Compare commits

..

7 Commits

Author SHA1 Message Date
4b9a46e4c2 make ip_adapters work with stable-fast 2023-12-21 17:29:28 -05:00
952b12abb7 resolve conflicts 2023-12-21 16:31:42 -05:00
2ff41afe8c ruff fixes 2023-12-21 16:29:32 -05:00
e22df59239 proof-of-principle support for stable-fast
only compile model the first time :-)

probe for availability of stable-fast compiler and triton at startup time

simplify config logic
2023-12-21 16:28:42 -05:00
e3ab074b95 probe for availability of stable-fast compiler and triton at startup time 2023-12-21 16:10:52 -05:00
6cb3031c09 only compile model the first time :-) 2023-12-20 22:40:56 -05:00
9c1d250665 hacked in stable-fast; can generate one image before crashing 2023-12-20 22:11:16 -05:00
1433 changed files with 61936 additions and 72810 deletions

6
.github/CODEOWNERS vendored
View File

@ -1,5 +1,5 @@
# continuous integration # continuous integration
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr /.github/workflows/ @lstein @blessedcoolant @hipsterusername
# documentation # documentation
/docs/ @lstein @blessedcoolant @hipsterusername @Millu /docs/ @lstein @blessedcoolant @hipsterusername @Millu
@ -10,7 +10,7 @@
# installation and configuration # installation and configuration
/pyproject.toml @lstein @blessedcoolant @hipsterusername /pyproject.toml @lstein @blessedcoolant @hipsterusername
/docker/ @lstein @blessedcoolant @hipsterusername @ebr /docker/ @lstein @blessedcoolant @hipsterusername
/scripts/ @ebr @lstein @hipsterusername /scripts/ @ebr @lstein @hipsterusername
/installer/ @lstein @ebr @hipsterusername /installer/ @lstein @ebr @hipsterusername
/invokeai/assets @lstein @ebr @hipsterusername /invokeai/assets @lstein @ebr @hipsterusername
@ -30,3 +30,5 @@
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername /invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername /invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername /invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername

View File

@ -6,6 +6,10 @@ title: '[bug]: '
labels: ['bug'] labels: ['bug']
# assignees:
# - moderator_bot
# - lstein
body: body:
- type: markdown - type: markdown
attributes: attributes:
@ -14,9 +18,10 @@ body:
- type: checkboxes - type: checkboxes
attributes: attributes:
label: Is there an existing issue for this problem? label: Is there an existing issue for this?
description: | description: |
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem. Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
irst to see if an issue already exists for the bug you encountered.
options: options:
- label: I have searched the existing issues - label: I have searched the existing issues
required: true required: true
@ -28,45 +33,35 @@ body:
- type: dropdown - type: dropdown
id: os_dropdown id: os_dropdown
attributes: attributes:
label: Operating system label: OS
description: Your computer's operating system. description: Which operating System did you use when the bug occured
multiple: false multiple: false
options: options:
- 'Linux' - 'Linux'
- 'Windows' - 'Windows'
- 'macOS' - 'macOS'
- 'other'
validations: validations:
required: true required: true
- type: dropdown - type: dropdown
id: gpu_dropdown id: gpu_dropdown
attributes: attributes:
label: GPU vendor label: GPU
description: Your GPU's vendor. description: Which kind of Graphic-Adapter is your System using
multiple: false multiple: false
options: options:
- 'Nvidia (CUDA)' - 'cuda'
- 'AMD (ROCm)' - 'amd'
- 'Apple Silicon (MPS)' - 'mps'
- 'None (CPU)' - 'cpu'
validations: validations:
required: true required: true
- type: input
id: gpu_model
attributes:
label: GPU model
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
validations:
required: false
- type: input - type: input
id: vram id: vram
attributes: attributes:
label: GPU VRAM label: VRAM
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU. description: Size of the VRAM if known
placeholder: 8GB placeholder: 8GB
validations: validations:
required: false required: false
@ -74,73 +69,44 @@ body:
- type: input - type: input
id: version-number id: version-number
attributes: attributes:
label: Version number label: What version did you experience this issue on?
description: | description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead. Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1 placeholder: X.X.X
validations: validations:
required: true required: true
- type: input
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
placeholder: ex. Firefox 123.0b3
validations:
required: true
- type: textarea
id: python-deps
attributes:
label: Python dependencies
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
validations:
required: false
- type: textarea - type: textarea
id: what-happened id: what-happened
attributes: attributes:
label: What happened label: What happened?
description: | description: |
Describe what happened. Include any relevant error messages, stack traces and screenshots here. Briefly describe what happened, what you expected to happen and how to reproduce this bug.
placeholder: I clicked button X and then Y happened. placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
validations: validations:
required: true required: true
- type: textarea - type: textarea
id: what-you-expected
attributes: attributes:
label: What you expected to happen label: Screenshots
description: Describe what you expected to happen. description: If applicable, add screenshots to help explain your problem
placeholder: I expected Z to happen. placeholder: this is what the result looked like <screenshot>
validations:
required: true
- type: textarea
id: how-to-repro
attributes:
label: How to reproduce the problem
description: List steps to reproduce the problem.
placeholder: Start the app, generate an image with these settings, then click button X.
validations: validations:
required: false required: false
- type: textarea - type: textarea
id: additional-context
attributes: attributes:
label: Additional context label: Additional context
description: Any other context that might help us to understand the problem. description: Add any other context about the problem here
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻 placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
validations: validations:
required: false required: false
- type: input - type: input
id: discord-username id: contact
attributes: attributes:
label: Discord username label: Contact Details
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username. description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
placeholder: supercoolusername123 placeholder: ex. email@example.com, discordname, twitter, ...
validations: validations:
required: false required: false

59
.github/pr_labels.yml vendored
View File

@ -1,59 +0,0 @@
Root:
- changed-files:
- any-glob-to-any-file: '*'
PythonDeps:
- changed-files:
- any-glob-to-any-file: 'pyproject.toml'
Python:
- changed-files:
- all-globs-to-any-file:
- 'invokeai/**'
- '!invokeai/frontend/web/**'
PythonTests:
- changed-files:
- any-glob-to-any-file: 'tests/**'
CICD:
- changed-files:
- any-glob-to-any-file: .github/**
Docker:
- changed-files:
- any-glob-to-any-file: docker/**
Installer:
- changed-files:
- any-glob-to-any-file: installer/**
Documentation:
- changed-files:
- any-glob-to-any-file: docs/**
Invocations:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/invocations/**'
Backend:
- changed-files:
- any-glob-to-any-file: 'invokeai/backend/**'
Api:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/api/**'
Services:
- changed-files:
- any-glob-to-any-file: 'invokeai/app/services/**'
FrontendDeps:
- changed-files:
- any-glob-to-any-file:
- '**/*/package.json'
- '**/*/pnpm-lock.yaml'
Frontend:
- changed-files:
- any-glob-to-any-file: 'invokeai/frontend/web/**'

View File

@ -40,14 +40,10 @@ jobs:
- name: Free up more disk space on the runner - name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930 # https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
run: | run: |
echo "----- Free space before cleanup"
df -h
sudo rm -rf /usr/share/dotnet sudo rm -rf /usr/share/dotnet
sudo rm -rf "$AGENT_TOOLSDIRECTORY" sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile sudo rm -rf /mnt/swapfile
echo "----- Free space after cleanup"
df -h
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
@ -95,7 +91,6 @@ jobs:
# password: ${{ secrets.DOCKERHUB_TOKEN }} # password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Build container - name: Build container
timeout-minutes: 40
id: docker_build id: docker_build
uses: docker/build-push-action@v4 uses: docker/build-push-action@v4
with: with:

View File

@ -1,16 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/labeler@v5
with:
configuration-path: .github/pr_labels.yml

View File

@ -36,10 +36,8 @@ jobs:
- name: Typescript - name: Typescript
run: 'pnpm run lint:tsc' run: 'pnpm run lint:tsc'
- name: Madge - name: Madge
run: 'pnpm run lint:dpdm' run: 'pnpm run lint:madge'
- name: ESLint - name: ESLint
run: 'pnpm run lint:eslint' run: 'pnpm run lint:eslint'
- name: Prettier - name: Prettier
run: 'pnpm run lint:prettier' run: 'pnpm run lint:prettier'
- name: Knip
run: 'pnpm run lint:knip'

View File

@ -58,7 +58,7 @@ jobs:
- name: Check for changed python files - name: Check for changed python files
id: changed-files id: changed-files
uses: tj-actions/changed-files@v41 uses: tj-actions/changed-files@v37
with: with:
files_yaml: | files_yaml: |
python: python:

View File

@ -6,44 +6,33 @@ default: help
help: help:
@echo Developer commands: @echo Developer commands:
@echo @echo
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting" @echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting" @echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors" @echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports" @echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
@echo "test" Run the unit tests. @echo "frontend-build Build the frontend in order to run on localhost:9090"
@echo "frontend-install" Install the pnpm modules needed for the front end @echo "frontend-dev Run the frontend in developer mode on localhost:5173"
@echo "frontend-build Build the frontend in order to run on localhost:9090" @echo "installer-zip Build the installer .zip file for the current version"
@echo "frontend-dev Run the frontend in developer mode on localhost:5173" @echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
@echo "installer-zip Build the installer .zip file for the current version"
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
# Runs ruff, fixing any safely-fixable errors and formatting # Runs ruff, fixing any safely-fixable errors and formatting
ruff: ruff:
ruff check . --fix ruff check . --fix
ruff format . ruff format .
# Runs ruff, fixing all errors it can fix and formatting # Runs ruff, fixing all errors it can fix and formatting
ruff-unsafe: ruff-unsafe:
ruff check . --fix --unsafe-fixes ruff check . --fix --unsafe-fixes
ruff format . ruff format .
# Runs mypy, using the config in pyproject.toml # Runs mypy, using the config in pyproject.toml
mypy: mypy:
mypy scripts/invokeai-web.py mypy scripts/invokeai-web.py
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports # Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
# (many files are ignored by the config, so this is useful for checking all files) # (many files are ignored by the config, so this is useful for checking all files)
mypy-all: mypy-all:
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
# Run the unit tests
test:
pytest ./tests
# Install the pnpm modules needed for the front end
frontend-install:
rm -rf invokeai/frontend/web/node_modules
cd invokeai/frontend/web && pnpm install
# Build the frontend # Build the frontend
frontend-build: frontend-build:

