended as a starting point.
- The LCM scheduler should be used for generation
- CFG-Scale should be reduced to ~1
- Steps should be reduced in the range of 4-8
Standard LoRAs can also be used alongside LCM-LoRAs, but will also require a lower strength, with 0.45 being recommended as a starting point.
More information can be found here: https://huggingface.co/blog/lcm_lora#fast-inference-with-sdxl-lcm-loras

View File

@ -108,6 +108,40 @@ Can be used with .and():
Each will give you different results - try them out and see what you prefer!
### Cross-Attention Control ('prompt2prompt')
Sometimes an image you generate is almost right, and you just want to change one
detail without affecting the rest. You could use a photo editor and inpainting
to overpaint the area, but that's a pain. Here's where `prompt2prompt` comes in
handy.
Generate an image with a given prompt, record the seed of the image, and then
use the `prompt2prompt` syntax to substitute words in the original prompt for
words in a new prompt. This works for `img2img` as well.
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because of the word words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
- `a cat playing with a ball in the forest`
- `a dog playing with a ball in the forest`
| `a cat playing with a ball in the forest` | `a dog playing with a ball in the forest` |
| --- | --- |
| img | img |
- For multiple word swaps, use parentheses: `a (fluffy cat).swap(barking dog) playing with a ball in the forest`.
- To swap a comma, use quotes: `a ("fluffy, grey cat").swap("big, barking dog") playing with a ball in the forest`.
- Supports options `t_start` and `t_end` (each 0-1) loosely corresponding to (bloc97's)[(https://github.com/bloc97/CrossAttentionControl)] `prompt_edit_tokens_start/_end` but with the math swapped to make it easier to
intuitively understand. `t_start` and `t_end` are used to control on which steps cross-attention control should run. With the default values `t_start=0` and `t_end=1`, cross-attention control is active on every step of image generation. Other values can be used to turn cross-attention control off for part of the image generation process.
- For example, if doing a diffusion with 10 steps for the prompt is `a cat.swap(dog, t_start=0.3, t_end=1.0) playing with a ball in the forest`, the first 3 steps will be run as `a cat playing with a ball in the forest`, while the last 7 steps will run as `a dog playing with a ball in the forest`, but the pixels that represent `dog` will be locked to the pixels that would have represented `cat` if the `cat` prompt had been used instead.
- Conversely, for `a cat.swap(dog, t_start=0, t_end=0.7) playing with a ball in the forest`, the first 7 steps will run as `a dog playing with a ball in the forest` with the pixels that represent `dog` locked to the same pixels that would have represented `cat` if the `cat` prompt was being used instead. The final 3 steps will just run `a cat playing with a ball in the forest`.
> For img2img, the step sequence does not start at 0 but instead at `(1.0-strength)` - so if the img2img `strength` is `0.7`, `t_start` and `t_end` must both be greater than `0.3` (`1.0-0.7`) to have any effect.
Prompt2prompt `.swap()` is not compatible with xformers, which will be temporarily disabled when doing a `.swap()` - so you should expect to use more VRAM and run slower that with xformers enabled.
The `prompt2prompt` code is based off
[bloc97's colab](https://github.com/bloc97/CrossAttentionControl).
### Escaping parentheses and speech marks
If the model you are using has parentheses () or speech marks "" as part of its

View File

@ -1,55 +0,0 @@
## Using Textual Inversion Files
Textual inversion (TI) files are small models that customize the output of
Stable Diffusion image generation. They can augment SD with specialized subjects
and artistic styles. They are also known as "embeds" in the machine learning
world.
Each TI file introduces one or more vocabulary terms to the SD model. These are
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
as in "&lt;trigger-phrase&gt;". The two most common type of
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
different TI training packages. InvokeAI supports both formats, but its
[built-in TI training system](TRAINING.md) produces `.pt`.
[Hugging Face](https://huggingface.co/sd-concepts-library) has
amassed a large library of &gt;800 community-contributed TI files covering a
broad range of subjects and styles. You can also install your own or others' TI files
by placing them in the designated directory for the compatible model type
### An Example
Here are a few examples to illustrate how it works. All these images
were generated using the legacy command-line client and the Stable
Diffusion 1.5 model:
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
| ![](../assets/concepts/image1.png) | ![](../assets/concepts/image2.png) | ![](../assets/concepts/image3.png) | ![](../assets/concepts/image4.png) |
You can also combine styles and concepts:
<figure markdown>
| A portrait of &lt;alf&gt; in &lt;cartoona-animal&gt; style |
| :--------------------------------------------------------: |
| ![](../assets/concepts/image5.png) |
</figure>
## Installing your Own TI Files
You may install any number of `.pt` and `.bin` files simply by copying them into
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
For example, TI files generated by the Hugging Face toolkit share the named
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
files it finds there for compatible models. At startup you will see a message similar to this one:
```bash
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
```
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.

View File

@ -4,6 +4,278 @@ title: Training
# :material-file-document: Training
Invoke Training has moved to its own repository, with a dedicated UI for accessing common scripts like Textual Inversion and LoRA training.
# Textual Inversion Training
## **Personalizing Text-to-Image Generation**
You can find more by visiting the repo at https://github.com/invoke-ai/invoke-training
You may personalize the generated images to provide your own styles or objects
by training a new LDM checkpoint and introducing a new vocabulary to the fixed
model as a (.pt) embeddings file. Alternatively, you may use or train
HuggingFace Concepts embeddings files (.bin) from
<https://huggingface.co/sd-concepts-library> and its associated
notebooks.
## **Hardware and Software Requirements**
You will need a GPU to perform training in a reasonable length of
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
training process further. During training, about ~8 GB is temporarily
needed in order to store intermediate models, checkpoints and logs.
## **Preparing for Training**
To train, prepare a folder that contains 3-5 images that illustrate
the object or concept. It is good to provide a variety of examples or
poses to avoid overtraining the system. Format these images as PNG
(preferred) or JPG. You do not need to resize or crop the images in
advance, but for more control you may wish to do so.
Place the training images in a directory on the machine InvokeAI runs
on. We recommend placing them in a subdirectory of the
`text-inversion-training-data` folder located in the InvokeAI root
directory, ordinarily `~/invokeai` (Linux/Mac), or
`C:\Users\your_name\invokeai` (Windows). For example, to create an
embedding for the "psychedelic" style, you'd place the training images
into the directory
`~invokeai/text-inversion-training-data/psychedelic`.
## **Launching Training Using the Console Front End**
InvokeAI 2.3 and higher comes with a text console-based training front
end. From within the `invoke.sh`/`invoke.bat` Invoke launcher script,
start training tool selecting choice (3):
```sh
1 "Generate images with a browser-based interface"
2 "Explore InvokeAI nodes using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Open the developer console"
9 "Update InvokeAI"
```
Alternatively, you can select option (8) or from the command line, with the InvokeAI virtual environment active,
you can then launch the front end with the command `invokeai-ti --gui`.
This will launch a text-based front end that will look like this:
<figure markdown>
![ti-frontend](../assets/textual-inversion/ti-frontend.png)
</figure>
The interface is keyboard-based. Move from field to field using
control-N (^N) to move to the next field and control-P (^P) to the
previous one. <Tab> and <shift-TAB> work as well. Once a field is
active, use the cursor keys. In a checkbox group, use the up and down
cursor keys to move from choice to choice, and <space> to select a
choice. In a scrollbar, use the left and right cursor keys to increase
and decrease the value of the scroll. In textfields, type the desired
values.
The number of parameters may look intimidating, but in most cases the
predefined defaults work fine. The red circled fields in the above
illustration are the ones you will adjust most frequently.
### Model Name
This will list all the diffusers models that are currently
installed. Select the one you wish to use as the basis for your
embedding. Be aware that if you use a SD-1.X-based model for your
training, you will only be able to use this embedding with other
SD-1.X-based models. Similarly, if you train on SD-2.X, you will only
be able to use the embeddings with models based on SD-2.X.
### Trigger Term
This is the prompt term you will use to trigger the embedding. Type a
single word or phrase you wish to use as the trigger, example
"psychedelic" (without angle brackets). Within InvokeAI, you will then
be able to activate the trigger using the syntax `<psychedelic>`.
### Initializer
This is a single character that is used internally during the training
process as a placeholder for the trigger term. It defaults to "*" and
can usually be left alone.
### Resume from last saved checkpoint
As training proceeds, textual inversion will write a series of
intermediate files that can be used to resume training from where it
was left off in the case of an interruption. This checkbox will be
automatically selected if you provide a previously used trigger term
and at least one checkpoint file is found on disk.
Note that as of 20 January 2023, resume does not seem to be working
properly due to an issue with the upstream code.
### Data Training Directory
This is the location of the images to be used for training. When you
select a trigger term like "my-trigger", the frontend will prepopulate
this field with `~/invokeai/text-inversion-training-data/my-trigger`,
but you can change the path to wherever you want.
### Output Destination Directory
This is the location of the logs, checkpoint files, and embedding
files created during training. When you select a trigger term like
"my-trigger", the frontend will prepopulate this field with
`~/invokeai/text-inversion-output/my-trigger`, but you can change the
path to wherever you want.
### Image resolution
The images in the training directory will be automatically scaled to
the value you use here. For best results, you will want to use the
same default resolution of the underlying model (512 pixels for
SD-1.5, 768 for the larger version of SD-2.1).
### Center crop images
If this is selected, your images will be center cropped to make them
square before resizing them to the desired resolution. Center cropping
can indiscriminately cut off the top of subjects' heads for portrait
aspect images, so if you have images like this, you may wish to use a
photoeditor to manually crop them to a square aspect ratio.
### Mixed precision
Select the floating point precision for the embedding. "no" will
result in a full 32-bit precision, "fp16" will provide 16-bit
precision, and "bf16" will provide mixed precision (only available
when XFormers is used).
### Max training steps
How many steps the training will take before the model converges. Most
training sets will converge with 2000-3000 steps.
### Batch size
This adjusts how many training images are processed simultaneously in
each step. Higher values will cause the training process to run more
quickly, but use more memory. The default size will run with GPUs with
as little as 12 GB.
### Learning rate
The rate at which the system adjusts its internal weights during
training. Higher values risk overtraining (getting the same image each
time), and lower values will take more steps to train a good
model. The default of 0.0005 is conservative; you may wish to increase
it to 0.005 to speed up training.
### Scale learning rate by number of GPUs, steps and batch size
If this is selected (the default) the system will adjust the provided
learning rate to improve performance.
### Use xformers acceleration
This will activate XFormers memory-efficient attention. You need to
have XFormers installed for this to have an effect.
### Learning rate scheduler
This adjusts how the learning rate changes over the course of
training. The default "constant" means to use a constant learning rate
for the entire training session. The other values scale the learning
rate according to various formulas.
Only "constant" is supported by the XFormers library.
### Gradient accumulation steps
This is a parameter that allows you to use bigger batch sizes than
your GPU's VRAM would ordinarily accommodate, at the cost of some
performance.
### Warmup steps
If "constant_with_warmup" is selected in the learning rate scheduler,
then this provides the number of warmup steps. Warmup steps have a
very low learning rate, and are one way of preventing early
overtraining.
## The training run
Start the training run by advancing to the OK button (bottom right)
and pressing <enter>. A series of progress messages will be displayed
as the training process proceeds. This may take an hour or two,
depending on settings and the speed of your system. Various log and
checkpoint files will be written into the output directory (ordinarily
`~/invokeai/text-inversion-output/my-model/`)
At the end of successful training, the system will copy the file
`learned_embeds.bin` into the InvokeAI root directory's `embeddings`
directory, using a subdirectory named after the trigger token. For
example, if the trigger token was `psychedelic`, then look for the
embeddings file in
`~/invokeai/embeddings/psychedelic/learned_embeds.bin`
You may now launch InvokeAI and try out a prompt that uses the trigger
term. For example `a plate of banana sushi in <psychedelic> style`.
## **Training with the Command-Line Script**
Training can also be done using a traditional command-line script. It
can be launched from within the "developer's console", or from the
command line after activating InvokeAI's virtual environment.
It accepts a large number of arguments, which can be summarized by
passing the `--help` argument:
```sh
invokeai-ti --help
```
Typical usage is shown here:
```sh
invokeai-ti \
--model=stable-diffusion-1.5 \
--resolution=512 \
--learnable_property=style \
--initializer_token='*' \
--placeholder_token='<psychedelic>' \
--train_data_dir=/home/lstein/invokeai/training-data/psychedelic \
--output_dir=/home/lstein/invokeai/text-inversion-training/psychedelic \
--scale_lr \
--train_batch_size=8 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=0.0005 \
--resume_from_checkpoint=latest \
--lr_scheduler=constant \
--mixed_precision=fp16 \
--only_save_embeds
```
## Troubleshooting
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`
Messages like this indicate you trained the embedding on a different base model than the currently selected one.
For example, in the error above, the training was done on SD2.1 (768x768) but it was used on SD1.5 (512x512).
## Reading
For more information on textual inversion, please see the following
resources:
* The [textual inversion repository](https://github.com/rinongal/textual_inversion) and
associated paper for details and limitations.
* [HuggingFace's textual inversion training
page](https://huggingface.co/docs/diffusers/training/text_inversion)
* [HuggingFace example script
documentation](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion)
(Note that this script is similar to, but not identical, to
`textual_inversion`, but produces embed files that are completely compatible.
---
copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team

View File

@ -229,28 +229,29 @@ clarity on the intent and common use cases we expect for utilizing them.
currently being rendered by your browser into a merged copy of the image. This
lowers the resource requirements and should improve performance.
### Compositing / Seam Correction
### Seam Correction
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is
by Stable Diffusion into your existing image. To do this, the area around the
`seam` at the boundary between your image and the new generation is
automatically blended to produce a seamless output. In a fully automatic
process, a mask is generated to cover the boundary, and then the area of the boundary is
process, a mask is generated to cover the seam, and then the area of the seam is
Inpainted.
Although the default options should work well most of the time, sometimes it can
help to alter the parameters that control the Compositing. A larger blur and
a blur setting have been noted as producing
consistently strong results . Strength of 0.7 is best for reducing hard seams.
- **Mode** - What part of the image will have the the Compositing applied to it.
- **Mask edge** will apply Compositing to the edge of the masked area
- **Mask** will apply Compositing to the entire masked area
- **Unmasked** will apply Compositing to the entire image
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
- **Blur Method** - The method of blur applied to the masked area.
help to alter the parameters that control the seam Inpainting. A wider seam and
a blur setting of about 1/3 of the seam have been noted as producing
consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
both sides). Seam strength of 0.7 is best for reducing hard seams.
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
mask around the seam.
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
masked area.
- **Seam Strength** - The Image To Image Strength parameter used for the
Inpainting generation that is applied to the seam area.
- **Seam Steps** - The number of generation steps that should be used to Inpaint
the seam.
### Infill & Scaling

View File

@ -54,7 +54,7 @@ main sections:
of buttons at the top lets you modify and manipulate the image in
various ways.
3. A **gallery** section on the right that contains a history of the images you
3. A **gallery** section on the left that contains a history of the images you
have generated. These images are read and written to the directory specified
in the `INVOKEAIROOT/invokeai.yaml` initialization file, usually a directory
named `outputs` in `INVOKEAIROOT`.

