Compare commits

...

10 Commits

8 changed files with 78 additions and 51 deletions

View File

@ -3,9 +3,8 @@ from typing import Iterator, List, Optional, Tuple, Union
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTokenizer
from transformers import CLIPTextModel, CLIPTokenizer
import invokeai.backend.util.logging as logger
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@ -14,11 +13,9 @@ from invokeai.app.invocations.fields import (
UIComponent,
)
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import ModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
@ -26,7 +23,6 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
ExtraConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.textual_inversion import TextualInversionModelRaw
from invokeai.backend.util.devices import torch_dtype
from .baseinvocation import (
@ -70,7 +66,11 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.clip.loras:
@ -82,21 +82,10 @@ class CompelInvocation(BaseInvocation):
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(self.prompt):
name = trigger[1:-1]
try:
loaded_model = context.models.load(key=name).model
assert isinstance(loaded_model, TextualInversionModelRaw)
ti_list.append((name, loaded_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
@ -104,8 +93,9 @@ class CompelInvocation(BaseInvocation):
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
@ -155,7 +145,11 @@ class SDXLPromptInvocationBase:
zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
tokenizer_model = tokenizer_info.model
assert isinstance(tokenizer_model, CLIPTokenizer)
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
text_encoder_model = text_encoder_info.model
assert isinstance(text_encoder_model, CLIPTextModel)
# return zero on empty
if prompt == "" and zero_on_empty:
@ -189,25 +183,10 @@ class SDXLPromptInvocationBase:
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name = trigger[1:-1]
try:
ti_model = context.models.load_by_attrs(
model_name=name, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
).model
assert isinstance(ti_model, TextualInversionModelRaw)
ti_list.append((name, ti_model))
except UnknownModelException:
# print(e)
# import traceback
# print(traceback.format_exc())
logger.warning(f'trigger: "{trigger}" not found')
except ValueError:
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
with (
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as (
tokenizer,
ti_manager,
),
@ -215,8 +194,9 @@ class SDXLPromptInvocationBase:
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,

View File

@ -197,6 +197,7 @@ class Categories(object):
Development: JsonDict = {"category": "Development"}
Other: JsonDict = {"category": "Other"}
ModelCache: JsonDict = {"category": "Model Cache"}
ModelImport: JsonDict = {"category": "Model Import"}
Device: JsonDict = {"category": "Device"}
Generation: JsonDict = {"category": "Generation"}
Queue: JsonDict = {"category": "Queue"}
@ -286,7 +287,8 @@ class InvokeAIAppConfig(InvokeAISettings):
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
# MODEL IMPORT
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.ModelImport)
model_sym_links : bool = Field(default=False, description="If true, create symbolic links to models instead of copying them. [REQUIRES ADMIN PERMISSIONS OR DEVELOPER MODE IN WINDOWS]", json_schema_extra=Categories.ModelImport)
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)

View File

@ -507,10 +507,13 @@ class ModelInstallService(ModelInstallServiceBase):
if old_path == new_path:
return old_path
new_path.parent.mkdir(parents=True, exist_ok=True)
if old_path.is_dir():
copytree(old_path, new_path)
if self.app_config.model_sym_links:
new_path.symlink_to(old_path, target_is_directory=old_path.is_dir())
else:
copyfile(old_path, new_path)
if old_path.is_dir():
copytree(old_path, new_path)
else:
copyfile(old_path, new_path)
return new_path
def _move_model(self, old_path: Path, new_path: Path) -> Path:

View File

@ -1,8 +1,47 @@
import re
from typing import List, Tuple
import invokeai.backend.util.logging as logger
from invokeai.app.services.model_records import UnknownModelException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType, ModelType
from invokeai.backend.textual_inversion import TextualInversionModelRaw
def extract_ti_triggers_from_prompt(prompt: str) -> list[str]:
ti_triggers = []
def extract_ti_triggers_from_prompt(prompt: str) -> List[str]:
ti_triggers: List[str] = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
ti_triggers.append(trigger)
ti_triggers.append(str(trigger))
return ti_triggers
def generate_ti_list(
prompt: str, base: BaseModelType, context: InvocationContext
) -> List[Tuple[str, TextualInversionModelRaw]]:
ti_list: List[Tuple[str, TextualInversionModelRaw]] = []
for trigger in extract_ti_triggers_from_prompt(prompt):
name_or_key = trigger[1:-1]
try:
loaded_model = context.models.load(key=name_or_key)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base
ti_list.append((name_or_key, model))
except UnknownModelException:
try:
loaded_model = context.models.load_by_attrs(
model_name=name_or_key, base_model=base, model_type=ModelType.TextualInversion
)
model = loaded_model.model
assert isinstance(model, TextualInversionModelRaw)
assert loaded_model.config.base == base
ti_list.append((name_or_key, model))
except UnknownModelException:
pass
except ValueError:
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
except AssertionError:
logger.warning(f'trigger: "{trigger}" not a valid textual inversion model for this graph')
except Exception:
logger.warning(f'Failed to load TI model for trigger: "{trigger}"')
return ti_list

View File

@ -160,7 +160,7 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
nsfw=model_json["nsfw"],
restrictions=LicenseRestrictions(
AllowNoCredit=model_json["allowNoCredit"],
AllowCommercialUse=CommercialUsage(model_json["allowCommercialUse"]),
AllowCommercialUse={CommercialUsage(x) for x in model_json["allowCommercialUse"]},
AllowDerivatives=model_json["allowDerivatives"],
AllowDifferentLicense=model_json["allowDifferentLicense"],
),

View File

@ -54,8 +54,8 @@ class LicenseRestrictions(BaseModel):
AllowDifferentLicense: bool = Field(
description="if true, derivatives of this model be redistributed under a different license", default=False
)
AllowCommercialUse: Optional[CommercialUsage] = Field(
description="Type of commercial use allowed or 'No' if no commercial use is allowed.", default=None
AllowCommercialUse: Optional[Set[CommercialUsage] | CommercialUsage] = Field(
description="Type of commercial use allowed if no commercial use is allowed.", default=None
)
@ -142,7 +142,10 @@ class CivitaiMetadata(ModelMetadataWithFiles):
if self.restrictions.AllowCommercialUse is None:
return False
else:
return self.restrictions.AllowCommercialUse != CommercialUsage("None")
# accommodate schema change
acu = self.restrictions.AllowCommercialUse
commercial_usage = acu if isinstance(acu, set) else {acu}
return CommercialUsage.No not in commercial_usage
@property
def allow_derivatives(self) -> bool:

File diff suppressed because one or more lines are too long

View File

@ -133,7 +133,7 @@ def test_metadata_civitai_fetch(mm2_session: Session) -> None:
assert metadata.id == 215485
assert metadata.author == "test_author" # note that this is not the same as the original from Civitai
assert metadata.allow_commercial_use # changed to make sure we are reading locally not remotely
assert metadata.restrictions.AllowCommercialUse == CommercialUsage("RentCivit")
assert CommercialUsage("RentCivit") in metadata.restrictions.AllowCommercialUse
assert metadata.version_id == 242807
assert metadata.tags == {"tool", "turbo", "sdxl turbo"}