View File

@ -1,10 +1,10 @@
<div align="center"> <div align="center">
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be) ![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/1a917d94-e099-4fa1-a70f-7dd8d0691018)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke AI - Generative AI for Professional Creatives
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
[![discord badge]][discord link] [![discord badge]][discord link]
@ -56,9 +56,7 @@ the foundation for multiple commercial products.
<div align="center"> <div align="center">
![canvas preview](https://github.com/invoke-ai/InvokeAI/raw/main/docs/assets/canvas_preview.png)
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div> </div>
@ -169,7 +167,7 @@ the command `npm install -g pnpm` if needed)
_For Linux with an AMD GPU:_ _For Linux with an AMD GPU:_
```sh ```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6 pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
_For non-GPU systems:_ _For non-GPU systems:_
@ -272,7 +270,7 @@ upgrade script.** See the next section for a Windows recipe.
3. Select option [1] to upgrade to the latest release. 3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher 4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken menu. Select option [7] "Re-run the configure script to fix a broken
install or to complete a major upgrade". install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and This will run the configure script against the v2.3 directory and

View File

@ -2,17 +2,14 @@
## Any environment variables supported by InvokeAI can be specified here, ## Any environment variables supported by InvokeAI can be specified here,
## in addition to the examples below. ## in addition to the examples below.
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data. # INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default. # Outputs will also be stored here by default.
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located # This **must** be an absolute path.
#HOST_INVOKEAI_ROOT=../../invokeai-data INVOKEAI_ROOT=
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
# INVOKEAI_ROOT=~/invokeai
# Get this value from your HuggingFace account settings page. # Get this value from your HuggingFace account settings page.
# HUGGING_FACE_HUB_TOKEN= # HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup. ## optional variables specific to the docker setup.
# GPU_DRIVER=nvidia #| rocm # GPU_DRIVER=cuda # or rocm
# CONTAINER_UID=1000 # CONTAINER_UID=1000

View File

@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai ENV VIRTUAL_ENV=/opt/venv/invokeai
ENV PATH="$VIRTUAL_ENV/bin:$PATH" ENV PATH="$VIRTUAL_ENV/bin:$PATH"
ARG TORCH_VERSION=2.1.2 ARG TORCH_VERSION=2.1.0
ARG TORCHVISION_VERSION=0.16.2 ARG TORCHVISION_VERSION=0.16
ARG GPU_DRIVER=cuda ARG GPU_DRIVER=cuda
ARG TARGETPLATFORM="linux/amd64" ARG TARGETPLATFORM="linux/amd64"
# unused but available # unused but available
@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \ if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \ extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
elif [ "$GPU_DRIVER" = "rocm" ]; then \ elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \ extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
else \ else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \ extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
fi &&\ fi &&\
@ -54,12 +54,12 @@ RUN --mount=type=cache,target=/root/.cache/pip \
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \ if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
pip install -e ".[xformers]"; \ pip install -e ".[xformers]"; \
else \ else \
pip install $extra_index_url_arg -e "."; \ pip install -e "."; \
fi fi
# #### Build the Web UI ------------------------------------ # #### Build the Web UI ------------------------------------
FROM node:20-slim AS web-builder FROM node:18-slim AS web-builder
ENV PNPM_HOME="/pnpm" ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH" ENV PATH="$PNPM_HOME:$PATH"
RUN corepack enable RUN corepack enable
@ -68,7 +68,7 @@ WORKDIR /build
COPY invokeai/frontend/web/ ./ COPY invokeai/frontend/web/ ./
RUN --mount=type=cache,target=/pnpm/store \ RUN --mount=type=cache,target=/pnpm/store \
pnpm install --frozen-lockfile pnpm install --frozen-lockfile
RUN npx vite build RUN pnpm run build
#### Runtime stage --------------------------------------- #### Runtime stage ---------------------------------------

View File

@ -1,14 +1,6 @@
# InvokeAI Containerized # InvokeAI Containerized
All commands should be run within the `docker` directory: `cd docker` All commands are to be run from the `docker` directory: `cd docker`
## Quickstart :rocket:
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
## Detailed setup
#### Linux #### Linux
@ -26,9 +18,9 @@ For more configuration options (using an AMD GPU, custom root directory location
This is done via Docker Desktop preferences This is done via Docker Desktop preferences
### Configure Invoke environment ## Quickstart
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to: 1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory. b. an existing, v3.0.0 compatible runtime directory.
1. Execute `run.sh` 1. Execute `run.sh`
@ -45,21 +37,19 @@ The runtime directory (holding models and outputs) will be created in the locati
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker. The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
## Customize ## Customize
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used. Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated. You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example: Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
```bash ```bash
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000 CONTAINER_UID=1000
GPU_DRIVER=nvidia GPU_DRIVER=cuda
``` ```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail. Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.

View File

@ -21,9 +21,7 @@ x-invokeai: &invokeai
ports: ports:
- "${INVOKEAI_PORT:-9090}:9090" - "${INVOKEAI_PORT:-9090}:9090"
volumes: volumes:
- type: bind - ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
target: ${INVOKEAI_ROOT:-/invokeai}
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface} - ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}} # - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}} # - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}

View File

@ -1,5 +1,5 @@
#!/usr/bin/env bash #!/usr/bin/env bash
set -e -o pipefail set -e
run() { run() {
local scriptdir=$(dirname "${BASH_SOURCE[0]}") local scriptdir=$(dirname "${BASH_SOURCE[0]}")
@ -8,20 +8,16 @@ run() {
local build_args="" local build_args=""
local profile="" local profile=""
touch .env [[ -f ".env" ]] &&
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) && build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)" profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
[[ -z "$profile" ]] && profile="nvidia"
local service_name="invokeai-$profile" local service_name="invokeai-$profile"
if [[ ! -z "$build_args" ]]; then printf "%s\n" "docker compose build args:"
printf "%s\n" "docker compose build args:" printf "%s\n" "$build_args"
printf "%s\n" "$build_args"
fi
docker compose build $build_args $service_name docker compose build $build_args
unset build_args unset build_args
printf "%s\n" "starting service $service_name" printf "%s\n" "starting service $service_name"

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 194 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 95 KiB

After

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

After

Width:  |  Height:  |  Size: 167 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

View File

@ -1,277 +0,0 @@
# The InvokeAI Download Queue
The DownloadQueueService provides a multithreaded parallel download
queue for arbitrary URLs, with queue prioritization, event handling,
and restart capabilities.
## Simple Example
```
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
download_queue = DownloadQueueService()
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
]:
# urls start downloading as soon as download() is called
download_queue.download(source=url,
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
download_queue.join() # wait for all downloads to finish
for job in download_queue.list_jobs():
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
```
Output:
```
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
"dest": "/tmp/downloads",
"id": 0,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
"job_started": "2023-12-04T05:34:41.742174",
"job_ended": "2023-12-04T05:34:42.592035",
"bytes": 666734,
"total_bytes": 666734
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
"dest": "/tmp/downloads",
"id": 1,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/birdhouse.png",
"job_started": "2023-12-04T05:34:41.741975",
"job_ended": "2023-12-04T05:34:42.652841",
"bytes": 774949,
"total_bytes": 774949
}
{
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
"dest": "/tmp/downloads",
"id": 2,
"priority": 10,
"status": "error",
"job_started": "2023-12-04T05:34:41.742079",
"job_ended": "2023-12-04T05:34:42.147625",
"bytes": 0,
"total_bytes": 0,
"error_type": "HTTPError(Not Found)",
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
}
{
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
"dest": "/tmp/downloads",
"id": 3,
"priority": 10,
"status": "completed",
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
"job_started": "2023-12-04T05:34:42.147645",
"job_ended": "2023-12-04T05:34:43.735990",
"bytes": 719020768,
"total_bytes": 719020768
}
```
## The API
The default download queue is `DownloadQueueService`, an
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
background download requests and provides facilities for interrogating
and cancelling the requests. Access to a current or past download task
is mediated via `DownloadJob` objects which report the current status
of a job request
### The Queue Object
A default download queue is located in
`ApiDependencies.invoker.services.download_queue`. However, you can
create additional instances if you need to isolate your queue from the
main one.
```
queue = DownloadQueueService(event_bus=events)
```
`DownloadQueueService()` takes three optional arguments:
| **Argument** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
`max_parallel_dl` specifies how many download jobs are allowed to run
simultaneously. Each will run in a different thread of execution.
`event_bus` is an EventServiceBase, typically the one created at
InvokeAI startup. If present, download events are periodically emitted
on this bus to allow clients to follow download progress.
`requests_session` is a url library requests Session object. It is
used for testing.
### The Job object
The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `source` | AnyHttpUrl | | Where to download from |
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
| |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the location of the downloaded file |
| `job_started` | float | | Timestamp for when the job started running |
| `job_ended` | float | | Timestamp for when the job completed or errored out |
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
When you create a job, you can assign it a `priority`. If multiple
jobs are queued, the job with the lowest priority runs first.
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
The `dest` is a path on the local filesystem that specifies the
destination for the downloaded object. Its semantics are
described below.
When the job is submitted, it is assigned a numeric `id`. The id can
then be used to fetch the job object from the queue.
The `status` field is updated by the queue to indicate where the job
is in its lifecycle. Values are defined in the string enum
`DownloadJobStatus`, a symbol available from
`invokeai.app.services.download_manager`. Possible values are:
| **Value** | **String Value** | ** Description ** |
|--------------|---------------------|-------------------|
| `WAITING` | waiting | Job is on the queue but not yet running|
| `RUNNING` | running | The download is started |
| `COMPLETED` | completed | Job has finished its work without an error |
| `ERROR` | error | Job encountered an error and will not run again|
`job_started` and `job_ended` indicate when the job
was started (using a python timestamp) and when it completed.
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
Exception that caused the error will be placed in the `error_type`
field and the traceback that led to the error will be in `error`.
A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
using optional arguments `on_start`, `on_progress`, `on_complete` and
`on_error`. When the corresponding event occurs, the callback wil be
invoked and passed the job. The callback will be run in a `try:`
context in the same thread as the download job. Any exceptions that
occur during execution of the callback will be caught and converted
into a log error message, thereby allowing the download to continue.
#### `TqdmProgress`
The `invokeai.app.services.download.download_default` module defines a
class named `TqdmProgress` which can be used as an `on_progress`
handler to display a completion bar in the console. Use as follows:
```
from invokeai.app.services.download import TqdmProgress
download_queue.download(source='http://some.server.somewhere/some_file',
dest='/tmp/downloads',
on_progress=TqdmProgress().update
)
```
### Events
If the queue was initialized with the InvokeAI event bus (the case
when using `ApiDependencies.invoker.services.download_queue`), then
download events will also be issued on the bus. The events are:
* `download_started` -- This is issued when a job is taken off the
queue and a request is made to the remote server for the URL headers, but before any data
has been downloaded. The event payload will contain the keys `source`
and `download_path`. The latter contains the path that the URL will be
downloaded to.
* `download_progress -- This is issued periodically as the download
runs. The payload contains the keys `source`, `download_path`,
`current_bytes` and `total_bytes`. The latter two fields can be
used to display the percent complete.
* `download_complete` -- This is issued when the download completes
successfully. The payload contains the keys `source`, `download_path`
and `total_bytes`.
* `download_error` -- This is issued when the download stops because
of an error condition. The payload contains the fields `error_type`
and `error`. The former is the text representation of the exception,
and the latter is a traceback showing where the error occurred.
### Job control
To create a job call the queue's `download()` method. You can list all
jobs using `list_jobs()`, fetch a single job by its with
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.
#### job = queue.id_to_job(id)
Return the job corresponding to given ID.
Return a list of all active and inactive `DownloadJob`s.
#### queue.prune_jobs()
Remove inactive (complete or errored) jobs from the listing returned
by `list_jobs()`.
#### queue.join()
Block until all pending jobs have run to completion or errored out.

View File

@ -9,15 +9,11 @@ complex functionality.
## Invocations Directory ## Invocations Directory
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These can be used as examples to create your own nodes.
can be used as examples to create your own nodes.
New nodes should be added to a subfolder in `nodes` direction found at the root New nodes should be added to a subfolder in `nodes` direction found at the root level of the InvokeAI installation location. Nodes added to this folder will be able to be used upon application startup.
level of the InvokeAI installation location. Nodes added to this folder will be
able to be used upon application startup.
Example `nodes` subfolder structure:
Example `nodes` subfolder structure:
```py ```py
├── __init__.py # Invoke-managed custom node loader ├── __init__.py # Invoke-managed custom node loader
@ -34,14 +30,14 @@ Example `nodes` subfolder structure:
└── fancy_node.py └── fancy_node.py
``` ```
Each node folder must have an `__init__.py` file that imports its nodes. Only Each node folder must have an `__init__.py` file that imports its nodes. Only nodes imported in the `__init__.py` file are loaded.
nodes imported in the `__init__.py` file are loaded. See the README in the nodes See the README in the nodes folder for more examples:
folder for more examples:
```py ```py
from .cool_node import CoolInvocation from .cool_node import CoolInvocation
``` ```
## Creating A New Invocation ## Creating A New Invocation
In order to understand the process of creating a new Invocation, let us actually In order to understand the process of creating a new Invocation, let us actually
@ -135,6 +131,7 @@ from invokeai.app.invocations.primitives import ImageField
class ResizeInvocation(BaseInvocation): class ResizeInvocation(BaseInvocation):
'''Resizes an image''' '''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image") image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image") width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image") height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -170,6 +167,7 @@ from invokeai.app.invocations.primitives import ImageField
class ResizeInvocation(BaseInvocation): class ResizeInvocation(BaseInvocation):
'''Resizes an image''' '''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image") image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image") width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image") height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -199,6 +197,7 @@ from invokeai.app.invocations.image import ImageOutput
class ResizeInvocation(BaseInvocation): class ResizeInvocation(BaseInvocation):
'''Resizes an image''' '''Resizes an image'''
# Inputs
image: ImageField = InputField(description="The input image") image: ImageField = InputField(description="The input image")
width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image") width: int = InputField(default=512, ge=64, le=2048, description="Width of the new image")
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image") height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
@ -230,17 +229,30 @@ class ResizeInvocation(BaseInvocation):
height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image") height: int = InputField(default=512, ge=64, le=2048, description="Height of the new image")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the input image as a PIL image # Load the image using InvokeAI's predefined Image Service. Returns the PIL image.
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
# Resize the image # Resizing the image
resized_image = image.resize((self.width, self.height)) resized_image = image.resize((self.width, self.height))
# Save the image # Save the image using InvokeAI's predefined Image Service. Returns the prepared PIL image.
image_dto = context.images.save(image=resized_image) output_image = context.services.images.create(
image=resized_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
# Return an ImageOutput # Returning the Image
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(
image_name=output_image.image_name,
),
width=output_image.width,
height=output_image.height,
)
``` ```
**Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a **Note:** Do not be overwhelmed by the `ImageOutput` process. InvokeAI has a
@ -331,25 +343,27 @@ class ImageColorStringOutput(BaseInvocationOutput):
That's all there is to it. That's all there is to it.
<!-- TODO: DANGER - we probably do not want people to create their own field types, because this requires a lot of work on the frontend to accomodate.
### Custom Input Fields ### Custom Input Fields
Now that you know how to create your own Invocations, let us dive into slightly Now that you know how to create your own Invocations, let us dive into slightly
more advanced topics. more advanced topics.
While creating your own Invocations, you might run into a scenario where the While creating your own Invocations, you might run into a scenario where the
existing fields in InvokeAI do not meet your requirements. In such cases, you existing input types in InvokeAI do not meet your requirements. In such cases,
can create your own fields. you can create your own input types.
Let us create one as an example. Let us say we want to create a color input Let us create one as an example. Let us say we want to create a color input
field that represents a color code. But before we start on that here are some field that represents a color code. But before we start on that here are some
general good practices to keep in mind. general good practices to keep in mind.
### Best Practices **Good Practices**
- There is no naming convention for input fields but we highly recommend that - There is no naming convention for input fields but we highly recommend that
you name it something appropriate like `ColorField`. you name it something appropriate like `ColorField`.
- It is not mandatory but it is heavily recommended to add a relevant - It is not mandatory but it is heavily recommended to add a relevant
`docstring` to describe your field. `docstring` to describe your input field.
- Keep your field in the same file as the Invocation that it is made for or in - Keep your field in the same file as the Invocation that it is made for or in
another file where it is relevant. another file where it is relevant.
@ -364,13 +378,10 @@ class ColorField(BaseModel):
pass pass
``` ```
Perfect. Now let us create the properties for our field. This is similar to how Perfect. Now let us create our custom inputs for our field. This is exactly
you created input fields for your Invocation. All the same rules apply. Let us similar how you created input fields for your Invocation. All the same rules
create four fields representing the _red(r)_, _blue(b)_, _green(g)_ and apply. Let us create four fields representing the _red(r)_, _blue(b)_,
_alpha(a)_ channel of the color. _green(g)_ and _alpha(a)_ channel of the color.
> Technically, the properties are _also_ called fields - but in this case, it
> refers to a `pydantic` field.
```python ```python
class ColorField(BaseModel): class ColorField(BaseModel):
@ -385,11 +396,25 @@ That's it. We now have a new input field type that we can use in our Invocations
like this. like this.
```python ```python
color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image') color: ColorField = Field(default=ColorField(r=0, g=0, b=0, a=0), description='Background color of an image')
``` ```
### Using the custom field ### Custom Components For Frontend
When you start the UI, your custom field will be automatically recognized. Every backend input type should have a corresponding frontend component so the
UI knows what to render when you use a particular field type.
Custom fields only support connection inputs in the Workflow Editor. If you are using existing field types, we already have components for those. So
you don't have to worry about creating anything new. But this might not always
be the case. Sometimes you might want to create new field types and have the
frontend UI deal with it in a different way.
This is where we venture into the world of React and Javascript and create our
own new components for our Invocations. Do not fear the world of JS. It's
actually pretty straightforward.
Let us create a new component for our custom color field we created above. When
we use a color field, let us say we want the UI to display a color picker for
the user to pick from rather than entering values. That is what we will build
now.
-->