View File

@ -20,7 +20,7 @@ a single convenient digital artist-optimized user interface.
### * [Prompt Engineering](PROMPTS.md)
Get the images you want with the InvokeAI prompt engineering language.
### * The [LoRA, LyCORIS, LCM-LoRA Models](CONCEPTS.md)
### * The [LoRA, LyCORIS and Textual Inversion Models](CONCEPTS.md)
Add custom subjects and styles using a variety of fine-tuned models.
### * [ControlNet](CONTROLNET.md)
@ -40,7 +40,7 @@ guide also covers optimizing models to load quickly.
Teach an old model new tricks. Merge 2-3 models together to create a
new model that combines characteristics of the originals.
### * [Textual Inversion](TEXTUAL_INVERSIONS.md)
### * [Textual Inversion](TRAINING.md)
Personalize models by adding your own style or subjects.
## Other Features

View File

@ -1,244 +0,0 @@
# FAQ
!!! info "How to Reinstall"
Many issues can be resolved by re-installing the application. You won't lose any data by re-installing. We suggest downloading the [latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) and using it to re-install the application. Consult the [installer guide](../installation/010_INSTALL_AUTOMATED.md) for more information.
When you run the installer, you'll have an option to select the version to install. If you aren't ready to upgrade, you choose the current version to fix a broken install.
If the troubleshooting steps on this page don't get you up and running, please either [create an issue] or hop on [discord] for help.
## How to Install
You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases).
Note that any releases marked as _pre-release_ are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the [latest release].
## Downloading models and using existing models
The Model Manager tab in the UI provides a few ways to install models, including using your already-downloaded models. You'll see a popup directing you there on first startup. For more information, see the [model install docs].
## Missing models after updating to v4
If you find some models are missing after updating to v4, it's likely they weren't correctly registered before the update and didn't get picked up in the migration.
You can use the `Scan Folder` tab in the Model Manager UI to fix this. The models will either be in the old, now-unused `autoimport` folder, or your `models` folder.
- Find and copy your install's old `autoimport` folder path, install the main install folder.
- Go to the Model Manager and click `Scan Folder`.
- Paste the path and scan.
- IMPORTANT: Uncheck `Inplace install`.
- Click `Install All` to install all found models, or just install the models you want.
Next, find and copy your install's `models` folder path (this could be your custom models folder path, or the `models` folder inside the main install folder).
Follow the same steps to scan and import the missing models.
## Slow generation
- Check the [system requirements] to ensure that your system is capable of generating images.
- Check the `ram` setting in `invokeai.yaml`. This setting tells Invoke how much of your system RAM can be used to cache models. Having this too high or too low can slow things down. That said, it's generally safest to not set this at all and instead let Invoke manage it.
- Check the `vram` setting in `invokeai.yaml`. This setting tells Invoke how much of your GPU VRAM can be used to cache models. Counter-intuitively, if this setting is too high, Invoke will need to do a lot of shuffling of models as it juggles the VRAM cache and the currently-loaded model. The default value of 0.25 is generally works well for GPUs without 16GB or more VRAM. Even on a 24GB card, the default works well.
- Check that your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup. If your GPU isn't used, re-install to ensure the correct versions of torch get installed.
- If you are on Windows, you may have exceeded your GPU's VRAM capacity and are using slower [shared GPU memory](#shared-gpu-memory-windows). There's a guide to opt out of this behaviour in the linked FAQ entry.
## Shared GPU Memory (Windows)
!!! tip "Nvidia GPUs with driver 536.40"
This only applies to current Nvidia cards with driver 536.40 or later, released in June 2023.
When the GPU doesn't have enough VRAM for a task, Windows is able to allocate some of its CPU RAM to the GPU. This is much slower than VRAM, but it does allow the system to generate when it otherwise might no have enough VRAM.
When shared GPU memory is used, generation slows down dramatically - but at least it doesn't crash.
If you'd like to opt out of this behavior and instead get an error when you exceed your GPU's VRAM, follow [this guide from Nvidia](https://nvidia.custhelp.com/app/answers/detail/a_id/5490).
Here's how to get the python path required in the linked guide:
- Run `invoke.bat`.
- Select option 2 for developer console.
- At least one python path will be printed. Copy the path that includes your invoke installation directory (typically the first).
## Installer cannot find python (Windows)
Ensure that you checked **Add python.exe to PATH** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, you can re-run the python installer, choose the Modify option and check the box.
## Triton error on startup
This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
## Updated to 3.4.0 and xformers cant load C++/CUDA
An issue occurred with your PyTorch update. Follow these steps to fix :
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
Note that v3.4.0 is an old, unsupported version. Please upgrade to the [latest release].
## Install failed and says `pip` is out of date
An out of date `pip` typically won't cause an installation to fail. The cause of the error can likely be found above the message that says `pip` is out of date.
If you saw that warning but the install went well, don't worry about it (but you can update `pip` afterwards if you'd like).
## Replicate image found online
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
## OSErrors on Windows while installing dependencies
During a zip file installation or an update, installation stops with an error like this:
![broken-dependency-screenshot](../assets/troubleshooting/broken-dependency.png){:width="800px"}
To resolve this, re-install the application as described above.
## HuggingFace install failed due to invalid access token
Some HuggingFace models require you to authenticate using an [access token].
Invoke doesn't manage this token for you, but it's easy to set it up:
- Follow the instructions in the link above to create an access token. Copy it.
- Run the launcher script.
- Select option 2 (developer console).
- Paste the following command:
```sh
python -c "import huggingface_hub; huggingface_hub.login()"
```
- Paste your access token when prompted and press Enter. You won't see anything when you paste it.
- Type `n` if prompted about git credentials.
If you get an error, try the command again - maybe the token didn't paste correctly.
Once your token is set, start Invoke and try downloading the model again. The installer will automatically use the access token.
If the install still fails, you may not have access to the model.
## Stable Diffusion XL generation fails after trying to load UNet
InvokeAI is working in other respects, but when trying to generate
images with Stable Diffusion XL you get a "Server Error". The text log
in the launch window contains this log line above several more lines of
error messages:
`INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet`
This failure mode occurs when there is a network glitch during
downloading the very large SDXL model.
To address this, first go to the Model Manager and delete the
Stable-Diffusion-XL-base-1.X model. Then, click the HuggingFace tab,
paste the Repo ID stabilityai/stable-diffusion-xl-base-1.0 and install
the model.
## Package dependency conflicts during installation or update
If you have previously installed InvokeAI or another Stable Diffusion
package, the installer may occasionally pick up outdated libraries and
either the installer or `invoke` will fail with complaints about
library conflicts.
To resolve this, re-install the application as described above.
## Invalid configuration file
Everything seems to install ok, you get a `ValidationError` when starting up the app.
This is caused by an invalid setting in the `invokeai.yaml` configuration file. The error message should tell you what is wrong.
Check the [configuration docs] for more detail about the settings and how to specify them.
## `ModuleNotFoundError: No module named 'controlnet_aux'`
`controlnet_aux` is a dependency of Invoke and appears to have been packaged or distributed strangely. Sometimes, it doesn't install correctly. This is outside our control.
If you encounter this error, the solution is to remove the package from the `pip` cache and re-run the Invoke installer so a fresh, working version of `controlnet_aux` can be downloaded and installed:
- Run the Invoke launcher
- Choose the developer console option
- Run this command: `pip cache remove controlnet_aux`
- Close the terminal window
- Download and run the [installer](https://github.com/invoke-ai/InvokeAI/releases/latest), selecting your current install location
## Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself
faced with Out of Memory errors when generating images. Here are some
tips to reduce the problem:
!!! info "Optimizing for GPU VRAM"
=== "4GB VRAM GPU"
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
and derived models, provided that you do not use the NSFW checker. It won't be loaded unless you go into the UI settings and turn it on.
If you are on a CUDA-enabled GPU, we will automatically use xformers or torch-sdp to reduce VRAM requirements, though you can explicitly configure this. See the [configuration docs].
=== "6GB VRAM GPU"
This is a border case. Using the SD 1.5 series you should be able to
generate images up to 640x640 with the NSFW checker enabled, and up to
1024x1024 with it disabled.
If you run into persistent memory issues there are a series of
environment variables that you can set before launching InvokeAI that
alter how the PyTorch machine learning library manages memory. See
<https://pytorch.org/docs/stable/notes/cuda.html#memory-management> for
a list of these tweaks.
=== "12GB VRAM GPU"
This should be sufficient to generate larger images up to about 1280x1280.
## Memory Leak (Linux)
If you notice a memory leak, it could be caused to memory fragmentation as models are loaded and/or moved from CPU to GPU.
A workaround is to tune memory allocation with an environment variable:
```bash
# Force blocks >1MB to be allocated with `mmap` so that they are released to the system immediately when they are freed.
MALLOC_MMAP_THRESHOLD_=1048576
```
!!! warning "Speed vs Memory Tradeoff"
Your generations may be slower overall when setting this environment variable.
!!! info "Possibly dependent on `libc` implementation"
It's not known if this issue occurs with other `libc` implementations such as `musl`.
If you encounter this issue and your system uses a different implementation, please try this environment variable and let us know if it fixes the issue.
<h3>Detailed Discussion</h3>
Python (and PyTorch) relies on the memory allocator from the C Standard Library (`libc`). On linux, with the GNU C Standard Library implementation (`glibc`), our memory access patterns have been observed to cause severe memory fragmentation.
This fragmentation results in large amounts of memory that has been freed but can't be released back to the OS. Loading models from disk and moving them between CPU/CUDA seem to be the operations that contribute most to the fragmentation.
This memory fragmentation issue can result in OOM crashes during frequent model switching, even if `ram` (the max RAM cache size) is set to a reasonable value (e.g. a OOM crash with `ram=16` on a system with 32GB of RAM).
This problem may also exist on other OSes, and other `libc` implementations. But, at the time of writing, it has only been investigated on linux with `glibc`.
To better understand how the `glibc` memory allocator works, see these references:
- Basics: <https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html>
- Details: <https://sourceware.org/glibc/wiki/MallocInternals>
Note the differences between memory allocated as chunks in an arena vs. memory allocated with `mmap`. Under `glibc`'s default configuration, most model tensors get allocated as chunks in an arena making them vulnerable to the problem of fragmentation.
[model install docs]: ../installation/050_INSTALLING_MODELS.md
[system requirements]: ../installation/INSTALL_REQUIREMENTS.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy
[configuration docs]: ../features/CONFIGURATION.md
[access token]: https://huggingface.co/docs/hub/security-tokens#how-to-manage-user-access-tokens

View File

@ -0,0 +1,128 @@
---
title: F.A.Q.
---
# :material-frequently-asked-questions: F.A.Q.
## **Frequently-Asked-Questions**
Here are a few common installation problems and their solutions. Often these are
caused by incomplete installations or crashes during the install process.
---
### During `conda env create`, conda hangs indefinitely
If it is because of the last PIP step (usually stuck in the Git Clone step, you
can check the detailed log by this method):
```bash
export PIP_LOG="/tmp/pip_log.txt"
touch ${PIP_LOG}
tail -f ${PIP_LOG} &
conda env create -f environment-mac.yaml --debug --verbose
killall tail
rm ${PIP_LOG}
```
**SOLUTION**
Conda sometimes gets stuck at the last PIP step, in which several git
repositories are cloned and built.
Enter the stable-diffusion directory and completely remove the `src` directory
and all its contents. The safest way to do this is to enter the stable-diffusion
directory and give the command `git clean -f`. If this still doesn't fix the
problem, try "conda clean -all" and then restart at the `conda env create` step.
To further understand the problem to checking the install lot using this method:
```bash
export PIP_LOG="/tmp/pip_log.txt"
touch ${PIP_LOG}
tail -f ${PIP_LOG} &
conda env create -f environment-mac.yaml --debug --verbose
killall tail
rm ${PIP_LOG}
```
---
### `invoke.py` crashes with the complaint that it can't find `ldm.simplet2i.py`
Or it complains that function is being passed incorrect parameters.
**SOLUTION**
Reinstall the stable diffusion modules. Enter the `stable-diffusion` directory
and give the command `pip install -e .`
---
### Missing modules
`invoke.py` dies, complaining of various missing modules, none of which starts
with `ldm`.
**SOLUTION**
From within the `InvokeAI` directory, run `conda env update` This is also
frequently the solution to complaints about an unknown function in a module.
---
### How can I try new features
There's a feature or bugfix in the Stable Diffusion GitHub that you want to try
out.
**SOLUTIONS**
#### **Main Branch**
If the fix/feature is on the `main` branch, enter the stable-diffusion directory
and do a `git pull`.
Usually this will be sufficient, but if you start to see errors about missing or
incorrect modules, use the command `pip install -e .` and/or `conda env update`
(These commands won't break anything.)
`pip install -e .` and/or `conda env update -f environment.yaml`
(These commands won't break anything.)
#### **Sub Branch**
If the feature/fix is on a branch (e.g. "_foo-bugfix_"), the recipe is similar,
but do a `git pull <name of branch>`.
#### **Not Committed**
If the feature/fix is in a pull request that has not yet been made part of the
main branch or a feature/bugfix branch, then from the page for the desired pull
request, look for the line at the top that reads "_xxxx wants to merge xx
commits into lstein:main from YYYYYY_". Copy the URL in YYYY. It should have the
format
`https://github.com/<name of contributor>/stable-diffusion/tree/<name of branch>`
Then **go to the directory above stable-diffusion** and rename the directory to
"_stable-diffusion.lstein_", "_stable-diffusion.old_", or anything else. You can
then git clone the branch that contains the pull request:
`git clone https://github.com/<name of contributor>/stable-diffusion/tree/<name of branch>`
You will need to go through the install procedure again, but it should be fast
because all the dependencies are already loaded.
---
### CUDA out of memory
Image generation crashed with CUDA out of memory error after successful
sampling.
**SOLUTION**
Try to run script with option `--free_gpu_mem` This will free memory before
image decoding step.

View File

@ -20,7 +20,7 @@ When you generate an image using text-to-image, multiple steps occur in latent s
4. The VAE decodes the final latent image from latent space into image space.
Image-to-image is a similar process, with only step 1 being different:
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how many noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
1. The input image is encoded from image space into latent space by the VAE. Noise is then added to the input latent image. Denoising Strength dictates how may noise steps are added, and the amount of noise added at each step. A Denoising Strength of 0 means there are 0 steps and no noise added, resulting in an unchanged image, while a Denoising Strength of 1 results in the image being completely replaced with noise and a full set of denoising steps are performance. The process is then the same as steps 2-4 in the text-to-image process.
Furthermore, a model provides the CLIP prompt tokenizer, the VAE, and a U-Net (where noise prediction occurs given a prompt and initial noise tensor).

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

View File

@ -18,7 +18,7 @@ title: Home
width: 100%;
max-width: 100%;
height: 50px;
background-color: #35A4DB;
background-color: #448AFF;
color: #fff;
font-size: 16px;
border: none;
@ -43,7 +43,7 @@ title: Home
<div align="center" markdown>
[![project logo](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)](https://github.com/invoke-ai/InvokeAI)
[![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link]
@ -101,13 +101,16 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
!!! Note
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
## :octicons-link-24: Quick Links
<div class="button-container">
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
<a href="features/"> <button class="button">Features</button> </a>
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
<a href="help/FAQ/"> <button class="button">FAQ</button> </a>
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
@ -117,11 +120,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
## :octicons-gift-24: InvokeAI Features
### Installation
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
### The InvokeAI Web Interface
- [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
@ -150,10 +148,64 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting
Please check out our **[:material-frequently-asked-questions:
FAQ](help/FAQ/)** to
Troubleshooting
Guide](installation/010_INSTALL_AUTOMATED.md#troubleshooting)** to
get solutions for common installation problems and other issues.
## :octicons-repo-push-24: Contributing