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,75 @@
# Contributing to the Frontend
# InvokeAI Web UI
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
Code is located in `invokeai/frontend/web/` for review.
## Stack
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
- `createAsyncThunk` for HTTP requests
- `createEntityAdapter` for fetching images and models
- `createListenerMiddleware` for workflows
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
[Vite](https://vitejs.dev/) for bundling.
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
## Contributing
Thanks for your interest in contributing to the InvokeAI Web UI!
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
### Dev Environment
**Setup**
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
```bash
node --version
```
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
```bash
npm install --global yarn
yarn --version
```
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
Start everything in dev mode:
1. Ensure your virtual environment is running
2. Start the dev server: `yarn dev`
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
### VSCode Remote Dev
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
### Production builds
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
To build for production, run `yarn build`.

View File

@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
Once you're setup, for more information, you can review the documentation specific to your area of interest: Once you're setup, for more information, you can review the documentation specific to your area of interest:
* #### [InvokeAI Architecure](../ARCHITECTURE.md) * #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web) * #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md) * #### [Node Documentation](../INVOCATIONS.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md) * #### [Local Development](../LOCAL_DEVELOPMENT.md)

View File

@ -1,53 +0,0 @@
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.

View File

@ -94,8 +94,6 @@ A model that helps generate creative QR codes that still scan. Can also be used
**Openpose**: **Openpose**:
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image. The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
**Mediapipe Face**: **Mediapipe Face**:
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces. The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.

View File

@ -229,28 +229,29 @@ clarity on the intent and common use cases we expect for utilizing them.
currently being rendered by your browser into a merged copy of the image. This currently being rendered by your browser into a merged copy of the image. This
lowers the resource requirements and should improve performance. lowers the resource requirements and should improve performance.
### Compositing / Seam Correction ### Seam Correction
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is by Stable Diffusion into your existing image. To do this, the area around the
`seam` at the boundary between your image and the new generation is
automatically blended to produce a seamless output. In a fully automatic automatically blended to produce a seamless output. In a fully automatic
process, a mask is generated to cover the boundary, and then the area of the boundary is process, a mask is generated to cover the seam, and then the area of the seam is
Inpainted. Inpainted.
Although the default options should work well most of the time, sometimes it can Although the default options should work well most of the time, sometimes it can
help to alter the parameters that control the Compositing. A larger blur and help to alter the parameters that control the seam Inpainting. A wider seam and
a blur setting have been noted as producing a blur setting of about 1/3 of the seam have been noted as producing
consistently strong results . Strength of 0.7 is best for reducing hard seams. consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
both sides). Seam strength of 0.7 is best for reducing hard seams.
- **Mode** - What part of the image will have the the Compositing applied to it.
- **Mask edge** will apply Compositing to the edge of the masked area
- **Mask** will apply Compositing to the entire masked area
- **Unmasked** will apply Compositing to the entire image
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
- **Blur Method** - The method of blur applied to the masked area.
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
mask around the seam.
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
masked area.
- **Seam Strength** - The Image To Image Strength parameter used for the
Inpainting generation that is applied to the seam area.
- **Seam Steps** - The number of generation steps that should be used to Inpaint
the seam.
### Infill & Scaling ### Infill & Scaling

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.2 KiB

View File

@ -18,7 +18,7 @@ title: Home
width: 100%; width: 100%;
max-width: 100%; max-width: 100%;
height: 50px; height: 50px;
background-color: #35A4DB; background-color: #448AFF;
color: #fff; color: #fff;
font-size: 16px; font-size: 16px;
border: none; border: none;
@ -43,7 +43,7 @@ title: Home
<div align="center" markdown> <div align="center" markdown>
[![project logo](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)](https://github.com/invoke-ai/InvokeAI) [![project logo](assets/invoke_ai_banner.png)](https://github.com/invoke-ai/InvokeAI)
[![discord badge]][discord link] [![discord badge]][discord link]
@ -117,11 +117,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
## :octicons-gift-24: InvokeAI Features ## :octicons-gift-24: InvokeAI Features
### Installation
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
### The InvokeAI Web Interface ### The InvokeAI Web Interface
- [WebUI overview](features/WEB.md) - [WebUI overview](features/WEB.md)
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md) - [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
@ -150,6 +145,60 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md) - [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md) - [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
## :octicons-log-16: Important Changes Since Version 2.3
### Nodes
Behind the scenes, InvokeAI has been completely rewritten to support
"nodes," small unitary operations that can be combined into graphs to
form arbitrary workflows. For example, there is a prompt node that
processes the prompt string and feeds it to a text2latent node that
generates a latent image. The latents are then fed to a latent2image
node that translates the latent image into a PNG.
The WebGUI has a node editor that allows you to graphically design and
execute custom node graphs. The ability to save and load graphs is
still a work in progress, but coming soon.
### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version
3.4.
To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`.
### ControlNet
This version of InvokeAI features ControlNet, a system that allows you
to achieve exact poses for human and animal figures by providing a
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
### New Schedulers
The list of schedulers has been completely revamped and brought up to date:
| **Short Name** | **Scheduler** | **Notes** |
|----------------|---------------------------------|-----------------------------|
| **ddim** | DDIMScheduler | |
| **ddpm** | DDPMScheduler | |
| **deis** | DEISMultistepScheduler | |
| **lms** | LMSDiscreteScheduler | |
| **pndm** | PNDMScheduler | |
| **heun** | HeunDiscreteScheduler | original noise schedule |
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
| **euler** | EulerDiscreteScheduler | original noise schedule |
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
| **kdpm_2** | KDPM2DiscreteScheduler | |
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
| **unipc** | UniPCMultistepScheduler | CPU only |
| **lcm** | LCMScheduler | |
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
## :material-target: Troubleshooting ## :material-target: Troubleshooting
Please check out our **[:material-frequently-asked-questions: Please check out our **[:material-frequently-asked-questions:

View File

@ -477,7 +477,7 @@ Then type the following commands:
=== "AMD System" === "AMD System"
```bash ```bash
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.6 pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
### Corrupted configuration file ### Corrupted configuration file

View File

@ -154,7 +154,7 @@ manager, please follow these steps:
=== "ROCm (AMD)" === "ROCm (AMD)"
```bash ```bash
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6 pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
=== "CPU (Intel Macs & non-GPU systems)" === "CPU (Intel Macs & non-GPU systems)"
@ -230,13 +230,13 @@ manager, please follow these steps:
=== "local Webserver" === "local Webserver"
```bash ```bash
invokeai-web invokeai --web
``` ```
=== "Public Webserver" === "Public Webserver"
```bash ```bash
invokeai-web --host 0.0.0.0 invokeai --web --host 0.0.0.0
``` ```
=== "CLI" === "CLI"
@ -313,7 +313,7 @@ code for InvokeAI. For this to work, you will need to install the
on your system, please see the [Git Installation on your system, please see the [Git Installation
Guide](https://github.com/git-guides/install-git) Guide](https://github.com/git-guides/install-git)
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md). You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere. If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
@ -345,7 +345,7 @@ installation protocol (important!)
=== "ROCm (AMD)" === "ROCm (AMD)"
```bash ```bash
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6 pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
=== "CPU (Intel Macs & non-GPU systems)" === "CPU (Intel Macs & non-GPU systems)"
@ -361,7 +361,7 @@ installation protocol (important!)
Be sure to pass `-e` (for an editable install) and don't forget the Be sure to pass `-e` (for an editable install) and don't forget the
dot ("."). It is part of the command. dot ("."). It is part of the command.
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md) and do a production build of the UI as described. 5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
6. You can now run `invokeai` and its related commands. The code will be 6. You can now run `invokeai` and its related commands. The code will be
read from the repository, so that you can edit the .py source files read from the repository, so that you can edit the .py source files

View File

@ -134,7 +134,7 @@ recipes are available
When installing torch and torchvision manually with `pip`, remember to provide When installing torch and torchvision manually with `pip`, remember to provide
the argument `--extra-index-url the argument `--extra-index-url
https://download.pytorch.org/whl/rocm5.6` as described in the [Manual https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
Installation Guide](020_INSTALL_MANUAL.md). Installation Guide](020_INSTALL_MANUAL.md).
This will be done automatically for you if you use the installer This will be done automatically for you if you use the installer

View File

@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
### Setup ### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary. Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail. Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.

View File

@ -18,18 +18,13 @@ either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver). driver).
## **[Automated Installer (Recommended)](010_INSTALL_AUTOMATED.md)** ## **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users. ✅ This is the recommended installation method for first-time users.
This is a script that will install all of InvokeAI's essential This is a script that will install all of InvokeAI's essential
third party libraries and InvokeAI itself. third party libraries and InvokeAI itself. It includes access to a
"developer console" which will help us debug problems with you and
🖥️ **Download the latest installer .zip file here** : https://github.com/invoke-ai/InvokeAI/releases/latest give you to access experimental features.
- *Look for the file labelled "InvokeAI-installer-v3.X.X.zip" at the bottom of the page*
- If you experience issues, read through the full [installation instructions](010_INSTALL_AUTOMATED.md) to make sure you have met all of the installation requirements. If you need more help, join the [Discord](discord.gg/invoke-ai) or create an issue on [Github](https://github.com/invoke-ai/InvokeAI).
## **[Manual Installation](020_INSTALL_MANUAL.md)** ## **[Manual Installation](020_INSTALL_MANUAL.md)**
This method is recommended for experienced users and developers. This method is recommended for experienced users and developers.

View File

@ -6,17 +6,10 @@ If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](
## Features ## Features
### Workflow Library
The Workflow Library enables you to save workflows to the Invoke database, allowing you to easily creating, modify and share workflows as needed.
A curated set of workflows are provided by default - these are designed to help explain important nodes' usage in the Workflow Editor.
![workflow_library](../assets/nodes/workflow_library.png)
### Linear View ### Linear View
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations. The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
To add an input to the Linear UI, right click on the **input label** and select "Add to Linear View". To add an input to the Linear UI, right click on the input label and select "Add to Linear View".
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity. The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
@ -37,7 +30,7 @@ Any node or input field can be renamed in the workflow editor. If the input fiel
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing. Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
## Important Nodes & Concepts ## Important Concepts
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples). There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
@ -63,7 +56,7 @@ The ImageToLatents node takes in a pixel image and a VAE and outputs a latents.
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed. It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
![groupsrandseed](../assets/nodes/groupsnoise.png) ![groupsrandseed](../assets/nodes/groupsrandseed.png)
### ControlNet ### ControlNet

View File

@ -13,8 +13,6 @@ If you'd prefer, you can also just download the whole node folder from the linke
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor. To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
- Community Nodes - Community Nodes
+ [Adapters-Linked](#adapters-linked-nodes)
+ [Autostereogram](#autostereogram-nodes)
+ [Average Images](#average-images) + [Average Images](#average-images)
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut) + [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
+ [Close Color Mask](#close-color-mask) + [Close Color Mask](#close-color-mask)
@ -26,7 +24,7 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker) + [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif) + [Grid to Gif](#grid-to-gif)
+ [Halftone](#halftone) + [Halftone](#halftone)
+ [Hand Refiner with MeshGraphormer](#hand-refiner-with-meshgraphormer) + [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack) + [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image Dominant Color](#image-dominant-color) + [Image Dominant Color](#image-dominant-color)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes) + [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
@ -36,13 +34,10 @@ To use a community workflow, download the the `.json` node graph file and load i
+ [Make 3D](#make-3d) + [Make 3D](#make-3d)
+ [Mask Operations](#mask-operations) + [Mask Operations](#mask-operations)
+ [Match Histogram](#match-histogram) + [Match Histogram](#match-histogram)
+ [Metadata-Linked](#metadata-linked-nodes)
+ [Negative Image](#negative-image) + [Negative Image](#negative-image)
+ [Nightmare Promptgen](#nightmare-promptgen)
+ [Oobabooga](#oobabooga) + [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools) + [Prompt Tools](#prompt-tools)
+ [Remote Image](#remote-image) + [Remote Image](#remote-image)
+ [BriaAI Background Remove](#briaai-remove-background)
+ [Remove Background](#remove-background) + [Remove Background](#remove-background)
+ [Retroize](#retroize) + [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes) + [Size Stepper Nodes](#size-stepper-nodes)
@ -56,30 +51,6 @@ To use a community workflow, download the the `.json` node graph file and load i
- [Help](#help) - [Help](#help)
--------------------------------
### Adapters Linked Nodes
**Description:** A set of nodes for linked adapters (ControlNet, IP-Adaptor & T2I-Adapter). This allows multiple adapters to be chained together without using a `collect` node which means it can be used inside an `iterate` node without any collecting on every iteration issues.
- `ControlNet-Linked` - Collects ControlNet info to pass to other nodes.
- `IP-Adapter-Linked` - Collects IP-Adapter info to pass to other nodes.
- `T2I-Adapter-Linked` - Collects T2I-Adapter info to pass to other nodes.
Note: These are inherited from the core nodes so any update to the core nodes should be reflected in these.
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
--------------------------------
### Autostereogram Nodes
**Description:** Generate autostereogram images from a depth map. This is not a very practically useful node but more a 90s nostalgic indulgence as I used to love these images as a kid.
**Node Link:** https://github.com/skunkworxdark/autostereogram_nodes
**Example Usage:**
</br>
<img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider-depth.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-dots.png" width="200" /> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-pattern.png" width="200" />
-------------------------------- --------------------------------
### Average Images ### Average Images
@ -210,18 +181,13 @@ CMYK Halftone Output:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" /> <img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
-------------------------------- --------------------------------
### Ideal Size
### Hand Refiner with MeshGraphormer **Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Description**: Hand Refiner takes in your image and automatically generates a fixed depth map for the hands along with a mask of the hands region that will conveniently allow you to use them along with ControlNet to fix the wonky hands generated by Stable Diffusion **Node Link:** https://github.com/JPPhoto/ideal-size-node
**Node Link:** https://github.com/blessedcoolant/invoke_meshgraphormer
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_meshgraphormer/main/assets/preview.jpg" />
-------------------------------- --------------------------------
### Image and Mask Composition Pack ### Image and Mask Composition Pack
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling. **Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
@ -341,20 +307,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" /> <img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
--------------------------------
### Metadata Linked Nodes
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
- `Metadata From Image` - Provides Metadata from an image.
- `Metadata To String` - Extracts a String value of a label from metadata.
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
- `Metadata To Float` - Extracts a Float value of a label from metadata.
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes
-------------------------------- --------------------------------
### Negative Image ### Negative Image
@ -365,13 +317,6 @@ Node Link: https://github.com/VeyDlin/negative-image-node
View: View:
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" /> </br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
--------------------------------
### Nightmare Promptgen
**Description:** Nightmare Prompt Generator - Uses a local text generation model to create unique imaginative (but usually nightmarish) prompts for InvokeAI. By default, it allows you to choose from some gpt-neo models I finetuned on over 2500 of my own InvokeAI prompts in Compel format, but you're able to add your own, as well. Offers support for replacing any troublesome words with a random choice from list you can also define.
**Node Link:** [https://github.com/gogurtenjoyer/nightmare-promptgen](https://github.com/gogurtenjoyer/nightmare-promptgen)
-------------------------------- --------------------------------
### Oobabooga ### Oobabooga
@ -435,17 +380,6 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image **Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
--------------------------------
### BriaAI Remove Background
**Description**: Implements one click background removal with BriaAI's new version 1.4 model which seems to be be producing better results than any other previous background removal tool.
**Node Link:** https://github.com/blessedcoolant/invoke_bria_rmbg
**View**
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_bria_rmbg/main/assets/preview.jpg" />
-------------------------------- --------------------------------
### Remove Background ### Remove Background

View File

@ -36,7 +36,6 @@ their descriptions.
| Integer Math | Perform basic math operations on two integers | | Integer Math | Perform basic math operations on two integers |
| Convert Image Mode | Converts an image to a different mode. | | Convert Image Mode | Converts an image to a different mode. |
| Crop Image | Crops an image to a specified box. The box can be outside of the image. | | Crop Image | Crops an image to a specified box. The box can be outside of the image. |
| Ideal Size | Calculates an ideal image size for latents for a first pass of a multi-pass upscaling to avoid duplication and other artifacts |
| Image Hue Adjustment | Adjusts the Hue of an image. | | Image Hue Adjustment | Adjusts the Hue of an image. |
| Inverse Lerp Image | Inverse linear interpolation of all pixels of an image | | Inverse Lerp Image | Inverse linear interpolation of all pixels of an image |
| Image Primitive | An image primitive value | | Image Primitive | An image primitive value |
@ -81,7 +80,7 @@ their descriptions.
| ONNX Text to Latents | Generates latents from conditionings. | | ONNX Text to Latents | Generates latents from conditionings. |
| ONNX Model Loader | Loads a main model, outputting its submodels. | | ONNX Model Loader | Loads a main model, outputting its submodels. |
| OpenCV Inpaint | Simple inpaint using opencv. | | OpenCV Inpaint | Simple inpaint using opencv. |
| DW Openpose Processor | Applies Openpose processing to image | | Openpose Processor | Applies Openpose processing to image |
| PIDI Processor | Applies PIDI processing to image | | PIDI Processor | Applies PIDI processing to image |
| Prompts from File | Loads prompts from a text file | | Prompts from File | Loads prompts from a text file |
| Random Integer | Outputs a single random integer. | | Random Integer | Outputs a single random integer. |

View File

@ -1,6 +1,6 @@
# Example Workflows # Example Workflows
We've curated some example workflows for you to get started with Workflows in InvokeAI! These can also be found in the Workflow Library, located in the Workflow Editor of Invoke. We've curated some example workflows for you to get started with Workflows in InvokeAI