View File

@ -1,107 +1,580 @@
# Automatic Install & Updates
---
title: Installing with the Automated Installer
---
**The same packaged installer file can be used for both new installs and updates.**
Using the installer for updates will leave everything you've added since installation, and just update the core libraries used to run Invoke.
Simply use the same path you installed to originally.
# InvokeAI Automated Installation
Both release and pre-release versions can be installed using the installer. It also supports install through a wheel if needed.
## Introduction
Be sure to review the [installation requirements] and ensure your system has everything it needs to install Invoke.
The automated installer is a Python script that automates the steps
needed to install and run InvokeAI on a stock computer running recent
versions of Linux, MacOS or Windows. It will leave you with a version
that runs a stable version of InvokeAI with the option to upgrade to
experimental versions later.
## Getting the Latest Installer
## Walk through
Download the `InvokeAI-installer-vX.Y.Z.zip` file from the [latest release] page. It is at the bottom of the page, under **Assets**.
1. <a name="hardware_requirements">**Hardware Requirements**: </a>Make sure that your system meets the [hardware
requirements](../index.md#hardware-requirements) and has the
appropriate GPU drivers installed. For a system with an NVIDIA
card installed, you will need to install the CUDA driver, while
AMD-based cards require the ROCm driver. In most cases, if you've
already used the system for gaming or other graphics-intensive
tasks, the appropriate drivers will already be installed. If
unsure, check the [GPU Driver Guide](030_INSTALL_CUDA_AND_ROCM.md)
After unzipping the installer, you should have a `InvokeAI-Installer` folder with some files inside, including `install.bat` and `install.sh`.
!!! info "Required Space"
## Running the Installer
Installation requires roughly 18G of free disk space to load
the libraries and recommended model weights files.
!!! tip
Regardless of your destination disk, your *system drive*
(`C:\` on Windows, `/` on macOS/Linux) requires at least 6GB
of free disk space to download and cache python
dependencies.
Windows users should first double-click the `WinLongPathsEnabled.reg` file to prevent a failed installation due to long file paths.
NOTE for Linux users: if your temporary directory is mounted
as a `tmpfs`, ensure it has sufficient space.
Double-click the install script:
2. <a name="software_requirements">**Software Requirements**: </a>Check that your system has an up-to-date Python installed. To do
this, open up a command-line window ("Terminal" on Linux and
Macintosh, "Command" or "Powershell" on Windows) and type `python
--version`. If Python is installed, it will print out the version
number. If it is version `3.10.*` or `3.11.*` you meet
requirements.
=== "Windows"
!!! warning "What to do if you have an unsupported version"
```sh
install.bat
Go to [Python Downloads](https://www.python.org/downloads/)
and download the appropriate installer package for your
platform. We recommend [Version
3.10.12](https://www.python.org/downloads/release/python-3109/),
which has been extensively tested with InvokeAI.
_Please select your platform in the section below for platform-specific
setup requirements._
=== "Windows"
During the Python configuration process, look out for a
checkbox to add Python to your PATH and select it. If the
install script complains that it can't find python, then open
the Python installer again and choose "Modify" existing
installation.
Installation requires an up to date version of the Microsoft
Visual C libraries. Please install the 2015-2022 libraries
available here:
https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
Please double-click on the file `WinLongPathsEnabled.reg` and
accept the dialog box that asks you if you wish to modify your registry.
This activates long filename support on your system and will prevent
mysterious errors during installation.
=== "Linux"
To install an appropriate version of Python on Ubuntu 22.04
and higher, run the following:
```
sudo apt update
sudo apt install -y python3 python3-pip python3-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```
On Ubuntu 20.04, the process is slightly different:
```
sudo apt update
sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
```
Both `python` and `python3` commands are now pointing at
Python3.10. You can still access older versions of Python by
calling `python2`, `python3.8`, etc.
Linux systems require a couple of additional graphics
libraries to be installed for proper functioning of
`python3-opencv`. Please run the following:
`sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
=== "Mac"
After installing Python, you may need to run the
following command from the Terminal in order to install the Web
certificates needed to download model data from https sites. If
you see lots of CERTIFICATE ERRORS during the last part of the
install, this is the problem, and you can fix it with this command:
`/Applications/Python\ 3.10/Install\ Certificates.command`
You may need to install the Xcode command line tools. These
are a set of tools that are needed to run certain applications in a
Terminal, including InvokeAI. This package is provided
directly by Apple. To install, open a terminal window and run `xcode-select --install`. You will get a macOS system popup guiding you through the
install. If you already have them installed, you will instead see some
output in the Terminal advising you that the tools are already installed. More information can be found at [FreeCode Camp](https://www.freecodecamp.org/news/install-xcode-command-line-tools/)
3. **Download the Installer**: The InvokeAI installer is distributed as a ZIP files. Go to the
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest),
and look for a file named:
- InvokeAI-installer-v3.X.X.zip
where "3.X.X" is the latest released version. The file is located
at the very bottom of the release page, under **Assets**.
4. **Unpack the installer**: Unpack the zip file into a convenient directory. This will create a new
directory named "InvokeAI-Installer". When unpacked, the directory
will look like this:
<figure markdown>
![zipfile-screenshot](../assets/installer-walkthrough/unpacked-zipfile.png)
</figure>
5. **Launch the installer script from the desktop**: If you are using a desktop GUI, double-click the installer file
appropriate for your platform. It will be named `install.bat` on
Windows systems and `install.sh` on Linux and Macintosh
systems. Be aware that your system's file browser may suppress the
display of the file extension.
On Windows systems if you get an "Untrusted Publisher" warning.
Click on "More Info" and then select "Run Anyway." You trust us, right?
6. **[Alternative] Launch the installer script from the command line**: Alternatively, from the command line, run the shell script or .bat file:
```cmd
C:\Documents\Linco> cd InvokeAI-Installer
C:\Documents\Linco\invokeAI> .\install.bat
```
=== "Linux/macOS"
7. **Select the location to install InvokeAI**: The script will ask you to choose where to install InvokeAI. Select a
directory with at least 18G of free space for a full install. InvokeAI and
all its support files will be installed into a new directory named
`invokeai` located at the location you specify.
```sh
install.sh
<figure markdown>
![confirm-install-directory-screenshot](../assets/installer-walkthrough/confirm-directory.png)
</figure>
- The default is to install the `invokeai` directory in your home directory,
usually `C:\Users\YourName\invokeai` on Windows systems,
`/home/YourName/invokeai` on Linux systems, and `/Users/YourName/invokeai`
on Macintoshes, where "YourName" is your login name.
-If you have previously installed InvokeAI, you will be asked to
confirm whether you want to reinstall into this directory. You
may choose to reinstall, in which case your version will be upgraded,
or choose a different directory.
- The script uses tab autocompletion to suggest directory path completions.
Type part of the path (e.g. "C:\Users") and press ++tab++ repeatedly
to suggest completions.
8. **Select your GPU**: The installer will autodetect your platform and will request you to
confirm the type of GPU your graphics card has. On Linux systems,
you will have the choice of CUDA (NVidia cards), ROCm (AMD cards),
or CPU (no graphics acceleration). On Windows, you'll have the
choice of CUDA vs CPU, and on Macs you'll be offered CPU only. When
you select CPU on M1 or M2 Macintoshes, you will get MPS-based
graphics acceleration without installing additional drivers. If you
are unsure what GPU you are using, you can ask the installer to
guess.
9. **Watch it go!**: Sit back and let the install script work. It will install the third-party
libraries needed by InvokeAI and the application itself.
Be aware that some of the library download and install steps take a long
time. In particular, the `pytorch` package is quite large and often appears
to get "stuck" at 99.9%. Have patience and the installation step will
eventually resume. However, there are occasions when the library install
does legitimately get stuck. If you have been waiting for more than ten
minutes and nothing is happening, you can interrupt the script with ^C. You
may restart it and it will pick up where it left off.
<figure markdown>
![initial-settings-screenshot](../assets/installer-walkthrough/settings-form.png)
</figure>
10. **Post-install Configuration**: After installation completes, the
installer will launch the configuration form, which will guide you
through the first-time process of adjusting some of InvokeAI's
startup settings. To move around this form use ctrl-N for
&lt;N&gt;ext and ctrl-P for &lt;P&gt;revious, or use &lt;tab&gt;
and shift-&lt;tab&gt; to move forward and back. Once you are in a
multi-checkbox field use the up and down cursor keys to select the
item you want, and &lt;space&gt; to toggle it on and off. Within
a directory field, pressing &lt;tab&gt; will provide autocomplete
options.
Generally the defaults are fine, and you can come back to this screen at
any time to tweak your system. Here are the options you can adjust:
- ***HuggingFace Access Token***
InvokeAI has the ability to download embedded styles and subjects
from the HuggingFace Concept Library on-demand. However, some of
the concept library files are password protected. To make download
smoother, you can set up an account at huggingface.co, obtain an
access token, and paste it into this field. Note that you paste
to this screen using ctrl-shift-V
- ***Free GPU memory after each generation***
This is useful for low-memory machines and helps minimize the
amount of GPU VRAM used by InvokeAI.
- ***Enable xformers support if available***
If the xformers library was successfully installed, this will activate
it to reduce memory consumption and increase rendering speed noticeably.
Note that xformers has the side effect of generating slightly different
images even when presented with the same seed and other settings.
- ***Force CPU to be used on GPU systems***
This will use the (slow) CPU rather than the accelerated GPU. This
can be used to generate images on systems that don't have a compatible
GPU.
- ***Precision***
This controls whether to use float32 or float16 arithmetic.
float16 uses less memory but is also slightly less accurate.
Ordinarily the right arithmetic is picked automatically ("auto"),
but you may have to use float32 to get images on certain systems
and graphics cards. The "autocast" option is deprecated and
shouldn't be used unless you are asked to by a member of the team.
- **Size of the RAM cache used for fast model switching***
This allows you to keep models in memory and switch rapidly among
them rather than having them load from disk each time. This slider
controls how many models to keep loaded at once. A typical SD-1 or SD-2 model
uses 2-3 GB of memory. A typical SDXL model uses 6-7 GB. Providing more
RAM will allow more models to be co-resident.
- ***Output directory for images***
This is the path to a directory in which InvokeAI will store all its
generated images.
- ***Autoimport Folder***
This is the directory in which you can place models you have
downloaded and wish to load into InvokeAI. You can place a variety
of models in this directory, including diffusers folders, .ckpt files,
.safetensors files, as well as LoRAs, ControlNet and Textual Inversion
files (both folder and file versions). To help organize this folder,
you can create several levels of subfolders and drop your models into
whichever ones you want.
- ***LICENSE***
At the bottom of the screen you will see a checkbox for accepting
the CreativeML Responsible AI Licenses. You need to accept the license
in order to download Stable Diffusion models from the next screen.
_You can come back to the startup options form_ as many times as you like.
From the `invoke.sh` or `invoke.bat` launcher, select option (6) to relaunch
this script. On the command line, it is named `invokeai-configure`.
11. **Downloading Models**: After you press `[NEXT]` on the screen, you will be taken
to another screen that prompts you to download a series of starter models. The ones
we recommend are preselected for you, but you are encouraged to use the checkboxes to
pick and choose.
You will probably wish to download `autoencoder-840000` for use with models that
were trained with an older version of the Stability VAE.
<figure markdown>
![select-models-screenshot](../assets/installer-walkthrough/installing-models.png)
</figure>
Below the preselected list of starter models is a large text field which you can use
to specify a series of models to import. You can specify models in a variety of formats,
each separated by a space or newline. The formats accepted are:
- The path to a .ckpt or .safetensors file. On most systems, you can drag a file from
the file browser to the textfield to automatically paste the path. Be sure to remove
extraneous quotation marks and other things that come along for the ride.
- The path to a directory containing a combination of `.ckpt` and `.safetensors` files.
The directory will be scanned from top to bottom (including subfolders) and any
file that can be imported will be.
- A URL pointing to a `.ckpt` or `.safetensors` file. You can cut
and paste directly from a web page, or simply drag the link from the web page
or navigation bar. (You can also use ctrl-shift-V to paste into this field)
The file will be downloaded and installed.
- The HuggingFace repository ID (repo_id) for a `diffusers` model. These IDs have
the format _author_name/model_name_, as in `andite/anything-v4.0`
- The path to a local directory containing a `diffusers`
model. These directories always have the file `model_index.json`
at their top level.
_Select a directory for models to import_ You may select a local
directory for autoimporting at startup time. If you select this
option, the directory you choose will be scanned for new
.ckpt/.safetensors files each time InvokeAI starts up, and any new
files will be automatically imported and made available for your
use.
_Convert imported models into diffusers_ When legacy checkpoint
files are imported, you may select to use them unmodified (the
default) or to convert them into `diffusers` models. The latter
load much faster and have slightly better rendering performance,
but not all checkpoint files can be converted. Note that Stable Diffusion
Version 2.X files are **only** supported in `diffusers` format and will
be converted regardless.
_You can come back to the model install form_ as many times as you like.
From the `invoke.sh` or `invoke.bat` launcher, select option (5) to relaunch
this script. On the command line, it is named `invokeai-model-install`.
12. **Running InvokeAI for the first time**: The script will now exit and you'll be ready to generate some images. Look
for the directory `invokeai` installed in the location you chose at the
beginning of the install session. Look for a shell script named `invoke.sh`
(Linux/Mac) or `invoke.bat` (Windows). Launch the script by double-clicking
it or typing its name at the command-line:
```cmd
C:\Documents\Linco> cd invokeai
C:\Documents\Linco\invokeAI> invoke.bat
```
!!! info "Running the Installer from the commandline"
- The `invoke.bat` (`invoke.sh`) script will give you the choice
of starting (1) the command-line interface, (2) the web GUI, (3)
textual inversion training, and (4) model merging.
You can also run the install script from cmd/powershell (Windows) or terminal (Linux/macOS).
- By default, the script will launch the web interface. When you
do this, you'll see a series of startup messages ending with
instructions to point your browser at
http://localhost:9090. Click on this link to open up a browser
and start exploring InvokeAI's features.
!!! warning "Untrusted Publisher (Windows)"
12. **InvokeAI Options**: You can launch InvokeAI with several different command-line arguments that
customize its behavior. For example, you can change the location of the
image output directory or balance memory usage vs performance. See
[Configuration](../features/CONFIGURATION.md) for a full list of the options.
You may get a popup saying the file comes from an `Untrusted Publisher`. Click `More Info` and `Run Anyway` to get past this.
- To set defaults that will take effect every time you launch InvokeAI,
use a text editor (e.g. Notepad) to exit the file
`invokeai\invokeai.init`. It contains a variety of examples that you can
follow to add and modify launch options.
The installation process is simple, with a few prompts:
- The launcher script also offers you an option labeled "open the developer
console". If you choose this option, you will be dropped into a
command-line interface in which you can run python commands directly,
access developer tools, and launch InvokeAI with customized options.
- Select the version to install. Unless you have a specific reason to install a specific version, select the default (the latest version).
- Select location for the install. Be sure you have enough space in this folder for the base application, as described in the [installation requirements].
- Select a GPU device.
!!! info "Slow Installation"
!!! warning "Do not move or remove the `invokeai` directory"
The `invokeai` directory contains the `invokeai` application, its
configuration files, the model weight files, and outputs of image generation.
Once InvokeAI is installed, do not move or remove this directory."
The installer needs to download several GB of data and install it all. It may appear to get stuck at 99.9% when installing `pytorch` or during a step labeled "Installing collected packages".
If it is stuck for over 10 minutes, something has probably gone wrong and you should close the window and restart.
<a name="troubleshooting"></a>
## Troubleshooting
## Running the Application
### _OSErrors on Windows while installing dependencies_
Find the install location you selected earlier. Double-click the launcher script to run the app:
During a zip file installation or an online update, installation stops
with an error like this:
=== "Windows"
![broken-dependency-screenshot](../assets/troubleshooting/broken-dependency.png){:width="800px"}
```sh
invoke.bat
```
This seems to happen particularly often with the `pydantic` and
`numpy` packages. The most reliable solution requires several manual
steps to complete installation.
=== "Linux/macOS"
Open up a Powershell window and navigate to the `invokeai` directory
created by the installer. Then give the following series of commands:
```sh
invoke.sh
```
Choose the first option to run the UI. After a series of startup messages, you'll see something like this:
```
Uvicorn running on http://127.0.0.1:9090 (Press CTRL+C to quit)
```cmd
rm .\.venv -r -force
python -mvenv .venv
.\.venv\Scripts\activate
pip install invokeai
invokeai-configure --yes --root .
```
Copy the URL into your browser and you should see the UI.
If you see anything marked as an error during this process please stop
and seek help on the Discord [installation support
channel](https://discord.com/channels/1020123559063990373/1041391462190956654). A
few warning messages are OK.
## First-time Setup
If you are updating from a previous version, this should restore your
system to a working state. If you are installing from scratch, there
is one additional command to give:
You will need to [install some models] before you can generate.
```cmd
wget -O invoke.bat https://raw.githubusercontent.com/invoke-ai/InvokeAI/main/installer/templates/invoke.bat.in
```
Check the [configuration docs] for details on configuring the application.
This will create the `invoke.bat` script needed to launch InvokeAI and
its related programs.
## Updating
Updating is exactly the same as installing - download the latest installer, choose the latest version and off you go.