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images! To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!

View File

@ -13,69 +13,46 @@ We thank them for all of their time and hard work.
- [Lincoln D. Stein](mailto:lincoln.stein@gmail.com) - [Lincoln D. Stein](mailto:lincoln.stein@gmail.com)
## **Current Core Team** ## **Current core team**
* @lstein (Lincoln Stein) - Co-maintainer * @lstein (Lincoln Stein) - Co-maintainer
* @blessedcoolant - Co-maintainer * @blessedcoolant - Co-maintainer
* @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes * @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes
* @psychedelicious (Spencer Mabrito) - Web Team Leader * @psychedelicious (Spencer Mabrito) - Web Team Leader
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping * @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @josh is toast (Josh Corbett) - Web Development * @damian0815 - Attention Systems and Compel Maintainer
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler * @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
* @sunija - Standalone version
* @genomancer (Gregg Helt) - Controlnet support * @genomancer (Gregg Helt) - Controlnet support
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
* @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems * @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
* @ryanjdick (Ryan Dick) - Machine Learning & Training * @ryanjdick (Ryan Dick) - Machine Learning & Training
* @JPPhoto - Core image generation nodes * @millu (Millun Atluri) - Community Manager, Documentation, Node-wrangler
* @dunkeroni - Image generation backend * @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
* @SkunkWorxDark - Image generation backend
* @keturn (Kevin Turner) - Diffusers * @keturn (Kevin Turner) - Diffusers
* @millu (Millun Atluri) - Community Wizard, Documentation, Node-wrangler,
* @glimmerleaf (Devon Hopkins) - Community Wizard
* @gogurt enjoyer - Discord moderator and end user support * @gogurt enjoyer - Discord moderator and end user support
* @whosawhatsis - Discord moderator and end user support * @whosawhatsis - Discord moderator and end user support
* @dwinrger - Discord moderator and end user support * @dwinrger - Discord moderator and end user support
* @526christian - Discord moderator and end user support * @526christian - Discord moderator and end user support
* @harvester62 - Discord moderator and end user support
## **Honored Team Alumni**
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
* @damian0815 - Attention Systems and Compel Maintainer
* @netsvetaev (Artur) - Localization support
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
* @tildebyte - Installation and configuration
* @mauwii (Matthias Wilde) - Installation, release, continuous integration
## **Full List of Contributors by Commit Name** ## **Full List of Contributors by Commit Name**
- 이승석
- AbdBarho - AbdBarho
- ablattmann - ablattmann
- AdamOStark - AdamOStark
- Adam Rice - Adam Rice
- Airton Silva - Airton Silva
- Aldo Hoeben
- Alexander Eichhorn - Alexander Eichhorn
- Alexandre D. Roberge - Alexandre D. Roberge
- Alexandre Macabies
- Alfie John
- Andreas Rozek - Andreas Rozek
- Andre LaBranche - Andre LaBranche
- Andy Bearman - Andy Bearman
- Andy Luhrs - Andy Luhrs
- Andy Pilate - Andy Pilate
- Anonymous
- Anthony Monthe
- Any-Winter-4079 - Any-Winter-4079
- apolinario - apolinario
- Ar7ific1al
- ArDiouscuros - ArDiouscuros
- Armando C. Santisbon - Armando C. Santisbon
- Arnold Cordewiner
- Arthur Holstvoogd - Arthur Holstvoogd
- artmen1516 - artmen1516
- Artur - Artur
@ -87,16 +64,13 @@ We thank them for all of their time and hard work.
- blhook - blhook
- BlueAmulet - BlueAmulet
- Bouncyknighter - Bouncyknighter
- Brandon
- Brandon Rising - Brandon Rising
- Brent Ozar - Brent Ozar
- Brian Racer - Brian Racer
- bsilvereagle - bsilvereagle
- c67e708d - c67e708d
- camenduru
- CapableWeb - CapableWeb
- Carson Katri - Carson Katri
- chainchompa
- Chloe - Chloe
- Chris Dawson - Chris Dawson
- Chris Hayes - Chris Hayes
@ -112,45 +86,30 @@ We thank them for all of their time and hard work.
- cpacker - cpacker
- Cragin Godley - Cragin Godley
- creachec - creachec
- CrypticWit
- d8ahazard
- damian
- damian0815
- Damian at mba
- Damian Stewart - Damian Stewart
- Daniel Manzke - Daniel Manzke
- Danny Beer - Danny Beer
- Dan Sully - Dan Sully
- Darren Ringer
- David Burnett - David Burnett
- David Ford - David Ford
- David Regla - David Regla
- David Sisco
- David Wager - David Wager
- Daya Adianto - Daya Adianto
- db3000 - db3000
- DekitaRPG
- Denis Olshin - Denis Olshin
- Dennis - Dennis
- dependabot[bot]
- Dmitry Parnas
- Dobrynia100
- Dominic Letz - Dominic Letz
- DrGunnarMallon - DrGunnarMallon
- Drun555
- dunkeroni
- Edward Johan - Edward Johan
- elliotsayes - elliotsayes
- Elrik - Elrik
- ElrikUnderlake - ElrikUnderlake
- Eric Khun - Eric Khun
- Eric Wolf - Eric Wolf
- Eugene
- Eugene Brodsky - Eugene Brodsky
- ExperimentalCyborg - ExperimentalCyborg
- Fabian Bahl - Fabian Bahl
- Fabio 'MrWHO' Torchetti - Fabio 'MrWHO' Torchetti
- Fattire
- fattire - fattire
- Felipe Nogueira - Felipe Nogueira
- Félix Sanz - Félix Sanz
@ -159,12 +118,8 @@ We thank them for all of their time and hard work.
- gabrielrotbart - gabrielrotbart
- gallegonovato - gallegonovato
- Gérald LONLAS - Gérald LONLAS
- Gille
- GitHub Actions Bot - GitHub Actions Bot
- glibesyck
- gogurtenjoyer - gogurtenjoyer
- Gohsuke Shimada
- greatwolf
- greentext2 - greentext2
- Gregg Helt - Gregg Helt
- H4rk - H4rk
@ -176,7 +131,6 @@ We thank them for all of their time and hard work.
- Hosted Weblate - Hosted Weblate
- Iman Karim - Iman Karim
- ismail ihsan bülbül - ismail ihsan bülbül
- ItzAttila
- Ivan Efimov - Ivan Efimov
- jakehl - jakehl
- Jakub Kolčář - Jakub Kolčář
@ -187,7 +141,6 @@ We thank them for all of their time and hard work.
- Jason Toffaletti - Jason Toffaletti
- Jaulustus - Jaulustus
- Jeff Mahoney - Jeff Mahoney
- Jennifer Player
- jeremy - jeremy
- Jeremy Clark - Jeremy Clark
- JigenD - JigenD
@ -195,26 +148,19 @@ We thank them for all of their time and hard work.
- Johan Roxendal - Johan Roxendal
- Johnathon Selstad - Johnathon Selstad
- Jonathan - Jonathan
- Jordan Hewitt
- Joseph Dries III - Joseph Dries III
- Josh Corbett
- JPPhoto - JPPhoto
- jspraul - jspraul
- junzi
- Justin Wong - Justin Wong
- Juuso V - Juuso V
- Kaspar Emanuel - Kaspar Emanuel
- Katsuyuki-Karasawa - Katsuyuki-Karasawa
- Keerigan45
- Kent Keirsey - Kent Keirsey
- Kevin Brack
- Kevin Coakley - Kevin Coakley
- Kevin Gibbons - Kevin Gibbons
- Kevin Schaul - Kevin Schaul
- Kevin Turner - Kevin Turner
- Kieran Klaassen
- krummrey - krummrey
- Kyle
- Kyle Lacy - Kyle Lacy
- Kyle Schouviller - Kyle Schouviller
- Lawrence Norton - Lawrence Norton
@ -225,15 +171,10 @@ We thank them for all of their time and hard work.
- Lynne Whitehorn - Lynne Whitehorn
- majick - majick
- Marco Labarile - Marco Labarile
- Marta Nahorniuk
- Martin Kristiansen - Martin Kristiansen
- Mary Hipp
- maryhipp
- Mary Hipp Rogers - Mary Hipp Rogers
- mastercaster
- mastercaster9000 - mastercaster9000
- Matthias Wild - Matthias Wild
- mauwii
- michaelk71 - michaelk71
- mickr777 - mickr777
- Mihai - Mihai
@ -241,15 +182,11 @@ We thank them for all of their time and hard work.
- Mikhail Tishin - Mikhail Tishin
- Millun Atluri - Millun Atluri
- Minjune Song - Minjune Song
- Mitchell Allain
- mitien - mitien
- mofuzz - mofuzz
- Muhammad Usama - Muhammad Usama
- Name - Name
- _nderscore - _nderscore
- Neil Wang
- nekowaiz
- nemuruibai
- Netzer R - Netzer R
- Nicholas Koh - Nicholas Koh
- Nicholas Körfer - Nicholas Körfer
@ -260,11 +197,9 @@ We thank them for all of their time and hard work.
- ofirkris - ofirkris
- Olivier Louvignes - Olivier Louvignes
- owenvincent - owenvincent
- pand4z31
- Patrick Esser - Patrick Esser
- Patrick Tien - Patrick Tien
- Patrick von Platen - Patrick von Platen
- Paul Curry
- Paul Sajna - Paul Sajna
- pejotr - pejotr
- Peter Baylies - Peter Baylies
@ -272,7 +207,6 @@ We thank them for all of their time and hard work.
- plucked - plucked
- prixt - prixt
- psychedelicious - psychedelicious
- psychedelicious@windows
- Rainer Bernhardt - Rainer Bernhardt
- Riccardo Giovanetti - Riccardo Giovanetti
- Rich Jones - Rich Jones
@ -281,22 +215,16 @@ We thank them for all of their time and hard work.
- Robert Bolender - Robert Bolender
- Robin Rombach - Robin Rombach
- Rohan Barar - Rohan Barar
- Rohinish
- rpagliuca - rpagliuca
- rromb - rromb
- Rupesh Sreeraman - Rupesh Sreeraman
- Ryan
- Ryan Cao - Ryan Cao
- Ryan Dick
- Saifeddine - Saifeddine
- Saifeddine ALOUI - Saifeddine ALOUI
- Sam
- SammCheese - SammCheese
- Sam McLeod
- Sammy - Sammy
- sammyf - sammyf
- Samuel Husso - Samuel Husso
- Saurav Maheshkar
- Scott Lahteine - Scott Lahteine
- Sean McLellan - Sean McLellan
- Sebastian Aigner - Sebastian Aigner
@ -304,21 +232,16 @@ We thank them for all of their time and hard work.
- Sergey Krashevich - Sergey Krashevich
- Shapor Naghibzadeh - Shapor Naghibzadeh
- Shawn Zhong - Shawn Zhong
- Simona Liliac
- Simon Vans-Colina - Simon Vans-Colina
- skunkworxdark - skunkworxdark
- slashtechno - slashtechno
- SoheilRezaei
- Song, Pengcheng
- spezialspezial - spezialspezial
- ssantos - ssantos
- StAlKeR7779 - StAlKeR7779
- Stefan Tobler
- Stephan Koglin-Fischer - Stephan Koglin-Fischer
- SteveCaruso - SteveCaruso
- Steve Martinelli - Steve Martinelli
- Steven Frank - Steven Frank
- Surisen
- System X - Files - System X - Files
- Taylor Kems - Taylor Kems
- techicode - techicode
@ -337,34 +260,26 @@ We thank them for all of their time and hard work.
- tyler - tyler
- unknown - unknown
- user1 - user1
- vedant-3010
- Vedant Madane - Vedant Madane
- veprogames - veprogames
- wa.code - wa.code
- wfng92 - wfng92
- whjms
- whosawhatsis - whosawhatsis
- Will - Will
- William Becher - William Becher
- William Chong - William Chong
- Wilson E. Alvarez
- woweenie
- Wubbbi
- xra - xra
- Yeung Yiu Hung - Yeung Yiu Hung
- ymgenesis - ymgenesis
- Yorzaren - Yorzaren
- Yosuke Shinya - Yosuke Shinya
- yun saki - yun saki
- ZachNagengast
- Zadagu - Zadagu
- zeptofine - zeptofine
- Zerdoumi
- Васянатор
- 冯不游 - 冯不游
- 唐澤 克幸 - 唐澤 克幸
## **Original CompVis (Stable Diffusion) Authors** ## **Original CompVis Authors**
- [Robin Rombach](https://github.com/rromb) - [Robin Rombach](https://github.com/rromb)
- [Patrick von Platen](https://github.com/patrickvonplaten) - [Patrick von Platen](https://github.com/patrickvonplaten)

View File

@ -1,5 +0,0 @@
:root {
--md-primary-fg-color: #35A4DB;
--md-primary-fg-color--light: #35A4DB;
--md-primary-fg-color--dark: #35A4DB;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,8 @@
{ {
"name": "Text to Image - SD1.5", "name": "Text to Image",
"author": "InvokeAI", "author": "InvokeAI",
"description": "Sample text to image workflow for Stable Diffusion 1.5/2", "description": "Sample text to image workflow for Stable Diffusion 1.5/2",
"version": "1.1.0", "version": "1.0.1",
"contact": "invoke@invoke.ai", "contact": "invoke@invoke.ai",
"tags": "text2image, SD1.5, SD2, default", "tags": "text2image, SD1.5, SD2, default",
"notes": "", "notes": "",
@ -18,19 +18,10 @@
{ {
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"fieldName": "prompt" "fieldName": "prompt"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "width"
},
{
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
"fieldName": "height"
} }
], ],
"meta": { "meta": {
"category": "default", "version": "1.0.0"
"version": "2.0.0"
}, },
"nodes": [ "nodes": [
{ {
@ -39,56 +30,44 @@
"data": { "data": {
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "compel", "type": "compel",
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"prompt": { "prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e", "id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt", "name": "prompt",
"type": "string",
"fieldKind": "input", "fieldKind": "input",
"label": "Negative Prompt", "label": "Negative Prompt",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "" "value": ""
}, },
"clip": { "clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0", "id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip", "name": "clip",
"type": "ClipField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
} }
}, },
"outputs": { "outputs": {
"conditioning": { "conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447", "id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning", "name": "conditioning",
"fieldKind": "output", "type": "ConditioningField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
} }
} },
"label": "Negative Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 259, "height": 261,
"position": { "position": {
"x": 1000, "x": 995.7263915923627,
"y": 350 "y": 239.67783573351227
} }
}, },
{ {
@ -97,60 +76,37 @@
"data": { "data": {
"id": "55705012-79b9-4aac-9f26-c0b10309785b", "id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise", "type": "noise",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.1",
"nodePack": "invokeai",
"inputs": { "inputs": {
"seed": { "seed": {
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d", "id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
"name": "seed", "name": "seed",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0 "value": 0
}, },
"width": { "width": {
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7", "id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
"name": "width", "name": "width",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512 "value": 512
}, },
"height": { "height": {
"id": "16298330-e2bf-4872-a514-d6923df53cbb", "id": "16298330-e2bf-4872-a514-d6923df53cbb",
"name": "height", "name": "height",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 512 "value": 512
}, },
"use_cpu": { "use_cpu": {
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c", "id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
"name": "use_cpu", "name": "use_cpu",
"type": "boolean",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true "value": true
} }
}, },
@ -158,40 +114,35 @@
"noise": { "noise": {
"id": "50f650dc-0184-4e23-a927-0497a96fe954", "id": "50f650dc-0184-4e23-a927-0497a96fe954",
"name": "noise", "name": "noise",
"fieldKind": "output", "type": "LatentsField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
}, },
"width": { "width": {
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a", "id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
"name": "width", "name": "width",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}, },
"height": { "height": {
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9", "id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
"name": "height", "name": "height",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
} }
} },
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 388, "height": 389,
"position": { "position": {
"x": 600, "x": 993.4442117555518,
"y": 325 "y": 605.6757415334787
} }
}, },
{ {
@ -200,24 +151,13 @@
"data": { "data": {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "main_model_loader", "type": "main_model_loader",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"model": { "model": {
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab", "id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
"name": "model", "name": "model",
"type": "MainModelField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MainModelField"
},
"value": { "value": {
"model_name": "stable-diffusion-v1-5", "model_name": "stable-diffusion-v1-5",
"base_model": "sd-1", "base_model": "sd-1",
@ -229,40 +169,35 @@
"unet": { "unet": {
"id": "5c18c9db-328d-46d0-8cb9-143391c410be", "id": "5c18c9db-328d-46d0-8cb9-143391c410be",
"name": "unet", "name": "unet",
"fieldKind": "output", "type": "UNetField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
}, },
"clip": { "clip": {
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4", "id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
"name": "clip", "name": "clip",
"fieldKind": "output", "type": "ClipField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
}, },
"vae": { "vae": {
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1", "id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
"name": "vae", "name": "vae",
"fieldKind": "output", "type": "VaeField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
} }
} },
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 226, "height": 226,
"position": { "position": {
"x": 600, "x": 163.04436745878343,
"y": 25 "y": 254.63156870373479
} }
}, },
{ {
@ -271,56 +206,44 @@
"data": { "data": {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "compel", "type": "compel",
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"prompt": { "prompt": {
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e", "id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
"name": "prompt", "name": "prompt",
"type": "string",
"fieldKind": "input", "fieldKind": "input",
"label": "Positive Prompt", "label": "Positive Prompt",
"type": { "value": ""
"isCollection": false,
"isCollectionOrScalar": false,
"name": "StringField"
},
"value": "Super cute tiger cub, national geographic award-winning photograph"
}, },
"clip": { "clip": {
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0", "id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
"name": "clip", "name": "clip",
"type": "ClipField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ClipField"
}
} }
}, },
"outputs": { "outputs": {
"conditioning": { "conditioning": {
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447", "id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
"name": "conditioning", "name": "conditioning",
"fieldKind": "output", "type": "ConditioningField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
} }
} },
"label": "Positive Compel Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 259, "height": 261,
"position": { "position": {
"x": 1000, "x": 595.7263915923627,
"y": 25 "y": 239.67783573351227
} }
}, },
{ {
@ -329,36 +252,21 @@
"data": { "data": {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int", "type": "rand_int",
"label": "Random Seed",
"isOpen": false,
"notes": "",
"isIntermediate": true,
"useCache": false,
"version": "1.0.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"low": { "low": {
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84", "id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
"name": "low", "name": "low",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 0 "value": 0
}, },
"high": { "high": {
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1", "id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
"name": "high", "name": "high",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 2147483647 "value": 2147483647
} }
}, },
@ -366,20 +274,23 @@
"value": { "value": {
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee", "id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
"name": "value", "name": "value",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
} }
} },
"label": "Random Seed",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": false,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 32, "height": 218,
"position": { "position": {
"x": 600, "x": 541.094822888628,
"y": 275 "y": 694.5704476446829
} }
}, },
{ {
@ -388,224 +299,144 @@
"data": { "data": {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "denoise_latents", "type": "denoise_latents",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": true,
"useCache": true,
"version": "1.5.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"positive_conditioning": { "positive_conditioning": {
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052", "id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
"name": "positive_conditioning", "name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}, },
"negative_conditioning": { "negative_conditioning": {
"id": "9393779e-796c-4f64-b740-902a1177bf53", "id": "9393779e-796c-4f64-b740-902a1177bf53",
"name": "negative_conditioning", "name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ConditioningField"
}
}, },
"noise": { "noise": {
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1", "id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
"name": "noise", "name": "noise",
"type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
}, },
"steps": { "steps": {
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88", "id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
"name": "steps", "name": "steps",
"type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": { "value": 10
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
},
"value": 50
}, },
"cfg_scale": { "cfg_scale": {
"id": "87dd04d3-870e-49e1-98bf-af003a810109", "id": "87dd04d3-870e-49e1-98bf-af003a810109",
"name": "cfg_scale", "name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "FloatField"
},
"value": 7.5 "value": 7.5
}, },
"denoising_start": { "denoising_start": {
"id": "f369d80f-4931-4740-9bcd-9f0620719fab", "id": "f369d80f-4931-4740-9bcd-9f0620719fab",
"name": "denoising_start", "name": "denoising_start",
"type": "float",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0 "value": 0
}, },
"denoising_end": { "denoising_end": {
"id": "747d10e5-6f02-445c-994c-0604d814de8c", "id": "747d10e5-6f02-445c-994c-0604d814de8c",
"name": "denoising_end", "name": "denoising_end",
"type": "float",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 1 "value": 1
}, },
"scheduler": { "scheduler": {
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b", "id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
"name": "scheduler", "name": "scheduler",
"type": "Scheduler",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": { "value": "euler"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "SchedulerField"
},
"value": "unipc"
}, },
"unet": { "unet": {
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b", "id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
"name": "unet", "name": "unet",
"type": "UNetField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "UNetField"
}
}, },
"control": { "control": {
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd", "id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
"name": "control", "name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "ControlField"
}
}, },
"ip_adapter": { "ip_adapter": {
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa", "id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
"name": "ip_adapter", "name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "IPAdapterField"
}
}, },
"t2i_adapter": { "t2i_adapter": {
"id": "75e67b09-952f-4083-aaf4-6b804d690412", "id": "75e67b09-952f-4083-aaf4-6b804d690412",
"name": "t2i_adapter", "name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": true,
"name": "T2IAdapterField"
}
},
"cfg_rescale_multiplier": {
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
"name": "cfg_rescale_multiplier",
"fieldKind": "input",
"label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "FloatField"
},
"value": 0
}, },
"latents": { "latents": {
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43", "id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
"name": "latents", "name": "latents",
"type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
}, },
"denoise_mask": { "denoise_mask": {
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa", "id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
"name": "denoise_mask", "name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "DenoiseMaskField"
}
} }
}, },
"outputs": { "outputs": {
"latents": { "latents": {
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38", "id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
"name": "latents", "name": "latents",
"fieldKind": "output", "type": "LatentsField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
}, },
"width": { "width": {
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0", "id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
"name": "width", "name": "width",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}, },
"height": { "height": {
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d", "id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
"name": "height", "name": "height",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
} }
} },
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
}, },
"width": 320, "width": 320,
"height": 703, "height": 646,
"position": { "position": {
"x": 1400, "x": 1476.5794704734735,
"y": 25 "y": 256.80174342731783
} }
}, },
{ {
@ -614,185 +445,153 @@
"data": { "data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f", "id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "l2i", "type": "l2i",
"label": "",
"isOpen": true,
"notes": "",
"isIntermediate": false,
"useCache": true,
"version": "1.2.0",
"nodePack": "invokeai",
"inputs": { "inputs": {
"metadata": { "metadata": {
"id": "ab375f12-0042-4410-9182-29e30db82c85", "id": "ab375f12-0042-4410-9182-29e30db82c85",
"name": "metadata", "name": "metadata",
"type": "MetadataField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "MetadataField"
}
}, },
"latents": { "latents": {
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78", "id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
"name": "latents", "name": "latents",
"type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "LatentsField"
}
}, },
"vae": { "vae": {
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b", "id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
"name": "vae", "name": "vae",
"type": "VaeField",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": ""
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "VaeField"
}
}, },
"tiled": { "tiled": {
"id": "da52059a-0cee-4668-942f-519aa794d739", "id": "da52059a-0cee-4668-942f-519aa794d739",
"name": "tiled", "name": "tiled",
"type": "boolean",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": {
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": false "value": false
}, },
"fp32": { "fp32": {
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c", "id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
"name": "fp32", "name": "fp32",
"type": "boolean",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"type": { "value": false
"isCollection": false,
"isCollectionOrScalar": false,
"name": "BooleanField"
},
"value": true
} }
}, },
"outputs": { "outputs": {
"image": { "image": {
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7", "id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
"name": "image", "name": "image",
"fieldKind": "output", "type": "ImageField",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "ImageField"
}
}, },
"width": { "width": {
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc", "id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
"name": "width", "name": "width",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
}, },
"height": { "height": {
"id": "230f359c-b4ea-436c-b372-332d7dcdca85", "id": "230f359c-b4ea-436c-b372-332d7dcdca85",
"name": "height", "name": "height",
"fieldKind": "output", "type": "integer",
"type": { "fieldKind": "output"
"isCollection": false,
"isCollectionOrScalar": false,
"name": "IntegerField"
}
} }
} },
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 266, "height": 267,
"position": { "position": {
"x": 1800, "x": 2037.9648469717395,
"y": 25 "y": 426.10844427600136
} }
} }
], ],
"edges": [ "edges": [
{ {
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "default",
"sourceHandle": "value", "sourceHandle": "value",
"targetHandle": "seed" "target": "55705012-79b9-4aac-9f26-c0b10309785b",
"targetHandle": "seed",
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
"type": "default"
}, },
{ {
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "default", "targetHandle": "clip",
"sourceHandle": "clip", "id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
"targetHandle": "clip" "type": "default"
}, },
{ {
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "clip",
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "default", "targetHandle": "clip",
"sourceHandle": "clip", "id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
"targetHandle": "clip" "type": "default"
}, },
{ {
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"source": "55705012-79b9-4aac-9f26-c0b10309785b", "source": "55705012-79b9-4aac-9f26-c0b10309785b",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "noise", "sourceHandle": "noise",
"targetHandle": "noise" "target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "noise",
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
"type": "default"
}, },
{ {
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"targetHandle": "positive_conditioning" "target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
"type": "default"
}, },
{ {
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"targetHandle": "negative_conditioning"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"type": "default", "targetHandle": "negative_conditioning",
"sourceHandle": "unet", "id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
"targetHandle": "unet" "type": "default"
}, },
{ {
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default",
"sourceHandle": "latents",
"targetHandle": "latents"
},
{
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "unet",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"targetHandle": "unet",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
"type": "default"
},
{
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
"sourceHandle": "latents",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f", "target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "default", "targetHandle": "latents",
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
"type": "default"
},
{
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "vae", "sourceHandle": "vae",
"targetHandle": "vae" "target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"targetHandle": "vae",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"type": "default"
} }
] ]
} }

View File

@ -14,19 +14,11 @@ function is_bin_in_path {
} }
function git_show { function git_show {
git show -s --format=oneline --abbrev-commit "$1" | cat git show -s --format='%h %s' $1
} }
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
exit -1
fi
cd "$(dirname "$0")" cd "$(dirname "$0")"
echo
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}" echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
echo "The current working directory is $(pwd)" echo "The current working directory is $(pwd)"
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..." read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
@ -40,6 +32,13 @@ if ! is_bin_in_path python && is_bin_in_path python3; then
} }
fi fi
if [[ -v "VIRTUAL_ENV" ]]; then