### _Stable Diffusion XL Generation Fails after Trying to Load unet_
!!! info "Dependency Resolution Issues"
InvokeAI is working in other respects, but when trying to generate
images with Stable Diffusion XL you get a "Server Error". The text log
in the launch window contains this log line above several more lines of
error messages:
We've found that pip's dependency resolution can cause issues when upgrading packages. One very common problem was pip "downgrading" torch from CUDA to CPU, but things broke in other novel ways.
```INFO --> Loading model:D:\LONG\PATH\TO\MODEL, type sdxl:main:unet```
The installer doesn't have this kind of problem, so we use it for updating as well.
This failure mode occurs when there is a network glitch during
downloading the very large SDXL model.
## Installation Issues
To address this, first go to the Web Model Manager and delete the
Stable-Diffusion-XL-base-1.X model. Then navigate to HuggingFace and
manually download the .safetensors version of the model. The 1.0
version is located at
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main
and the file is named `sd_xl_base_1.0.safetensors`.
If you have installation issues, please review the [FAQ]. You can also [create an issue] or ask for help on [discord].
Save this file to disk and then reenter the Model Manager. Navigate to
Import Models->Add Model, then type (or drag-and-drop) the path to the
.safetensors file. Press "Add Model".
[installation requirements]: INSTALL_REQUIREMENTS.md
[FAQ]: ../help/FAQ.md
[install some models]: 050_INSTALLING_MODELS.md
[configuration docs]: ../features/CONFIGURATION.md
[latest release]: https://github.com/invoke-ai/InvokeAI/releases/latest
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[discord]: https://discord.gg/ZmtBAhwWhy
### _Package dependency conflicts_
If you have previously installed InvokeAI or another Stable Diffusion
package, the installer may occasionally pick up outdated libraries and
either the installer or `invoke` will fail with complaints about
library conflicts. In this case, run the `invoke.sh`/`invoke.bat`
command and enter the Developer's Console by picking option (5). This
will take you to a command-line prompt.
Then give this command:
`pip install InvokeAI --force-reinstall`
This should fix the issues.
### InvokeAI runs extremely slowly on Linux or Windows systems
The most frequent cause of this problem is when the installation
process installed the CPU-only version of the torch machine-learning
library, rather than a version that takes advantage of GPU
acceleration. To confirm this issue, look at the InvokeAI startup
messages. If you see a message saying ">> Using device CPU", then
this is what happened.
To fix this problem, first determine whether you have an NVidia or an
AMD GPU. The former uses the CUDA driver, and the latter uses ROCm
(only available on Linux). Then run the `invoke.sh`/`invoke.bat`
command and enter the Developer's Console by picking option (5). This
will take you to a command-line prompt.
Then type the following commands:
=== "NVIDIA System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu118
pip install xformers
```
=== "AMD System"
```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
### Corrupted configuration file
Everything seems to install ok, but `invokeai` complains of a corrupted
configuration file and goes back into the configuration process (asking you to
download models, etc), but this doesn't fix the problem.
This issue is often caused by a misconfigured configuration directive in the
`invokeai\invokeai.init` initialization file that contains startup settings. The
easiest way to fix the problem is to move the file out of the way and re-run
`invokeai-configure`. Enter the developer's console (option 3 of the launcher
script) and run this command:
```cmd
invokeai-configure --root=.
```
Note the dot (.) after `--root`. It is part of the command.
_If none of these maneuvers fixes the problem_ then please report the problem to
the [InvokeAI Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive
assistance.
### Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself
faced with Out of Memory errors when generating images. Here are some
tips to reduce the problem:
* **4 GB of VRAM**
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
and derived models, provided that you **disable** the NSFW checker. To
disable the filter, do one of the following:
* Select option (6) "_change InvokeAI startup options_" from the
launcher. This will bring up the console-based startup settings
dialogue and allow you to unselect the "NSFW Checker" option.
* Start the startup settings dialogue directly by running
`invokeai-configure --skip-sd-weights --skip-support-models`
from the command line.
* Find the `invokeai.init` initialization file in the InvokeAI root
directory, open it in a text editor, and change `--nsfw_checker`
to `--no-nsfw_checker`
If you are on a CUDA system, you can realize significant memory
savings by activating the `xformers` library as described above. The
downside is `xformers` introduces non-deterministic behavior, such
that images generated with exactly the same prompt and settings will
be slightly different from each other. See above for more information.
* **6 GB of VRAM**
This is a border case. Using the SD 1.5 series you should be able to
generate images up to 640x640 with the NSFW checker enabled, and up to
1024x1024 with it disabled and `xformers` activated.
If you run into persistent memory issues there are a series of
environment variables that you can set before launching InvokeAI that
alter how the PyTorch machine learning library manages memory. See
https://pytorch.org/docs/stable/notes/cuda.html#memory-management for
a list of these tweaks.
* **12 GB of VRAM**
This should be sufficient to generate larger images up to about
1280x1280. If you wish to push further, consider activating
`xformers`.
### Other Problems
If you run into problems during or after installation, the InvokeAI team is
available to help you. Either create an
[Issue](https://github.com/invoke-ai/InvokeAI/issues) at our GitHub site, or
make a request for help on the "bugs-and-support" channel of our
[Discord server](https://discord.gg/ZmtBAhwWhy). We are a 100% volunteer
organization, but typically somebody will be available to help you within 24
hours, and often much sooner.
## Updating to newer versions
This distribution is changing rapidly, and we add new features
regularly. Releases are announced at
http://github.com/invoke-ai/InvokeAI/releases, and at
https://pypi.org/project/InvokeAI/ To update to the latest released
version (recommended), follow these steps:
1. Start the `invoke.sh`/`invoke.bat` launch script from within the
`invokeai` root directory.
2. Choose menu item (10) "Update InvokeAI".
3. This will launch a menu that gives you the option of:
1. Updating to the latest official release;
2. Updating to the bleeding-edge development version; or
3. Manually entering the tag or branch name of a version of
InvokeAI you wish to try out.

View File

@ -1,55 +1,122 @@
# Manual Install
---
title: Installing Manually
---
<figure markdown>
# :fontawesome-brands-linux: Linux | :fontawesome-brands-apple: macOS | :fontawesome-brands-windows: Windows
</figure>
!!! warning "This is for Advanced Users"
**Python experience is mandatory.**
**Python experience is mandatory**
## Introduction
InvokeAI is distributed as a python package on PyPI, installable with `pip`. There are a few things that are handled by the installer and launcher that you'll need to manage manually, described in this guide.
!!! tip "Conda"
As of InvokeAI v2.3.0 installation using the `conda` package manager is no longer being supported. It will likely still work, but we are not testing this installation method.
### Requirements
On Windows systems, you are encouraged to install and use the
[PowerShell](https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.3),
which provides compatibility with Linux and Mac shells and nice
features such as command-line completion.
Before you start, go through the [installation requirements](./INSTALL_REQUIREMENTS.md).
### Prerequisites
Before you start, make sure you have the following preqrequisites
installed. These are described in more detail in [Automated
Installation](010_INSTALL_AUTOMATED.md), and in many cases will
already be installed (if, for example, you have used your system for
gaming):
* **Python**
version 3.10 through 3.11
* **CUDA Tools**
For those with _NVidia GPUs_, you will need to
install the [CUDA toolkit and optionally the XFormers library](070_INSTALL_XFORMERS.md).
* **ROCm Tools**
For _Linux users with AMD GPUs_, you will need
to install the [ROCm toolkit](./030_INSTALL_CUDA_AND_ROCM.md). Note that
InvokeAI does not support AMD GPUs on Windows systems due to
lack of a Windows ROCm library.
* **Visual C++ Libraries**
_Windows users_ must install the free
[Visual C++ libraries from Microsoft](https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170)
* **The Xcode command line tools**
for _Macintosh users_. Instructions are available at
[Free Code Camp](https://www.freecodecamp.org/news/install-xcode-command-line-tools/)
* _Macintosh users_ may also need to run the `Install Certificates` command
if model downloads give lots of certificate errors. Run:
`/Applications/Python\ 3.10/Install\ Certificates.command`
### Installation Walkthrough
1. Create a directory to contain your InvokeAI library, configuration
To install InvokeAI with virtual environments and the PIP package
manager, please follow these steps:
1. Please make sure you are using Python 3.10 through 3.11. The rest of the install
procedure depends on this and will not work with other versions:
```bash
python -V
```
2. Create a directory to contain your InvokeAI library, configuration
files, and models. This is known as the "runtime" or "root"
directory, and often lives in your home directory under the name `invokeai`.
We will refer to this directory as `INVOKEAI_ROOT`. For convenience, create an environment variable pointing to the directory.
Please keep in mind the disk space requirements - you will need at
least 20GB for the models and the virtual environment. From now
on we will refer to this directory as `INVOKEAI_ROOT`. For convenience,
the steps below create a shell variable of that name which contains the
path to `HOME/invokeai`.
=== "Linux/macOS"
=== "Linux/Mac"
```bash
export INVOKEAI_ROOT=~/invokeai
mkdir $INVOKEAI_ROOT
```
=== "Windows (PowerShell)"
=== "Windows (Powershell)"
```bash
Set-Variable -Name INVOKEAI_ROOT -Value $Home/invokeai
mkdir $INVOKEAI_ROOT
```
1. Enter the root (invokeai) directory and create a virtual Python environment within it named `.venv`.
!!! warning "Virtual Environment Location"
While you may create the virtual environment anywhere in the file system, we recommend that you create it within the root directory as shown here. This allows the application to automatically detect its data directories.
If you choose a different location for the venv, then you _must_ set the `INVOKEAI_ROOT` environment variable or specify the root directory using the `--root` CLI arg.
3. Enter the root (invokeai) directory and create a virtual Python
environment within it named `.venv`. If the command `python`
doesn't work, try `python3`. Note that while you may create the
virtual environment anywhere in the file system, we recommend that
you create it within the root directory as shown here. This makes
it possible for the InvokeAI applications to find the model data
and configuration. If you do not choose to install the virtual
environment inside the root directory, then you **must** set the
`INVOKEAI_ROOT` environment variable in your shell environment, for
example, by editing `~/.bashrc` or `~/.zshrc` files, or setting the
Windows environment variable using the Advanced System Settings dialogue.
Refer to your operating system documentation for details.
```terminal
cd $INVOKEAI_ROOT
python3 -m venv .venv --prompt InvokeAI
python -m venv .venv --prompt InvokeAI
```
1. Activate the new environment:
4. Activate the new environment:
=== "Linux/macOS"
=== "Linux/Mac"
```bash
source .venv/bin/activate
@ -61,43 +128,51 @@ Before you start, go through the [installation requirements](./INSTALL_REQUIREME
.venv\Scripts\activate
```
!!! info "Permissions Error (Windows)"
If you get a permissions error at this point, run this command and try again
`Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser`
The command-line prompt should change to to show `(InvokeAI)` at the beginning of the prompt.
The command-line prompt should change to to show `(InvokeAI)` at the
beginning of the prompt. Note that all the following steps should be
run while inside the INVOKEAI_ROOT directory
The following steps should be run while inside the `INVOKEAI_ROOT` directory.
1. Make sure that pip is installed in your virtual environment and up to date:
5. Make sure that pip is installed in your virtual environment and up to date:
```bash
python3 -m pip install --upgrade pip
python -m pip install --upgrade pip
```
1. Install the InvokeAI Package. The base command is `pip install InvokeAI --use-pep517`, but you may need to change this depending on your system and the desired features.
6. Install the InvokeAI Package. The `--extra-index-url` option is used to select among
CUDA, ROCm and CPU/MPS drivers as shown below:
- You may need to provide an [extra index URL](https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-extra-index-url). Select your platform configuration using [this tool on the PyTorch website](https://pytorch.org/get-started/locally/). Copy the `--extra-index-url` string from this and append it to your install command.
=== "CUDA (NVidia)"
!!! example "Install with an extra index URL"
```bash
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
=== "ROCm (AMD)"
- If you have a CUDA GPU and want to install with `xformers`, you need to add an option to the package name. Note that `xformers` is not necessary. PyTorch includes an implementation of the SDP attention algorithm with the same performance.
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
!!! example "Install with `xformers`"
=== "CPU (Intel Macs & non-GPU systems)"
```bash
pip install "InvokeAI[xformers]" --use-pep517
```
```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
1. Deactivate and reactivate your runtime directory so that the invokeai-specific commands become available in the environment:
=== "MPS (M1 and M2 Macs)"
=== "Linux/macOS"
```bash
pip install InvokeAI --use-pep517
```
7. Deactivate and reactivate your runtime directory so that the invokeai-specific commands
become available in the environment
=== "Linux/Macintosh"
```bash
deactivate && source .venv/bin/activate
@ -110,10 +185,206 @@ Before you start, go through the [installation requirements](./INSTALL_REQUIREME
.venv\Scripts\activate
```
1. Run the application:
8. Set up the runtime directory
Run `invokeai-web` to start the UI. You must activate the virtual environment before running the app.
In this step you will initialize your runtime directory with the downloaded
models, model config files, directory for textual inversion embeddings, and
your outputs.
```terminal
invokeai-configure --root .
```
Don't miss the dot at the end of the command!
The script `invokeai-configure` will interactively guide you through the
process of downloading and installing the weights files needed for InvokeAI.
Note that the main Stable Diffusion weights file is protected by a license
agreement that you have to agree to. The script will list the steps you need
to take to create an account on the site that hosts the weights files,
accept the agreement, and provide an access token that allows InvokeAI to
legally download and install the weights files.
If you get an error message about a module not being installed, check that
the `invokeai` environment is active and if not, repeat step 5.
!!! tip
If you have already downloaded the weights file(s) for another Stable
Diffusion distribution, you may skip this step (by selecting "skip" when
prompted) and configure InvokeAI to use the previously-downloaded files. The
process for this is described in [Installing Models](050_INSTALLING_MODELS.md).
9. Run the command-line- or the web- interface:
From within INVOKEAI_ROOT, activate the environment
(with `source .venv/bin/activate` or `.venv\scripts\activate`), and then run
the script `invokeai`. If the virtual environment you selected is NOT inside
INVOKEAI_ROOT, then you must specify the path to the root directory by adding
`--root_dir \path\to\invokeai` to the commands below:
!!! example ""
!!! warning "Make sure that the virtual environment is activated, which should create `(.venv)` in front of your prompt!"
=== "local Webserver"
```bash
invokeai --web
```
=== "Public Webserver"
```bash
invokeai --web --host 0.0.0.0
```
=== "CLI"
```bash
invokeai
```
If you choose the run the web interface, point your browser at
http://localhost:9090 in order to load the GUI.
!!! tip
You can permanently set the location of the runtime directory
by setting the environment variable `INVOKEAI_ROOT` to the
path of the directory. As mentioned previously, this is
*highly recommended** if your virtual environment is located outside of
your runtime directory.
!!! tip
On linux, it is recommended to run invokeai with the following env var: `MALLOC_MMAP_THRESHOLD_=1048576`. For example: `MALLOC_MMAP_THRESHOLD_=1048576 invokeai --web`. This helps to prevent memory fragmentation that can lead to memory accumulation over time. This env var is set automatically when running via `invoke.sh`.
10. Render away!
Browse the [features](../features/index.md) section to learn about all the
things you can do with InvokeAI.
11. Subsequently, to relaunch the script, activate the virtual environment, and
then launch `invokeai` command. If you forget to activate the virtual
environment you will most likeley receive a `command not found` error.
!!! warning
If the virtual environment is _not_ inside the root directory, then you _must_ specify the path to the root directory with `--root \path\to\invokeai` or the `INVOKEAI_ROOT` environment variable.
Do not move the runtime directory after installation. The virtual environment will get confused if the directory is moved.
12. Other scripts
The [Textual Inversion](../features/TRAINING.md) script can be launched with the command:
```bash
invokeai-ti --gui
```
Similarly, the [Model Merging](../features/MODEL_MERGING.md) script can be launched with the command:
```bash
invokeai-merge --gui
```
Leave off the `--gui` option to run the script using command-line arguments. Pass the `--help` argument
to get usage instructions.
## Developer Install
If you have an interest in how InvokeAI works, or you would like to
add features or bugfixes, you are encouraged to install the source
code for InvokeAI. For this to work, you will need to install the
`git` source code management program. If it is not already installed
on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
> **Why do I need the frontend toolchain**?
>
> The InvokeAI project uses trunk-based development. That means our `main` branch is the development branch, and releases are tags on that branch. Because development is very active, we don't keep an updated build of the UI in `main` - we only build it for production releases.
>
> That means that between releases, to have a functioning application when running directly from the repo, you will need to run the UI in dev mode or build it regularly (any time the UI code changes).
1. Create a fork of the InvokeAI repository through the GitHub UI or [this link](https://github.com/invoke-ai/InvokeAI/fork)
2. From the command line, run this command:
```bash
git clone https://github.com/<your_github_username>/InvokeAI.git
```
This will create a directory named `InvokeAI` and populate it with the
full source code from your fork of the InvokeAI repository.
3. Activate the InvokeAI virtual environment as per step (4) of the manual
installation protocol (important!)
4. Enter the InvokeAI repository directory and run one of these
commands, based on your GPU:
=== "CUDA (NVidia)"
```bash
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
```
=== "ROCm (AMD)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
```
=== "CPU (Intel Macs & non-GPU systems)"
```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
=== "MPS (M1 and M2 Macs)"
```bash
pip install -e . --use-pep517
```
Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files
and watch the code's behavior change.
When you pull in new changes to the repo, be sure to re-build the UI.
7. If you wish to contribute to the InvokeAI project, you are
encouraged to establish a GitHub account and "fork"
https://github.com/invoke-ai/InvokeAI into your own copy of the
repository. You can then use GitHub functions to create and submit
pull requests to contribute improvements to the project.
Please see [Contributing](../index.md#contributing) for hints
on getting started.
### Unsupported Conda Install
Congratulations, you found the "secret" Conda installation
instructions. If you really **really** want to use Conda with InvokeAI
you can do so using this unsupported recipe:
```
mkdir ~/invokeai
conda create -n invokeai python=3.10
conda activate invokeai
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
invokeai-configure --root ~/invokeai
invokeai --root ~/invokeai --web
```
The `pip install` command shown in this recipe is for Linux/Windows
systems with an NVIDIA GPU. See step (6) above for the command to use
with other platforms/GPU combinations. If you don't wish to pass the
`--root` argument to `invokeai` with each launch, you may set the
environment variable INVOKEAI_ROOT to point to the installation directory.
Note that if you run into problems with the Conda installation, the InvokeAI
staff will **not** be able to help you out. Caveat Emptor!

View File

@ -0,0 +1,149 @@
---
title: NVIDIA Cuda / AMD ROCm
---
<figure markdown>
# :simple-nvidia: CUDA | :simple-amd: ROCm
</figure>
In order for InvokeAI to run at full speed, you will need a graphics
card with a supported GPU. InvokeAI supports NVidia cards via the CUDA
driver on Windows and Linux, and AMD cards via the ROCm driver on Linux.
## :simple-nvidia: CUDA
### Linux and Windows Install
If you have used your system for other graphics-intensive tasks, such
as gaming, you may very well already have the CUDA drivers
installed. To confirm, open up a command-line window and type:
```
nvidia-smi
```
If this command produces a status report on the GPU(s) installed on
your system, CUDA is installed and you have no more work to do. If
instead you get "command not found", or similar, then the driver will
need to be installed.
We strongly recommend that you install the CUDA Toolkit package
directly from NVIDIA. **Do not try to install Ubuntu's
nvidia-cuda-toolkit package. It is out of date and will cause
conflicts among the NVIDIA driver and binaries.**
Go to [CUDA Toolkit
Downloads](https://developer.nvidia.com/cuda-downloads), and use the
target selection wizard to choose your operating system, hardware
platform, and preferred installation method (e.g. "local" versus
"network").
This will provide you with a downloadable install file or, depending
on your choices, a recipe for downloading and running a install shell
script. Be sure to read and follow the full installation instructions.
After an install that seems successful, you can confirm by again
running `nvidia-smi` from the command line.
### Linux Install with a Runtime Container
On Linux systems, an alternative to installing CUDA Toolkit directly on
your system is to run an NVIDIA software container that has the CUDA
libraries already in place. This is recommended if you are already
familiar with containerization technologies such as Docker.
For downloads and instructions, visit the [NVIDIA CUDA Container
Runtime Site](https://developer.nvidia.com/nvidia-container-runtime)
### cuDNN Installation for 40/30 Series Optimization* (Optional)
1. Find the InvokeAI folder
2. Click on .venv folder - e.g., YourInvokeFolderHere\\.venv
3. Click on Lib folder - e.g., YourInvokeFolderHere\\.venv\Lib
4. Click on site-packages folder - e.g., YourInvokeFolderHere\\.venv\Lib\site-packages
5. Click on Torch directory - e.g., YourInvokeFolderHere\InvokeAI\\.venv\Lib\site-packages\torch
6. Click on the lib folder - e.g., YourInvokeFolderHere\\.venv\Lib\site-packages\torch\lib
7. Copy everything inside the folder and save it elsewhere as a backup.
8. Go to __https://developer.nvidia.com/cudnn__
9. Login or create an Account.
10. Choose the newer version of cuDNN. **Note:**
There are two versions, 11.x or 12.x for the differents architectures(Turing,Maxwell Etc...) of GPUs.
You can find which version you should download from [this link](https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html).
13. Download the latest version and extract it from the download location
14. Find the bin folder E\cudnn-windows-x86_64-__Whatever Version__\bin
15. Copy and paste the .dll files into YourInvokeFolderHere\\.venv\Lib\site-packages\torch\lib **Make sure to copy, and not move the files**
16. If prompted, replace any existing files
**Notes:**
* If no change is seen or any issues are encountered, follow the same steps as above and paste the torch/lib backup folder you made earlier and replace it. If you didn't make a backup, you can also uninstall and reinstall torch through the command line to repair this folder.
* This optimization is intended for the newer version of graphics card (40/30 series) but results have been seen with older graphics card.
### Torch Installation
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/cu118` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
## :simple-amd: ROCm
### Linux Install
AMD GPUs are only supported on Linux platforms due to the lack of a
Windows ROCm driver at the current time. Also be aware that support
for newer AMD GPUs is spotty. Your mileage may vary.
It is possible that the ROCm driver is already installed on your
machine. To test, open up a terminal window and issue the following
command:
```
rocm-smi
```
If you get a table labeled "ROCm System Management Interface" the
driver is installed and you are done. If you get "command not found,"
then the driver needs to be installed.
Go to AMD's [ROCm Downloads
Guide](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html#installation-methods)
and scroll to the _Installation Methods_ section. Find the subsection
for the install method for your preferred Linux distribution, and
issue the commands given in the recipe.
Annoyingly, the official AMD site does not have a recipe for the most
recent version of Ubuntu, 22.04. However, this [community-contributed
recipe](https://novaspirit.github.io/amdgpu-rocm-ubu22/) is reported
to work well.
After installation, please run `rocm-smi` a second time to confirm
that the driver is present and the GPU is recognized. You may need to
do a reboot in order to load the driver.
### Linux Install with a ROCm-docker Container
If you are comfortable with the Docker containerization system, then
you can build a ROCm docker file. The source code and installation
recipes are available
[Here](https://github.com/RadeonOpenCompute/ROCm-docker/blob/master/quick-start.md)
### Torch Installation
When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer
script.
Be aware that the torch machine learning library does not seamlessly
interoperate with all AMD GPUs and you may experience garbled images,
black images, or long startup delays before rendering commences. Most
of these issues can be solved by Googling for workarounds. If you have
a problem and find a solution, please post an
[Issue](https://github.com/invoke-ai/InvokeAI/issues) so that other
users benefit and we can update this document.

View File

@ -30,7 +30,7 @@ methodology for details on why running applications in such a stateless fashion
The container is configured for CUDA by default, but can be built to support AMD GPUs
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
Developers on Apple silicon (M1/M2/M3): You
Developers on Apple silicon (M1/M2): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your
@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
@ -99,14 +99,3 @@ If using an AMD GPU:
Use the standard `docker compose up` command, and generally the `docker compose` [CLI](https://docs.docker.com/compose/reference/) as usual.
Once the container starts up (and configures the InvokeAI root directory if this is a new installation), you can access InvokeAI at [http://localhost:9090](http://localhost:9090)
## Troubleshooting / FAQ
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error.
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
and you may have cloned this repository before the issue was fixed. To solve this, please change
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL.
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
to reset the file to its most recent version.
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)

View File

@ -1,52 +1,186 @@
# Installing Models
---
title: Installing Models
---
# :octicons-paintbrush-16: Installing Models
## Checkpoint and Diffusers Models
The model checkpoint files (`*.ckpt`) are the Stable Diffusion "secret sauce". They are the product of training the AI on millions of captioned images gathered from multiple sources.
The model checkpoint files ('\*.ckpt') are the Stable Diffusion
"secret sauce". They are the product of training the AI on millions of
captioned images gathered from multiple sources.
Originally there was only a single Stable Diffusion weights file, which many people named `model.ckpt`.
Originally there was only a single Stable Diffusion weights file,
which many people named `model.ckpt`. Now there are dozens or more
that have been fine tuned to provide particulary styles, genres, or
other features. In addition, there are several new formats that
improve on the original checkpoint format: a `.safetensors` format
which prevents malware from masquerading as a model, and `diffusers`
models, the most recent innovation.
Today, there are thousands of models, fine tuned to excel at specific styles, genres, or themes.
InvokeAI supports all three formats but strongly prefers the
`diffusers` format. These are distributed as directories containing
multiple subfolders, each of which contains a different aspect of the
model. The advantage of this is that the models load from disk really
fast. Another advantage is that `diffusers` models are supported by a
large and active set of open source developers working at and with
HuggingFace organization, and improvements in both rendering quality
and performance are being made at a rapid pace. Among other features
is the ability to download and install a `diffusers` model just by
providing its HuggingFace repository ID.
!!! tip "Model Formats"
While InvokeAI will continue to support `.ckpt` and `.safetensors`
models for the near future, these are deprecated and support will
likely be withdrawn at some point in the not-too-distant future.
We also have two more popular model formats, both created [HuggingFace](https://huggingface.co/):
This manual will guide you through installing and configuring model
weight files and converting legacy `.ckpt` and `.safetensors` files
into performant `diffusers` models.
- `safetensors`: Single file, like `.ckpt` files. Prevents malware from lurking in a model.
- `diffusers`: Splits the model components into separate files, allowing very fast loading.
## Base Models
InvokeAI supports all three formats. Our backend will convert models to `diffusers` format before running them. This is a transparent process.
InvokeAI comes with support for a good set of starter models. You'll
find them listed in the master models file
`configs/INITIAL_MODELS.yaml` in the InvokeAI root directory. The
subset that are currently installed are found in
`configs/models.yaml`.
## Starter Models
Note that these files are covered by an "Ethical AI" license which
forbids certain uses. When you initially download them, you are asked
to accept the license terms. In addition, some of these models carry
additional license terms that limit their use in commercial
applications or on public servers. Be sure to familiarize yourself
with the model terms by visiting the URLs in the table above.
When you first start InvokeAI, you'll see a popup prompting you to install some starter models from the Model Manager. Click the `Starter Models` tab to see the list.
## Community-Contributed Models
You'll find a collection of popular and high-quality models available for easy download.
[HuggingFace](https://huggingface.co/models?library=diffusers)
is a great resource for diffusers models, and is also the home of a
[fast-growing repository](https://huggingface.co/sd-concepts-library)
of embedding (".bin") models that add subjects and/or styles to your
images. The latter are automatically installed on the fly when you
include the text `<concept-name>` in your prompt. See [Concepts
Library](../features/CONCEPTS.md) for more information.
Some models carry license terms that limit their use in commercial applications or on public servers. It's your responsibility to adhere to the license terms.
Another popular site for community-contributed models is
[CIVITAI](https://civitai.com). This extensive site currently supports
only `.safetensors` and `.ckpt` models, but they can be easily loaded
into InvokeAI and/or converted into optimized `diffusers` models. Be
aware that CIVITAI hosts many models that generate NSFW content.
## Other Models
## Installation
You can install other models using the Model Manager. You'll find tabs for the following install methods:
There are two ways to install and manage models:
- **URL or Local Path**: Provide the path to a model on your computer, or a direct link to the model. Some sites require you to use an API token to download models, which you can [set up in the config file].
- **HuggingFace**: Paste a HF Repo ID to install it. If there are multiple models in the repo, you'll get a list to choose from. Repo IDs look like this: `XpucT/Deliberate`. There is a copy button on each repo to copy the ID.
- **Scan Folder**: Scan a local folder for models. You can install all of the detected models in one click.
1. The `invokeai-model-install` script which will download and install
them for you. In addition to supporting main models, you can install
ControlNet, LoRA and Textual Inversion models.
!!! tip "Autoimport"
2. The web interface (WebUI) has a GUI for importing and managing
models.
The dedicated autoimport folder is removed as of v4.0.0. You can do the same thing on the **Scan Folder** tab - paste the folder you'd like to import from and then click `Install All`.
3. By placing models (or symbolic links to models) inside one of the
InvokeAI root directory's `autoimport` folder.
### Diffusers models in HF repo subfolders
### Installation via `invokeai-model-install`
HuggingFace repos can be structured in any way. Some model authors include multiple models within the same folder.
From the `invoke` launcher, choose option [4] "Download and install
models." This will launch the same script that prompted you to select
models at install time. You can use this to add models that you
skipped the first time around. It is all right to specify a model that
was previously downloaded; the script will just confirm that the files
are complete.
In this situation, you may need to provide some additional information to identify the model you want, by adding `:subfolder_name` to the repo ID.
The installer has different panels for installing main models from
HuggingFace, models from Civitai and other arbitrary web sites,
ControlNet models, LoRA/LyCORIS models, and Textual Inversion
embeddings. Each section has a text box in which you can enter a new
model to install. You can refer to a model using its:
!!! example
1. Local path to the .ckpt, .safetensors or diffusers folder on your local machine
2. A directory on your machine that contains multiple models
3. A URL that points to a downloadable model
4. A HuggingFace repo id
Say you have a repo ID `monster-labs/control_v1p_sd15_qrcode_monster`, and the model you want is inside the `v2` subfolder.
Previously-installed models are shown with checkboxes. Uncheck a box
to unregister the model from InvokeAI. Models that are physically
installed inside the InvokeAI root directory will be deleted and
purged (after a confirmation warning). Models that are located outside
the InvokeAI root directory will be unregistered but not deleted.
Add `:v2` to the repo ID and use that when installing the model: `monster-labs/control_v1p_sd15_qrcode_monster:v2`
Note: The installer script uses a console-based text interface that requires
significant amounts of horizontal and vertical space. If the display
looks messed up, just enlarge the terminal window and/or relaunch the
script.
[set up in the config file]: ../../features/CONFIGURATION#model-marketplace-api-keys
If you wish you can script model addition and deletion, as well as
listing installed models. Start the "developer's console" and give the
command `invokeai-model-install --help`. This will give you a series
of command-line parameters that will let you control model
installation. Examples:
```
# (list all controlnet models)
invokeai-model-install --list controlnet
# (install the model at the indicated URL)
invokeai-model-install --add https://civitai.com/api/download/models/128713
# (delete the named model)
invokeai-model-install --delete sd-1/main/analog-diffusion
```
### Installation via the Web GUI
To install a new model using the Web GUI, do the following:
1. Open the InvokeAI Model Manager (cube at the bottom of the
left-hand panel) and navigate to *Import Models*
2. In the field labeled *Location* type in the path to the model you
wish to install. You may use a URL, HuggingFace repo id, or a path on
your local disk.
3. Alternatively, the *Scan for Models* button allows you to paste in
the path to a folder somewhere on your machine. It will be scanned for
importable models and prompt you to add the ones of your choice.
4. Press *Add Model* and wait for confirmation that the model
was added.
To delete a model, Select *Model Manager* to list all the currently
installed models. Press the trash can icons to delete any models you
wish to get rid of. Models whose weights are located inside the
InvokeAI `models` directory will be purged from disk, while those
located outside will be unregistered from InvokeAI, but not deleted.
You can see where model weights are located by clicking on the model name.
This will bring up an editable info panel showing the model's characteristics,
including the `Model Location` of its files.
### Installation via the `autoimport` function
In the InvokeAI root directory you will find a series of folders under
`autoimport`, one each for main models, controlnets, embeddings and
Loras. Any models that you add to these directories will be scanned
at startup time and registered automatically.
You may create symbolic links from these folders to models located
elsewhere on disk and they will be autoimported. You can also create
subfolders and organize them as you wish.
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
### Installing models that live in HuggingFace subfolders
On rare occasions you may need to install a diffusers-style model that
lives in a subfolder of a HuggingFace repo id. In this event, simply
add ":_subfolder-name_" to the end of the repo id. For example, if the
repo id is "monster-labs/control_v1p_sd15_qrcode_monster" and the model
you wish to fetch lives in a subfolder named "v2", then the repo id to
pass to the various model installers should be
```
monster-labs/control_v1p_sd15_qrcode_monster:v2
```

View File

@ -0,0 +1,215 @@
---
title: Installing xFormers
---
# :material-image-size-select-large: Installing xformers
xFormers is toolbox that integrates with the pyTorch and CUDA
libraries to provide accelerated performance and reduced memory
consumption for applications using the transformers machine learning
architecture. After installing xFormers, InvokeAI users who have
CUDA GPUs will see a noticeable decrease in GPU memory consumption and
an increase in speed.
xFormers can be installed into a working InvokeAI installation without
any code changes or other updates. This document explains how to
install xFormers.
## Pip Install
For both Windows and Linux, you can install `xformers` in just a
couple of steps from the command line.
If you are used to launching `invoke.sh` or `invoke.bat` to start
InvokeAI, then run the launcher and select the "developer's console"
to get to the command line. If you run invoke.py directly from the
command line, then just be sure to activate it's virtual environment.
Then run the following three commands:
```sh
pip install xformers~=0.0.19
pip install triton # WON'T WORK ON WINDOWS
python -m xformers.info output
```
The first command installs `xformers`, the second installs the
`triton` training accelerator, and the third prints out the `xformers`
installation status. On Windows, please omit the `triton` package,
which is not available on that platform.
If all goes well, you'll see a report like the
following:
```sh
xFormers 0.0.20
memory_efficient_attention.cutlassF: available
memory_efficient_attention.cutlassB: available
memory_efficient_attention.flshattF: available
memory_efficient_attention.flshattB: available
memory_efficient_attention.smallkF: available
memory_efficient_attention.smallkB: available
memory_efficient_attention.tritonflashattF: available
memory_efficient_attention.tritonflashattB: available
indexing.scaled_index_addF: available
indexing.scaled_index_addB: available
indexing.index_select: available
swiglu.dual_gemm_silu: available
swiglu.gemm_fused_operand_sum: available
swiglu.fused.p.cpp: available
is_triton_available: True
is_functorch_available: False
pytorch.version: 2.0.1+cu118
pytorch.cuda: available
gpu.compute_capability: 8.9
gpu.name: NVIDIA GeForce RTX 4070
build.info: available
build.cuda_version: 1108
build.python_version: 3.10.11
build.torch_version: 2.0.1+cu118
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
build.env.XFORMERS_BUILD_TYPE: Release
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
build.env.NVCC_FLAGS: None
build.env.XFORMERS_PACKAGE_FROM: wheel-v0.0.20
build.nvcc_version: 11.8.89
source.privacy: open source
```
## Source Builds
`xformers` is currently under active development and at some point you
may wish to build it from sourcce to get the latest features and
bugfixes.
### Source Build on Linux
Note that xFormers only works with true NVIDIA GPUs and will not work
properly with the ROCm driver for AMD acceleration.
xFormers is not currently available as a pip binary wheel and must be
installed from source. These instructions were written for a system
running Ubuntu 22.04, but other Linux distributions should be able to
adapt this recipe.
#### 1. Install CUDA Toolkit 11.8
You will need the CUDA developer's toolkit in order to compile and
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
package.** It is out of date and will cause conflicts among the NVIDIA
driver and binaries. Instead install the CUDA Toolkit package provided
by NVIDIA itself. Go to [CUDA Toolkit 11.8
Downloads](https://developer.nvidia.com/cuda-11-8-0-download-archive)
and use the target selection wizard to choose your platform and Linux
distribution. Select an installer type of "runfile (local)" at the
last step.
This will provide you with a recipe for downloading and running a
install shell script that will install the toolkit and drivers. For
example, the install script recipe for Ubuntu 22.04 running on a
x86_64 system is:
```
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
```
Rather than cut-and-paste this example, We recommend that you walk
through the toolkit wizard in order to get the most up to date
installer for your system.
#### 2. Confirm/Install pyTorch 2.01 with CUDA 11.8 support
If you are using InvokeAI 3.0.2 or higher, these will already be
installed. If not, you can check whether you have the needed libraries
using a quick command. Activate the invokeai virtual environment,
either by entering the "developer's console", or manually with a
command similar to `source ~/invokeai/.venv/bin/activate` (depending
on where your `invokeai` directory is.
Then run the command:
```sh
python -c 'exec("import torch\nprint(torch.__version__)")'
```
If it prints __1.13.1+cu118__ you're good. If not, you can install the
most up to date libraries with this command:
```sh
pip install --upgrade --force-reinstall torch torchvision
```
#### 3. Install the triton module
This module isn't necessary for xFormers image inference optimization,
but avoids a startup warning.
```sh
pip install triton
```
#### 4. Install source code build prerequisites
To build xFormers from source, you will need the `build-essentials`
package. If you don't have it installed already, run:
```sh
sudo apt install build-essential
```
#### 5. Build xFormers
There is no pip wheel package for xFormers at this time (January
2023). Although there is a conda package, InvokeAI no longer
officially supports conda installations and you're on your own if you
wish to try this route.
Following the recipe provided at the [xFormers GitHub
page](https://github.com/facebookresearch/xformers), and with the
InvokeAI virtual environment active (see step 1) run the following
commands:
```sh
pip install ninja
export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.2;7.5;8.0;8.6"
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
```
The TORCH_CUDA_ARCH_LIST is a list of GPU architectures to compile
xFormer support for. You can speed up compilation by selecting
the architecture specific for your system. You'll find the list of
GPUs and their architectures at NVIDIA's [GPU Compute
Capability](https://developer.nvidia.com/cuda-gpus) table.
If the compile and install completes successfully, you can check that
xFormers is installed with this command:
```sh
python -m xformers.info
```
If suiccessful, the top of the listing should indicate "available" for
each of the `memory_efficient_attention` modules, as shown here:
```sh
memory_efficient_attention.cutlassF: available
memory_efficient_attention.cutlassB: available
memory_efficient_attention.flshattF: available
memory_efficient_attention.flshattB: available
memory_efficient_attention.smallkF: available
memory_efficient_attention.smallkB: available
memory_efficient_attention.tritonflashattF: available
memory_efficient_attention.tritonflashattB: available
[...]
```
You can now launch InvokeAI and enjoy the benefits of xFormers.
### Windows
To come
---
(c) Copyright 2023 Lincoln Stein and the InvokeAI Development Team

View File

@ -0,0 +1,89 @@
---
title: build binary installers
---
# :simple-buildkite: How to build "binary" installers (InvokeAI-mac/windows/linux_on_*.zip)
## 1. Ensure `installers/requirements.in` is correct
and up to date on the branch to be installed.
## <a name="step-2"></a> 2. Run `pip-compile` on each platform.
On each target platform, in the branch that is to be installed, and
inside the InvokeAI git root folder, run the following commands:
```commandline
conda activate invokeai # or however you activate python
pip install pip-tools
pip-compile --allow-unsafe --generate-hashes --output-file=binary_installer/<reqsfile>.txt binary_installer/requirements.in
```
where `<reqsfile>.txt` is whichever of
```commandline
py3.10-darwin-arm64-mps-reqs.txt
py3.10-darwin-x86_64-reqs.txt
py3.10-linux-x86_64-cuda-reqs.txt
py3.10-windows-x86_64-cuda-reqs.txt
```
matches the current OS and architecture.
> There is no way to cross-compile these. They must be done on a system matching the target OS and arch.
## <a name="step-3"></a> 3. Set github repository and branch
Once all reqs files have been collected and committed **to the branch
to be installed**, edit `binary_installer/install.sh.in` and `binary_installer/install.bat.in` so that `RELEASE_URL`
and `RELEASE_SOURCEBALL` point to the github repo and branch that is
to be installed.
For example, to install `main` branch of `InvokeAI`, they should be
set as follows:
`install.sh.in`:
```commandline
RELEASE_URL=https://github.com/invoke-ai/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
```
`install.bat.in`:
```commandline
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
```
Or, to install `damians-cool-feature` branch of `damian0815`, set them
as follows:
`install.sh.in`:
```commandline
RELEASE_URL=https://github.com/damian0815/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/damians-cool-feature.tar.gz
```
`install.bat.in`:
```commandline
set RELEASE_URL=https://github.com/damian0815/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/damians-cool-feature.tar.gz
```
The branch and repo specified here **must** contain the correct reqs
files. The installer zip files **do not** contain requirements files,
they are pulled from the specified branch during the installation
process.
## 4. Create zip files.
cd into the `installers/` folder and run
`./create_installers.sh`. This will create
`InvokeAI-mac_on_<branch>.zip`,
`InvokeAI-windows_on_<branch>.zip` and
`InvokeAI-linux_on_<branch>.zip`. These files can be distributed to end users.
These zips will continue to function as installers for all future
pushes to those branches, as long as necessary changes to
`requirements.in` are propagated in a timely manner to the
`py3.10-*-reqs.txt` files using pip-compile as outlined in [step
2](#step-2).
To actually install, users should unzip the appropriate zip file into an empty
folder and run `install.sh` on macOS/Linux or `install.bat` on
Windows.

View File

@ -1,48 +1,83 @@
# Installation and Updating Overview
# Overview
Before installing, review the [installation requirements] to ensure your system is set up properly.
We offer several ways to install InvokeAI, each one suited to your
experience and preferences. We suggest that everyone start by
reviewing the
[hardware](010_INSTALL_AUTOMATED.md#hardware_requirements) and
[software](010_INSTALL_AUTOMATED.md#software_requirements)
requirements, as they are the same across each install method. Then
pick the install method most suitable to your level of experience and
needs.
See the [FAQ] for frequently-encountered installation issues.
See the [troubleshooting
section](010_INSTALL_AUTOMATED.md#troubleshooting) of the automated
install guide for frequently-encountered installation issues.
If you need more help, join our [discord] or [create an issue].
This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
<h2>Automatic Install & Updates </h2>
✅ The automatic install is the best way to run InvokeAI. Check out the [installation guide] to get started.
## **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
⬆️ The same installer is also the best way to update InvokeAI - Simply rerun it for the same folder you installed to.
This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
give you to access experimental features.
The installation process simply manages installation for the core libraries & application dependencies that run Invoke.
Any models, images, or other assets in the Invoke root folder won't be affected by the installation process.
## **[Manual Installation](020_INSTALL_MANUAL.md)**
This method is recommended for experienced users and developers.
<h2>Manual Install</h2>
If you are familiar with python and want more control over the packages that are installed, you can [install InvokeAI manually via PyPI].
Updates are managed by reinstalling the latest version through PyPi.
<h2>Developer Install</h2>
If you want to contribute to InvokeAI, consult the [developer install guide].
<h2>Docker Install</h2>
In this method you will manually run the commands needed to install
InvokeAI and its dependencies. We offer two recipes: one suited to
those who prefer the `conda` tool, and one suited to those who prefer
`pip` and Python virtual environments. In our hands the pip install
is faster and more reliable, but your mileage may vary.
Note that the conda installation method is currently deprecated and
will not be supported at some point in the future.
## **[Docker Installation](040_INSTALL_DOCKER.md)**
This method is recommended for those familiar with running Docker containers.
We offer a method for creating Docker containers containing InvokeAI and its dependencies. This method is recommended for individuals with experience with Docker containers and understand the pluses and minuses of a container-based install.
See the [docker installation guide].
## Other Installation Guides
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
- [XFormers](070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](050_INSTALLING_MODELS.md)
<h2>Other Installation Guides</h2>
## :fontawesome-solid-computer: Hardware Requirements
- [PyPatchMatch](060_INSTALL_PATCHMATCH.md)
- [Installing Models](050_INSTALLING_MODELS.md)
### :octicons-cpu-24: System
You wil need one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
** SDXL 1.0 Requirements*
To use SDXL, user must have one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 8 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 16 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
### :fontawesome-solid-memory: Memory and Disk
- At least 12 GB Main Memory RAM.
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
We do **not recommend** the following video cards due to issues with their
running in half-precision mode and having insufficient VRAM to render 512x512
images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
[install InvokeAI manually via PyPI]: 020_INSTALL_MANUAL.md
[developer install guide]: INSTALL_DEVELOPMENT.md
[docker installation guide]: 040_INSTALL_DOCKER.md
[installation guide]: 010_INSTALL_AUTOMATED.md
[FAQ]: ../help/FAQ.md
[discord]: discord.gg/invoke-ai
[create an issue]: https://github.com/invoke-ai/InvokeAI/issues
[installation requirements]: INSTALL_REQUIREMENTS.md

View File

@ -1,37 +0,0 @@
# Developer Install
!!! warning
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
PR introduces a schema change.
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
`use_memory_db: true` in your `invokeai.yaml` file. You'll also want to set `scan_models_on_startup: true`
so that your models are registered on startup.
If this is untenable, you should run the application via the official installer or a manual install of the
python package from PyPI. These releases will not break your database.
If you have an interest in how InvokeAI works, or you would like to add features or bugfixes, you are encouraged to install the source code for InvokeAI.
!!! info "Why do I need the frontend toolchain?"
The repo doesn't contain a build of the frontend. You'll be responsible for rebuilding it (or running it in dev mode) to use the app, as described in the [frontend dev toolchain] docs.
<h2> Installation </h2>
1. [Fork and clone] the [InvokeAI repo].
1. Follow the [manual installation] docs to create a new virtual environment for the development install.
- Create a new folder outside the repo root for the installation and create the venv inside that folder.
- When installing the InvokeAI package, add `-e` to the command so you get an [editable install].
1. Install the [frontend dev toolchain] and do a production build of the UI as described.
1. You can now run the app as described in the [manual installation] docs.
As described in the [frontend dev toolchain] docs, you can run the UI using a dev server. If you do this, you won't need to continually rebuild the frontend. Instead, you run the dev server and use the app with the server URL it provides.
[Fork and clone]: https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
[InvokeAI repo]: https://github.com/invoke-ai/InvokeAI
[frontend dev toolchain]: ../contributing/frontend/OVERVIEW.md
[manual installation]: ./020_INSTALL_MANUAL.md
[editable install]: https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-e

View File

@ -1,181 +0,0 @@
# Requirements
## GPU
!!! warning "Problematic Nvidia GPUs"
We do not recommend these GPUs. They cannot operate with half precision, but have insufficient VRAM to generate 512x512 images at full precision.
- NVIDIA 10xx series cards such as the 1080 TI
- GTX 1650 series cards
- GTX 1660 series cards
Invoke runs best with a dedicated GPU, but will fall back to running on CPU, albeit much slower. You'll need a beefier GPU for SDXL.
!!! example "Stable Diffusion 1.5"
=== "Nvidia"
```
Any GPU with at least 4GB VRAM.
```
=== "AMD"
```
Any GPU with at least 4GB VRAM. Linux only.
```
=== "Mac"
```
Any Apple Silicon Mac with at least 8GB memory.
```
!!! example "Stable Diffusion XL"
=== "Nvidia"
```
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"
```
Any Apple Silicon Mac with at least 16GB memory.
```
## RAM
At least 12GB of RAM.
## Disk
SSDs will, of course, offer the best performance.
The base application disk usage depends on the torch backend.
!!! example "Disk"
=== "Nvidia (CUDA)"
```
~6.5GB
```
=== "AMD (ROCm)"
```
~12GB
```
=== "Mac (MPS)"
```
~3.5GB
```
You'll need to set aside some space for images, depending on how much you generate. A couple GB is enough to get started.
You'll need a good chunk of space for models. Even if you only install the most popular models and the usual support models (ControlNet, IP Adapter ,etc), you will quickly hit 50GB of models.
!!! info "`tmpfs` on Linux"
If your temporary directory is mounted as a `tmpfs`, ensure it has sufficient space.
## Python
Invoke requires python 3.10 or 3.11. If you don't already have one of these versions installed, we suggest installing 3.11, as it will be supported for longer.
Check that your system has an up-to-date Python installed by running `python --version` in the terminal (Linux, macOS) or cmd/powershell (Windows).
<h3>Installing Python (Windows)</h3>
- Install python 3.11 with [an official installer].
- The installer includes an option to add python to your PATH. Be sure to enable this. If you missed it, re-run the installer, choose to modify an existing installation, and tick that checkbox.
- You may need to install [Microsoft Visual C++ Redistributable].
<h3>Installing Python (macOS)</h3>
- Install python 3.11 with [an official installer].
- If model installs fail with a certificate error, you may need to run this command (changing the python version to match what you have installed): `/Applications/Python\ 3.10/Install\ Certificates.command`
- If you haven't already, you will need to install the XCode CLI Tools by running `xcode-select --install` in a terminal.
<h3>Installing Python (Linux)</h3>
- Follow the [linux install instructions], being sure to install python 3.11.
- You'll need to install `libglib2.0-0` and `libgl1-mesa-glx` for OpenCV to work. For example, on a Debian system: `sudo apt update && sudo apt install -y libglib2.0-0 libgl1-mesa-glx`
## Drivers
If you have an Nvidia or AMD GPU, you may need to manually install drivers or other support packages for things to work well or at all.
### Nvidia
Run `nvidia-smi` on your system's command line to verify that drivers and CUDA are installed. If this command fails, or doesn't report versions, you will need to install drivers.
Go to the [CUDA Toolkit Downloads] and carefully follow the instructions for your system to get everything installed.
Confirm that `nvidia-smi` displays driver and CUDA versions after installation.
#### Linux - via Nvidia Container Runtime
An alternative to installing CUDA locally is to use the [Nvidia Container Runtime] to run the application in a container.
#### Windows - Nvidia cuDNN DLLs
An out-of-date cuDNN library can greatly hamper performance on 30-series and 40-series cards. Check with the community on discord to compare your `it/s` if you think you may need this fix.
First, locate the destination for the DLL files and make a quick back up:
1. Find your InvokeAI installation folder, e.g. `C:\Users\Username\InvokeAI\`.
1. Open the `.venv` folder, e.g. `C:\Users\Username\InvokeAI\.venv` (you may need to show hidden files to see it).
1. Navigate deeper to the `torch` package, e.g. `C:\Users\Username\InvokeAI\.venv\Lib\site-packages\torch`.
1. Copy the `lib` folder inside `torch` and back it up somewhere.
Next, download and copy the updated cuDNN DLLs:
1. Go to <https://developer.nvidia.com/cudnn>.
1. Create an account if needed and log in.
1. Choose the newest version of cuDNN that works with your GPU architecture. Consult the [cuDNN support matrix] to determine the correct version for your GPU.
1. Download the latest version and extract it.
1. Find the `bin` folder, e.g. `cudnn-windows-x86_64-SOME_VERSION\bin`.
1. Copy and paste the `.dll` files into the `lib` folder you located earlier. Replace files when prompted.
If, after restarting the app, this doesn't improve your performance, either restore your back up or re-run the installer to reset `torch` back to its original state.
### AMD
!!! info "Linux Only"
AMD GPUs are supported on Linux only, due to ROCm (the AMD equivalent of CUDA) support being Linux only.
!!! warning "Bumps Ahead"
While the application does run on AMD GPUs, there are occasional bumps related to spotty torch support.
Run `rocm-smi` on your system's command line verify that drivers and ROCm are installed. If this command fails, or doesn't report versions, you will need to install them.
Go to the [ROCm Documentation] and carefully follow the instructions for your system to get everything installed.
Confirm that `rocm-smi` displays driver and CUDA versions after installation.
#### Linux - via Docker Container
An alternative to installing ROCm locally is to use a [ROCm docker container] to run the application in a container.
[ROCm docker container]: https://github.com/ROCm/ROCm-docker
[ROCm Documentation]: https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html
[cuDNN support matrix]: https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
[Nvidia Container Runtime]: https://developer.nvidia.com/container-runtime
[linux install instructions]: https://docs.python-guide.org/starting/install3/linux/
[Microsoft Visual C++ Redistributable]: https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170
[an official installer]: https://www.python.org/downloads/release/python-3118/
[CUDA Toolkit Downloads]: https://developer.nvidia.com/cuda-downloads

View File

@ -0,0 +1,64 @@
---
title: InvokeAI Binary Installer
---
The InvokeAI binary installer is a shell script that will install InvokeAI onto a stock
computer running recent versions of Linux, MacOSX or Windows. It will leave you
with a version that runs a stable version of InvokeAI. When a new version of
InvokeAI is released, you will download and reinstall the new version.
If you wish to tinker with unreleased versions of InvokeAI that introduce
potentially unstable new features, you should consider using the
[source installer](INSTALL_SOURCE.md) or one of the
[manual install](../020_INSTALL_MANUAL.md) methods.
**Important Caveats**
- This script does not support AMD GPUs. For Linux AMD support,
please use the manual or source code installer methods.
- This script has difficulty on some Macintosh machines
that have previously been used for Python development due to
conflicting development tools versions. Mac developers may wish
to try the source code installer or one of the manual methods instead.
!!! todo
Before you begin, make sure that you meet
the[hardware requirements](/#hardware-requirements) and has the
appropriate GPU drivers installed. In particular, if you are a Linux user with
an AMD GPU installed, you may need to install the
[ROCm-driver](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html).
Installation requires roughly 18G of free disk space to load the libraries and
recommended model weights files.
## Steps to Install
1. Download the
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest) of
InvokeAI's installer for your platform. Look for a file named `InvokeAI-binary-<your platform>.zip`
2. Place the downloaded package someplace where you have plenty of HDD space,
and have full permissions (i.e. `~/` on Lin/Mac; your home folder on Windows)
3. Extract the 'InvokeAI' folder from the downloaded package
4. Open the extracted 'InvokeAI' folder
5. Double-click 'install.bat' (Windows), or 'install.sh' (Lin/Mac) (or run from
a terminal)
6. Follow the prompts
7. After installation, please run the 'invoke.bat' file (on Windows) or
'invoke.sh' file (on Linux/Mac) to start InvokeAI.
## Troubleshooting
If you run into problems during or after installation, the InvokeAI team is
available to help you. Either create an
[Issue](https://github.com/invoke-ai/InvokeAI/issues) at our GitHub site, or
make a request for help on the "bugs-and-support" channel of our
[Discord server](https://discord.gg/ZmtBAhwWhy). We are a 100% volunteer
organization, but typically somebody will be available to help you within 24
hours, and often much sooner.

View File

@ -0,0 +1,32 @@
---
title: Running InvokeAI on Google Colab using a Jupyter Notebook
---
## Introduction
We have a [Jupyter
notebook](https://github.com/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb)
with cell-by-cell installation steps. It will download the code in
this repo as one of the steps, so instead of cloning this repo, simply
download the notebook from the link above and load it up in VSCode
(with the appropriate extensions installed)/Jupyter/JupyterLab and
start running the cells one-by-one.
!!! Note "you will need NVIDIA drivers, Python 3.10, and Git installed beforehand"
## Running Online On Google Colabotary
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/invoke-ai/InvokeAI/blob/main/notebooks/Stable_Diffusion_AI_Notebook.ipynb)
## Running Locally (Cloning)
1. Install the Jupyter Notebook python library (one-time):
pip install jupyter
2. Clone the InvokeAI repository:
git clone https://github.com/invoke-ai/InvokeAI.git
cd invoke-ai
3. Create a virtual environment using conda:
conda create -n invoke jupyter
4. Activate the environment and start the Jupyter notebook:
conda activate invoke
jupyter notebook

View File

@ -0,0 +1,135 @@
---
title: Manual Installation, Linux
---
# :fontawesome-brands-linux: Linux
## Installation
1. You will need to install the following prerequisites if they are not already
available. Use your operating system's preferred installer.
- Python (version 3.8.5 recommended; higher may work)
- git
2. Install the Python Anaconda environment manager.
```bash
~$ wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
~$ chmod +x Anaconda3-2022.05-Linux-x86_64.sh
~$ ./Anaconda3-2022.05-Linux-x86_64.sh
```
After installing anaconda, you should log out of your system and log back
in. If the installation worked, your command prompt will be prefixed by the
name of the current anaconda environment - `(base)`.
3. Copy the InvokeAI source code from GitHub:
```bash
(base) ~$ git clone https://github.com/invoke-ai/InvokeAI.git
```
This will create InvokeAI folder where you will follow the rest of the
steps.
4. Enter the newly-created InvokeAI folder. From this step forward make sure
that you are working in the InvokeAI directory!
```bash
(base) ~$ cd InvokeAI
(base) ~/InvokeAI$
```
5. Use anaconda to copy necessary python packages, create a new python
environment named `invokeai` and then activate the environment.
!!! todo "For systems with a CUDA (Nvidia) card:"
```bash
(base) rm -rf src # (this is a precaution in case there is already a src directory)
(base) ~/InvokeAI$ conda env create -f environment-cuda.yml
(base) ~/InvokeAI$ conda activate invokeai
(invokeai) ~/InvokeAI$
```
!!! todo "For systems with an AMD card (using ROCm driver):"
```bash
(base) rm -rf src # (this is a precaution in case there is already a src directory)
(base) ~/InvokeAI$ conda env create -f environment-AMD.yml
(base) ~/InvokeAI$ conda activate invokeai
(invokeai) ~/InvokeAI$
```
After these steps, your command prompt will be prefixed by `(invokeai)` as
shown above.
6. Load the big stable diffusion weights files and a couple of smaller
machine-learning models:
```bash
(invokeai) ~/InvokeAI$ python3 scripts/configure_invokeai.py
```
!!! note
This script will lead you through the process of creating an account on Hugging Face,
accepting the terms and conditions of the Stable Diffusion model license,
and obtaining an access token for downloading. It will then download and
install the weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing
the same thing.
7. Start generating images!
!!! todo "Run InvokeAI!"
!!! warning "IMPORTANT"
Make sure that the conda environment is activated, which should create
`(invokeai)` in front of your prompt!
=== "CLI"
```bash
python scripts/invoke.py
```
=== "local Webserver"
```bash
python scripts/invoke.py --web
```
=== "Public Webserver"
```bash
python scripts/invoke.py --web --host 0.0.0.0
```
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
8. Subsequently, to relaunch the script, be sure to run "conda activate
invokeai" (step 5, second command), enter the `InvokeAI` directory, and then
launch the invoke script (step 8). If you forget to activate the 'invokeai'
environment, the script will fail with multiple `ModuleNotFound` errors.
## Updating to newer versions of the script
This distribution is changing rapidly. If you used the `git clone` method
(step 5) to download the InvokeAI directory, then to update to the latest and
greatest version, launch the Anaconda window, enter `InvokeAI` and type:
```bash
(invokeai) ~/InvokeAI$ git pull
(invokeai) ~/InvokeAI$ rm -rf src # prevents conda freezing errors
(invokeai) ~/InvokeAI$ conda env update -f environment.yml
```
This will bring your local copy into sync with the remote one.

View File

@ -0,0 +1,525 @@
---
title: Manual Installation, macOS
---
# :fontawesome-brands-apple: macOS
Invoke AI runs quite well on M1 Macs and we have a number of M1 users in the
community.
While the repo does run on Intel Macs, we only have a couple reports. If you
have an Intel Mac and run into issues, please create an issue on Github and we
will do our best to help.
## Requirements
- macOS 12.3 Monterey or later
- About 10GB of storage (and 10GB of data if your internet connection has data
caps)
- Any M1 Macs or an Intel Macs with 4GB+ of VRAM (ideally more)
## Installation
!!! todo "Homebrew"
First you will install the "brew" package manager. Skip this if brew is already installed.
```bash title="install brew (and Xcode command line tools)"
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
!!! todo "Conda Installation"
Now there are two different ways to set up the Python (miniconda) environment:
1. Standalone
2. with pyenv
If you don't know what we are talking about, choose Standalone. If you are familiar with python environments, choose "with pyenv"
=== "Standalone"
```bash title="Install cmake, protobuf, and rust"
brew install cmake protobuf rust
```
```bash title="Clone the InvokeAI repository"
# Clone the Invoke AI repo
git clone https://github.com/invoke-ai/InvokeAI.git
cd InvokeAI
```
Choose the appropriate architecture for your system and install miniconda:
=== "M1 arm64"
```bash title="Install miniconda for M1 arm64"
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh \
-o Miniconda3-latest-MacOSX-arm64.sh
/bin/bash Miniconda3-latest-MacOSX-arm64.sh
```
=== "Intel x86_64"
```bash title="Install miniconda for Intel"
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh \
-o Miniconda3-latest-MacOSX-x86_64.sh
/bin/bash Miniconda3-latest-MacOSX-x86_64.sh
```
=== "with pyenv"
```bash
brew install pyenv-virtualenv
pyenv install anaconda3-2022.05
pyenv virtualenv anaconda3-2022.05
eval "$(pyenv init -)"
pyenv activate anaconda3-2022.05
```
!!! todo "Clone the Invoke AI repo"
```bash
git clone https://github.com/invoke-ai/InvokeAI.git
cd InvokeAI
```
!!! todo "Create the environment & install packages"
=== "M1 Mac"
```bash
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac.yml
```
=== "Intel x86_64 Mac"
```bash
PIP_EXISTS_ACTION=w CONDA_SUBDIR=osx-64 conda env create -f environment-mac.yml
```
```bash
# Activate the environment (you need to do this every time you want to run SD)
conda activate invokeai
```
!!! info
`export PIP_EXISTS_ACTION=w` is a precaution to fix `conda env
create -f environment-mac.yml` never finishing in some situations. So
it isn't required but won't hurt.
!!! todo "Download the model weight files"
The `configure_invokeai.py` script downloads and installs the model weight
files for you. It will lead you through the process of getting a Hugging Face
account, accepting the Stable Diffusion model weight license agreement, and
creating a download token:
```bash
# This will take some time, depending on the speed of your internet connection
# and will consume about 10GB of space
python scripts/configure_invokeai.py
```
!!! todo "Run InvokeAI!"
!!! warning "IMPORTANT"
Make sure that the conda environment is activated, which should create
`(invokeai)` in front of your prompt!
=== "CLI"
```bash
python scripts/invoke.py
```
=== "local Webserver"
```bash
python scripts/invoke.py --web
```
=== "Public Webserver"
```bash
python scripts/invoke.py --web --host 0.0.0.0
```
To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`.
---
## Common problems
After you followed all the instructions and try to run invoke.py, you might get
several errors. Here's the errors I've seen and found solutions for.
### Is it slow?
```bash title="Be sure to specify 1 sample and 1 iteration."
python ./scripts/orig_scripts/txt2img.py \
--prompt "ocean" \
--ddim_steps 5 \
--n_samples 1 \
--n_iter 1
```
---
### Doesn't work anymore?
PyTorch nightly includes support for MPS. Because of this, this setup is
inherently unstable. One morning I woke up and it no longer worked no matter
what I did until I switched to miniforge. However, I have another Mac that works
just fine with Anaconda. If you can't get it to work, please search a little
first because many of the errors will get posted and solved. If you can't find a
solution please [create an issue](https://github.com/invoke-ai/InvokeAI/issues).
One debugging step is to update to the latest version of PyTorch nightly.
```bash
conda install \
pytorch \
torchvision \
-c pytorch-nightly \
-n invokeai
```
If it takes forever to run `conda env create -f environment-mac.yml`, try this:
```bash
git clean -f
conda clean \
--yes \
--all
```
Or you could try to completley reset Anaconda:
```bash
conda update \
--force-reinstall \
-y \
-n base \
-c defaults conda
```
---
### "No module named cv2", torch, 'invokeai', 'transformers', 'taming', etc
There are several causes of these errors:
1. Did you remember to `conda activate invokeai`? If your terminal prompt begins
with "(invokeai)" then you activated it. If it begins with "(base)" or
something else you haven't.
2. You might've run `./scripts/configure_invokeai.py` or `./scripts/invoke.py`
instead of `python ./scripts/configure_invokeai.py` or
`python ./scripts/invoke.py`. The cause of this error is long so it's below.
<!-- I could not find out where the error is, otherwise would have marked it as a footnote -->
3. if it says you're missing taming you need to rebuild your virtual
environment.
```bash
conda deactivate
conda env remove -n invokeai
conda env create -f environment-mac.yml
```
4. If you have activated the invokeai virtual environment and tried rebuilding
it, maybe the problem could be that I have something installed that you don't
and you'll just need to manually install it. Make sure you activate the
virtual environment so it installs there instead of globally.
```bash
conda activate invokeai
pip install <package name>
```
You might also need to install Rust (I mention this again below).
---
### How many snakes are living in your computer?
You might have multiple Python installations on your system, in which case it's
important to be explicit and consistent about which one to use for a given
project. This is because virtual environments are coupled to the Python that
created it (and all the associated 'system-level' modules).
When you run `python` or `python3`, your shell searches the colon-delimited
locations in the `PATH` environment variable (`echo $PATH` to see that list) in
that order - first match wins. You can ask for the location of the first
`python3` found in your `PATH` with the `which` command like this:
```bash
% which python3
/usr/bin/python3
```
Anything in `/usr/bin` is
[part of the OS](https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW6).
However, `/usr/bin/python3` is not actually python3, but rather a stub that
offers to install Xcode (which includes python 3). If you have Xcode installed
already, `/usr/bin/python3` will execute
`/Library/Developer/CommandLineTools/usr/bin/python3` or
`/Applications/Xcode.app/Contents/Developer/usr/bin/python3` (depending on which
Xcode you've selected with `xcode-select`).
Note that `/usr/bin/python` is an entirely different python - specifically,
python 2. Note: starting in macOS 12.3, `/usr/bin/python` no longer exists.
```bash
% which python3
/opt/homebrew/bin/python3
```
If you installed python3 with Homebrew and you've modified your path to search
for Homebrew binaries before system ones, you'll see the above path.
```bash
% which python
/opt/anaconda3/bin/python
```
If you have Anaconda installed, you will see the above path. There is a
`/opt/anaconda3/bin/python3` also.
We expect that `/opt/anaconda3/bin/python` and `/opt/anaconda3/bin/python3`
should actually be the _same python_, which you can verify by comparing the
output of `python3 -V` and `python -V`.
```bash
(invokeai) % which python
/Users/name/miniforge3/envs/invokeai/bin/python
```
The above is what you'll see if you have miniforge and correctly activated the
invokeai environment, while usingd the standalone setup instructions above.
If you otherwise installed via pyenv, you will get this result:
```bash
(anaconda3-2022.05) % which python
/Users/name/.pyenv/shims/python
```
It's all a mess and you should know
[how to modify the path environment variable](https://support.apple.com/guide/terminal/use-environment-variables-apd382cc5fa-4f58-4449-b20a-41c53c006f8f/mac)
if you want to fix it. Here's a brief hint of the most common ways you can
modify it (don't really have the time to explain it all here).
- ~/.zshrc
- ~/.bash_profile
- ~/.bashrc
- /etc/paths.d
- /etc/path
Which one you use will depend on what you have installed, except putting a file
in /etc/paths.d - which also is the way I prefer to do.
Finally, to answer the question posed by this section's title, it may help to
list all of the `python` / `python3` things found in `$PATH` instead of just the
first hit. To do so, add the `-a` switch to `which`:
```bash
% which -a python3
...
```
This will show a list of all binaries which are actually available in your PATH.
---
### Debugging?
Tired of waiting for your renders to finish before you can see if it works?
Reduce the steps! The image quality will be horrible but at least you'll get
quick feedback.
```bash
python ./scripts/txt2img.py \
--prompt "ocean" \
--ddim_steps 5 \
--n_samples 1 \
--n_iter 1
```
---
### OSError: Can't load tokenizer for 'openai/clip-vit-large-patch14'
```bash
python scripts/configure_invokeai.py
```
---
### "The operator [name] is not current implemented for the MPS device." (sic)
!!! example "example error"
```bash
... NotImplementedError: The operator 'aten::_index_put_impl_' is not current
implemented for the MPS device. If you want this op to be added in priority
during the prototype phase of this feature, please comment on
https://github.com/pytorch/pytorch/issues/77764.
As a temporary fix, you can set the environment variable
`PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op.
WARNING: this will be slower than running natively on MPS.
```
The InvokeAI version includes this fix in
[environment-mac.yml](https://github.com/invoke-ai/InvokeAI/blob/main/environment-mac.yml).
### "Could not build wheels for tokenizers"
I have not seen this error because I had Rust installed on my computer before I
started playing with Stable Diffusion. The fix is to install Rust.
```bash
curl \
--proto '=https' \
--tlsv1.2 \
-sSf https://sh.rustup.rs | sh
```
---
### How come `--seed` doesn't work?
!!! Information
Completely reproducible results are not guaranteed across PyTorch releases,
individual commits, or different platforms. Furthermore, results may not be
reproducible between CPU and GPU executions, even when using identical seeds.
[PyTorch docs](https://pytorch.org/docs/stable/notes/randomness.html)
Second, we might have a fix that at least gets a consistent seed sort of. We're
still working on it.
### libiomp5.dylib error?
```bash
OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized.
```
You are likely using an Intel package by mistake. Be sure to run conda with the
environment variable `CONDA_SUBDIR=osx-arm64`, like so:
`CONDA_SUBDIR=osx-arm64 conda install ...`
This error happens with Anaconda on Macs when the Intel-only `mkl` is pulled in
by a dependency.
[nomkl](https://stackoverflow.com/questions/66224879/what-is-the-nomkl-python-package-used-for)
is a metapackage designed to prevent this, by making it impossible to install
`mkl`, but if your environment is already broken it may not work.
Do _not_ use `os.environ['KMP_DUPLICATE_LIB_OK']='True'` or equivalents as this
masks the underlying issue of using Intel packages.
---
### Not enough memory
This seems to be a common problem and is probably the underlying problem for a
lot of symptoms (listed below). The fix is to lower your image size or to add
`model.half()` right after the model is loaded. I should probably test it out.
I've read that the reason this fixes problems is because it converts the model
from 32-bit to 16-bit and that leaves more RAM for other things. I have no idea
how that would affect the quality of the images though.
See [this issue](https://github.com/CompVis/stable-diffusion/issues/71).
---
### "Error: product of dimension sizes > 2\*\*31'"
This error happens with img2img, which I haven't played with too much yet. But I
know it's because your image is too big or the resolution isn't a multiple of
32x32. Because the stable-diffusion model was trained on images that were 512 x
512, it's always best to use that output size (which is the default). However,
if you're using that size and you get the above error, try 256 x 256 or 512 x
256 or something as the source image.
BTW, 2\*\*31-1 =
[2,147,483,647](https://en.wikipedia.org/wiki/2,147,483,647#In_computing), which
is also 32-bit signed [LONG_MAX](https://en.wikipedia.org/wiki/C_data_types) in
C.
---
### I just got Rickrolled! Do I have a virus?
You don't have a virus. It's part of the project. Here's
[Rick](https://github.com/invoke-ai/InvokeAI/blob/main/assets/rick.jpeg) and
here's
[the code](https://github.com/invoke-ai/InvokeAI/blob/69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc/scripts/txt2img.py#L79)
that swaps him in. It's a NSFW filter, which IMO, doesn't work very good (and we
call this "computer vision", sheesh).
---
### My images come out black
We might have this fixed, we are still testing.
There's a [similar issue](https://github.com/CompVis/stable-diffusion/issues/69)
on CUDA GPU's where the images come out green. Maybe it's the same issue?
Someone in that issue says to use "--precision full", but this fork actually
disables that flag. I don't know why, someone else provided that code and I
don't know what it does. Maybe the `model.half()` suggestion above would fix
this issue too. I should probably test it.
### "view size is not compatible with input tensor's size and stride"
```bash
File "/opt/anaconda3/envs/invokeai/lib/python3.10/site-packages/torch/nn/functional.py", line 2511, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
```
Update to the latest version of invoke-ai/InvokeAI. We were patching pytorch but
we found a file in stable-diffusion that we could change instead. This is a
32-bit vs 16-bit problem.
### The processor must support the Intel bla bla bla
What? Intel? On an Apple Silicon?
```bash
Intel MKL FATAL ERROR: This system does not meet the minimum requirements for use of the Intel(R) Math Kernel Library. The processor must support the Intel(R) Supplemental Streaming SIMD Extensions 3 (Intel(R) SSSE3) instructions. The processor must support the Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) instructions. The processor must support the Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
```
This is due to the Intel `mkl` package getting picked up when you try to install
something that depends on it-- Rosetta can translate some Intel instructions but
not the specialized ones here. To avoid this, make sure to use the environment
variable `CONDA_SUBDIR=osx-arm64`, which restricts the Conda environment to only
use ARM packages, and use `nomkl` as described above.
---
### input types 'tensor<2x1280xf32>' and 'tensor<\*xf16>' are not broadcast compatible
May appear when just starting to generate, e.g.:
```bash
invoke> clouds
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/[...]/dev/stable-diffusion/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
placeholder_idx = torch.where(
loc("mps_add"("(mpsFileLoc): /AppleInternal/Library/BuildRoots/20d6c351-ee94-11ec-bcaf-7247572f23b4/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm":219:0)): error: input types 'tensor<2x1280xf32>' and 'tensor<*xf16>' are not broadcast compatible
LLVM ERROR: Failed to infer result type(s).
Abort trap: 6
/Users/[...]/opt/anaconda3/envs/invokeai/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
```

View File

@ -0,0 +1,17 @@
---
title: Installing InvokeAI with the Pre-Compiled PIP Installer
---
# THIS NEEDS TO BE FLESHED OUT
## Introduction
## Walkthrough
## Updating to newer versions
### Updating the stable version
### Updating to the development version
## Troubleshooting

View File

@ -0,0 +1,225 @@
---
title: Source Installer
---
# The InvokeAI Source Installer
## Introduction
The source installer is a shell script that attempts to automate every step
needed to install and run InvokeAI on a stock computer running recent versions
of Linux, MacOS or Windows. It will leave you with a version that runs a stable
version of InvokeAI with the option to upgrade to experimental versions later.
Before you begin, make sure that you meet the
[hardware requirements](../../index.md#hardware-requirements) and has the appropriate
GPU drivers installed. In particular, if you are a Linux user with an AMD GPU
installed, you may need to install the
[ROCm driver](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html).
Installation requires roughly 18G of free disk space to load the libraries and
recommended model weights files.
## Walk through
Though there are multiple steps, there really is only one click involved to kick
off the process.
1. The source installer is distributed in ZIP files. Go to the
[latest release](https://github.com/invoke-ai/InvokeAI/releases/latest), and
look for a series of files named:
- [invokeAI-src-installer-2.2.3-mac.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-mac.zip)
- [invokeAI-src-installer-2.2.3-windows.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-windows.zip)
- [invokeAI-src-installer-2.2.3-linux.zip](https://github.com/invoke-ai/InvokeAI/releases/latest/download/invokeAI-src-installer-2.2.3-linux.zip)
Download the one that is appropriate for your operating system.
2. Unpack the zip file into a directory that has at least 18G of free space. Do
_not_ unpack into a directory that has an earlier version of InvokeAI.
This will create a new directory named "InvokeAI". This example shows how
this would look using the `unzip` command-line tool, but you may use any
graphical or command-line Zip extractor:
```cmd
C:\Documents\Linco> unzip invokeAI-windows.zip
Archive: C: \Linco\Downloads\invokeAI-linux.zip
creating: invokeAI\
inflating: invokeAI\install.bat
inflating: invokeAI\readme.txt
```
3. If you are a macOS user, you may need to install the Xcode command line tools.
These are a set of tools that are needed to run certain applications in a Terminal,
including InvokeAI. This package is provided directly by Apple.
To install, open a terminal window and run `xcode-select --install`. You will get
a macOS system popup guiding you through the install. If you already have them
installed, you will instead see some output in the Terminal advising you that the
tools are already installed.
More information can be found here:
https://www.freecodecamp.org/news/install-xcode-command-line-tools/
4. If you are using a desktop GUI, double-click the installer file. It will be
named `install.bat` on Windows systems and `install.sh` on Linux and
Macintosh systems.
5. Alternatively, from the command line, run the shell script or .bat file:
```cmd
C:\Documents\Linco> cd invokeAI
C:\Documents\Linco\invokeAI> install.bat
```
6. Sit back and let the install script work. It will install various binary
requirements including Conda, Git and Python, then download the current
InvokeAI code and install it along with its dependencies.
Be aware that some of the library download and install steps take a long time.
In particular, the `pytorch` package is quite large and often appears to get
"stuck" at 99.9%. Similarly, the `pip installing requirements` step may
appear to hang. Have patience and the installation step will eventually
resume. However, there are occasions when the library install does
legitimately get stuck. If you have been waiting for more than ten minutes
and nothing is happening, you can interrupt the script with ^C. You may restart
it and it will pick up where it left off.
7. After installation completes, the installer will launch a script called
`configure_invokeai.py`, which will guide you through the first-time process of
selecting one or more Stable Diffusion model weights files, downloading and
configuring them.
Note that the main Stable Diffusion weights file is protected by a license
agreement that you must agree to in order to use. The script will list the
steps you need to take to create an account on the official site that hosts
the weights files, accept the agreement, and provide an access token that
allows InvokeAI to legally download and install the weights files.
If you have already downloaded the weights file(s) for another Stable
Diffusion distribution, you may skip this step (by selecting "skip" when
prompted) and configure InvokeAI to use the previously-downloaded files. The
process for this is described in [Installing Models](../050_INSTALLING_MODELS.md).
8. The script will now exit and you'll be ready to generate some images. The
invokeAI directory will contain numerous files. Look for a shell script
named `invoke.sh` (Linux/Mac) or `invoke.bat` (Windows). Launch the script
by double-clicking it or typing its name at the command-line:
```cmd
C:\Documents\Linco> cd invokeAI
C:\Documents\Linco\invokeAI> invoke.bat
```
The `invoke.bat` (`invoke.sh`) script will give you the choice of starting (1)
the command-line interface, or (2) the web GUI. If you start the latter, you can
load the user interface by pointing your browser at http://localhost:9090.
The `invoke` script also offers you a third option labeled "open the developer
console". If you choose this option, you will be dropped into a command-line
interface in which you can run python commands directly, access developer tools,
and launch InvokeAI with customized options. To do the latter, you would launch
the script `scripts/invoke.py` as shown in this example:
```cmd
python scripts/invoke.py --web --max_load_models=3 \
--model=waifu-1.3 --steps=30 --outdir=C:/Documents/AIPhotos
```
These options are described in detail in the
[Command-Line Interface](../../deprecated/CLI.md) documentation.
## Troubleshooting
_Package dependency conflicts_ If you have previously installed
InvokeAI or another Stable Diffusion package, the installer may
occasionally pick up outdated libraries and either the installer or
`invoke` will fail with complaints out library conflicts. There are
two steps you can take to clear this problem. Both of these are done
from within the "developer's console", which you can get to by
launching `invoke.sh` (or `invoke.bat`) and selecting launch option
#3:
1. Remove the previous `invokeai` environment completely. From within
the developer's console, give the command `conda env remove -n
invokeai`. This will delete previous files installed by `invoke`.
Then exit from the developer's console and launch the script
`update.sh` (or `update.bat`). This will download the most recent
InvokeAI (including bug fixes) and reinstall the environment.
You should then be able to run `invoke.sh`/`invoke.bat`.
2. If this doesn't work, you can try cleaning your system's conda
cache. This is slightly more extreme, but won't interfere with
any other python-based programs installed on your computer.
From the developer's console, run the command `conda clean -a`
and answer "yes" to all prompts.
After this is done, run `update.sh` and try again as before.
_"Corrupted configuration file."__ Everything seems to install ok, but
`invoke` complains of a corrupted configuration file and goes calls
`configure_invokeai.py` to fix, but this doesn't fix the problem.
This issue is often caused by a misconfigured configuration directive
in the `.invokeai` initialization file that contains startup settings.
This can be corrected by fixing the offending line.
First find `.invokeai`. It is a small text file located in your home
directory, `~/.invokeai` on Mac and Linux systems, and `C:\Users\*your
name*\.invokeai` on Windows systems. Open it with a text editor
(e.g. Notepad on Windows, TextEdit on Macs, or `nano` on Linux)
and look for the lines starting with `--root` and `--outdir`.
An example is here:
```cmd
--root="/home/lstein/invokeai"
--outdir="/home/lstein/invokeai/outputs"
```
There should not be whitespace before or after the directory paths,
and the paths should not end with slashes:
```cmd
--root="/home/lstein/invokeai " # wrong! no whitespace here
--root="/home\lstein\invokeai\" # wrong! shouldn't end in a slash
```
Fix the problem with your text editor and save as a **plain text**
file. This should clear the issue.
_If none of these maneuvers fixes the problem_ then please report the
problem to the [InvokeAI
Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive assistance.
## Updating to newer versions
This section describes how to update InvokeAI to new versions of the software.
### Updating the stable version
This distribution is changing rapidly, and we add new features on a daily basis.
To update to the latest released version (recommended), run the `update.sh`
(Linux/Mac) or `update.bat` (Windows) scripts. This will fetch the latest
release and re-run the `configure_invokeai` script to download any updated models
files that may be needed. You can also use this to add additional models that
you did not select at installation time.
You can now close the developer console and run `invoke` as before. If you get
complaints about missing models, then you may need to do the additional step of
running `configure_invokeai.py`. This happens relatively infrequently. To do this,
simply open up the developer's console again and type
`python scripts/configure_invokeai.py`.
## Troubleshooting
If you run into problems during or after installation, the InvokeAI team is
available to help you. Either create an
[Issue](https://github.com/invoke-ai/InvokeAI/issues) at our GitHub site, or
make a request for help on the "bugs-and-support" channel of our
[Discord server](https://discord.gg/ZmtBAhwWhy). We are a 100% volunteer
organization, but typically somebody will be available to help you within 24
hours, and often much sooner.

Some files were not shown because too many files have changed in this diff Show More