# we can't just call 'deactivate' because this function is not exported
# to the environment of this script from the bash process that runs the script
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
exit -1
fi
VERSION=$( VERSION=$(
cd .. cd ..
python -c "from invokeai.version import __version__ as version; print(version)" python -c "from invokeai.version import __version__ as version; print(version)"
@ -48,9 +47,38 @@ PATCH=""
VERSION="v${VERSION}${PATCH}" VERSION="v${VERSION}${PATCH}"
echo -e "${BGREEN}HEAD${RESET}:" echo -e "${BGREEN}HEAD${RESET}:"
git_show HEAD git_show
echo echo
# ---------------------- FRONTEND ----------------------
pushd ../invokeai/frontend/web >/dev/null
echo
echo "Installing frontend dependencies..."
echo
pnpm i --frozen-lockfile
echo
echo "Building frontend..."
echo
pnpm build
popd
# ---------------------- BACKEND ----------------------
echo
echo "Building wheel..."
echo
# install the 'build' package in the user site packages, if needed
# could be improved by using a temporary venv, but it's tiny and harmless
if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
pip install --user build
fi
rm -rf ../build
python -m build --wheel --outdir dist/ ../.
# ---------------------- # ----------------------
echo echo
@ -69,13 +97,16 @@ done
mkdir InvokeAI-Installer/lib mkdir InvokeAI-Installer/lib
cp lib/*.py InvokeAI-Installer/lib cp lib/*.py InvokeAI-Installer/lib
# Move the wheel
mv dist/*.whl InvokeAI-Installer/lib/
# Install scripts # Install scripts
# Mac/Linux # Mac/Linux
cp install.sh.in InvokeAI-Installer/install.sh cp install.sh.in InvokeAI-Installer/install.sh
chmod a+x InvokeAI-Installer/install.sh chmod a+x InvokeAI-Installer/install.sh
# Windows # Windows
cp install.bat.in InvokeAI-Installer/install.bat perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
cp WinLongPathsEnabled.reg InvokeAI-Installer/ cp WinLongPathsEnabled.reg InvokeAI-Installer/
# Zip everything up # Zip everything up

View File

@ -15,6 +15,7 @@ if "%1" == "use-cache" (
@rem Config @rem Config
@rem The version in the next line is replaced by an up to date release number @rem The version in the next line is replaced by an up to date release number
@rem when create_installer.sh is run. Change the release number there. @rem when create_installer.sh is run. Change the release number there.
set INVOKEAI_VERSION=latest
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/ set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
set PYTHON_URL=https://www.python.org/downloads/windows/ set PYTHON_URL=https://www.python.org/downloads/windows/

View File

@ -11,7 +11,7 @@ import sys
import venv import venv
from pathlib import Path from pathlib import Path
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
from typing import Optional, Tuple from typing import Union
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100" SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"] INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
@ -21,20 +21,40 @@ OS = platform.uname().system
ARCH = platform.uname().machine ARCH = platform.uname().machine
VERSION = "latest" VERSION = "latest"
### Feature flags
# Install the virtualenv into the runtime dir
FF_VENV_IN_RUNTIME = True
# Install the wheel packaged with the installer
FF_USE_LOCAL_WHEEL = True
class Installer: class Installer:
""" """
Deploys an InvokeAI installation into a given path Deploys an InvokeAI installation into a given path
""" """
reqs: list[str] = INSTALLER_REQS
def __init__(self) -> None: def __init__(self) -> None:
self.reqs = INSTALLER_REQS
self.preflight()
if os.getenv("VIRTUAL_ENV") is not None: if os.getenv("VIRTUAL_ENV") is not None:
print("A virtual environment is already activated. Please 'deactivate' before installation.") print("A virtual environment is already activated. Please 'deactivate' before installation.")
sys.exit(-1) sys.exit(-1)
self.bootstrap() self.bootstrap()
self.available_releases = get_github_releases()
def preflight(self) -> None:
"""
Preflight checks
"""
# TODO
# verify python version
# on macOS verify XCode tools are present
# verify libmesa, libglx on linux
# check that the system arch is not i386 (?)
# check that the system has a GPU, and the type of GPU
pass
def mktemp_venv(self) -> TemporaryDirectory: def mktemp_venv(self) -> TemporaryDirectory:
""" """
@ -58,9 +78,12 @@ class Installer:
return venv_dir return venv_dir
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory | None: def bootstrap(self, verbose: bool = False) -> TemporaryDirectory:
""" """
Bootstrap the installer venv with packages required at install time Bootstrap the installer venv with packages required at install time
:return: path to the virtual environment directory that was bootstrapped
:rtype: TemporaryDirectory
""" """
print("Initializing the installer. This may take a minute - please wait...") print("Initializing the installer. This may take a minute - please wait...")
@ -72,27 +95,39 @@ class Installer:
cmd.extend(self.reqs) cmd.extend(self.reqs)
try: try:
# upgrade pip to the latest version to avoid a confusing message
res = upgrade_pip(Path(venv_dir.name))
if verbose:
print(res)
# run the install prerequisites installation
res = subprocess.check_output(cmd).decode() res = subprocess.check_output(cmd).decode()
if verbose: if verbose:
print(res) print(res)
return venv_dir return venv_dir
except subprocess.CalledProcessError as e: except subprocess.CalledProcessError as e:
print(e) print(e)
def app_venv(self, venv_parent) -> Path: def app_venv(self, path: str = None):
""" """
Create a virtualenv for the InvokeAI installation Create a virtualenv for the InvokeAI installation
""" """
venv_dir = venv_parent / ".venv" # explicit venv location
# currently unused in normal operation
# useful for testing or special cases
if path is not None:
venv_dir = Path(path)
# experimental / testing
elif not FF_VENV_IN_RUNTIME:
if OS == "Windows":
venv_dir_parent = os.getenv("APPDATA", "~/AppData/Roaming")
elif OS == "Darwin":
# there is no environment variable on macOS to find this
# TODO: confirm this is working as expected
venv_dir_parent = "~/Library/Application Support"
elif OS == "Linux":
venv_dir_parent = os.getenv("XDG_DATA_DIR", "~/.local/share")
venv_dir = Path(venv_dir_parent).expanduser().resolve() / f"InvokeAI/{VERSION}/venv"
# stable / current
else:
venv_dir = self.dest / ".venv"
# Prefer to copy python executables # Prefer to copy python executables
# so that updates to system python don't break InvokeAI # so that updates to system python don't break InvokeAI
@ -106,7 +141,7 @@ class Installer:
return venv_dir return venv_dir
def install( def install(
self, version=None, root: str = "~/invokeai", yes_to_all=False, find_links: Optional[Path] = None self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None: ) -> None:
""" """
Install the InvokeAI application into the given runtime path Install the InvokeAI application into the given runtime path
@ -123,20 +158,15 @@ class Installer:
import messages import messages
messages.welcome(self.available_releases) messages.welcome()
version = messages.choose_version(self.available_releases) default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
self.dest = default_path if yes_to_all else messages.dest_path(root)
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
destination = auto_dest if yes_to_all else messages.dest_path(root)
if destination is None:
print("Could not find or create the destination directory. Installation cancelled.")
sys.exit(0)
# create the venv for the app # create the venv for the app
self.venv = self.app_venv(venv_parent=destination) self.venv = self.app_venv()
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version) self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
# install dependencies and the InvokeAI application # install dependencies and the InvokeAI application
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None) (extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
@ -160,7 +190,7 @@ class InvokeAiInstance:
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported. A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
""" """
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None: def __init__(self, runtime: Path, venv: Path, version: str) -> None:
self.runtime = runtime self.runtime = runtime
self.venv = venv self.venv = venv
self.pip = get_pip_from_venv(venv) self.pip = get_pip_from_venv(venv)
@ -169,7 +199,6 @@ class InvokeAiInstance:
set_sys_path(venv) set_sys_path(venv)
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve()) os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve()) os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
upgrade_pip(venv)
def get(self) -> tuple[Path, Path]: def get(self) -> tuple[Path, Path]:
""" """
@ -183,7 +212,54 @@ class InvokeAiInstance:
def install(self, extra_index_url=None, optional_modules=None, find_links=None): def install(self, extra_index_url=None, optional_modules=None, find_links=None):
""" """
Install the package from PyPi. Install this instance, including dependencies and the app itself
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str
"""
import messages
# install torch first to ensure the correct version gets installed.
# works with either source or wheel install with negligible impact on installation times.
messages.simple_banner("Installing PyTorch :fire:")
self.install_torch(extra_index_url, find_links)
messages.simple_banner("Installing the InvokeAI Application :art:")
self.install_app(extra_index_url, optional_modules, find_links)
def install_torch(self, extra_index_url=None, find_links=None):
"""
Install PyTorch
"""
from plumbum import FG, local
pip = local[self.pip]
(
pip[
"install",
"--require-virtualenv",
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch==2.1.1",
"torchmetrics==0.11.4",
"torchvision>=0.16.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,
"--extra-index-url" if extra_index_url is not None else None,
extra_index_url,
]
& FG
)
def install_app(self, extra_index_url=None, optional_modules=None, find_links=None):
"""
Install the application with pip.
Supports installation from PyPi or from a local source directory.
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes. :param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
:type extra_index_url: str :type extra_index_url: str
@ -195,52 +271,53 @@ class InvokeAiInstance:
:type find_links: Path :type find_links: Path
""" """
import messages ## this only applies to pypi installs; TODO actually use this
if self.version == "pre":
# not currently used, but may be useful for "install most recent version" option
if self.version == "prerelease":
version = None version = None
pre_flag = "--pre" pre = "--pre"
elif self.version == "stable":
version = None
pre_flag = None
else: else:
version = self.version version = self.version
pre_flag = None pre = None
src = "invokeai" ## TODO: only local wheel will be installed as of now; support for --version arg is TODO
if optional_modules: if FF_USE_LOCAL_WHEEL:
src += optional_modules # if no wheel, try to do a source install before giving up
if version: try:
src += f"=={version}" src = str(next(Path(__file__).parent.glob("InvokeAI-*.whl")))
except StopIteration:
try:
src = Path(__file__).parents[1].expanduser().resolve()
# if the above directory contains one of these files, we'll do a source install
next(src.glob("pyproject.toml"))
next(src.glob("invokeai"))
except StopIteration:
print("Unable to find a wheel or perform a source install. Giving up.")
messages.simple_banner("Installing the InvokeAI Application :art:") elif version == "source":
# this makes an assumption about the location of the installer package in the source tree
src = Path(__file__).parents[1].expanduser().resolve()
else:
# will install from PyPi
src = f"invokeai=={version}" if version is not None else "invokeai"
from plumbum import FG, ProcessExecutionError, local # type: ignore from plumbum import FG, local
pip = local[self.pip] pip = local[self.pip]
pipeline = pip[ (
"install", pip[
"--require-virtualenv", "install",
"--force-reinstall", "--require-virtualenv",
"--use-pep517", "--use-pep517",
str(src), str(src) + (optional_modules if optional_modules else ""),
"--find-links" if find_links is not None else None, "--find-links" if find_links is not None else None,
find_links, find_links,
"--extra-index-url" if extra_index_url is not None else None, "--extra-index-url" if extra_index_url is not None else None,
extra_index_url, extra_index_url,
pre_flag, pre,
] ]
& FG
try: )
_ = pipeline & FG
except ProcessExecutionError as e:
print(f"Error: {e}")
print(
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
)
sys.exit(1)
def configure(self): def configure(self):
""" """
@ -296,6 +373,7 @@ class InvokeAiInstance:
ext = "bat" if OS == "Windows" else "sh" ext = "bat" if OS == "Windows" else "sh"
# scripts = ['invoke', 'update']
scripts = ["invoke"] scripts = ["invoke"]
for script in scripts: for script in scripts:
@ -330,23 +408,6 @@ def get_pip_from_venv(venv_path: Path) -> str:
return str(venv_path.expanduser().resolve() / pip) return str(venv_path.expanduser().resolve() / pip)
def upgrade_pip(venv_path: Path) -> str | None:
"""
Upgrade the pip executable in the given virtual environment
"""
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
python = str(venv_path.expanduser().resolve() / python)
try:
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode()
except subprocess.CalledProcessError as e:
print(e)
result = None
return result
def set_sys_path(venv_path: Path) -> None: def set_sys_path(venv_path: Path) -> None:
""" """
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion, Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
@ -370,43 +431,7 @@ def set_sys_path(venv_path: Path) -> None:
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve())) sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
def get_github_releases() -> tuple[list, list] | None: def get_torch_source() -> (Union[str, None], str):
"""
Query Github for published (pre-)release versions.
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
Return None if the query fails for any reason.
"""
import requests
## get latest releases using github api
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
releases, pre_releases = [], []
try:
res = requests.get(url)
res.raise_for_status()
tag_info = res.json()
for tag in tag_info:
if not tag["prerelease"]:
releases.append(tag["tag_name"].lstrip("v"))
else:
pre_releases.append(tag["tag_name"].lstrip("v"))
except requests.HTTPError as e:
print(f"Error: {e}")
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
return
except Exception as e:
print(f"Error: {e}")
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
return
releases.sort(reverse=True)
pre_releases.sort(reverse=True)
return releases, pre_releases
def get_torch_source() -> Tuple[str | None, str | None]:
""" """
Determine the extra index URL for pip to use for torch installation. Determine the extra index URL for pip to use for torch installation.
This depends on the OS and the graphics accelerator in use. This depends on the OS and the graphics accelerator in use.
@ -421,26 +446,25 @@ def get_torch_source() -> Tuple[str | None, str | None]:
:rtype: list :rtype: list
""" """
from messages import select_gpu from messages import graphical_accelerator
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect" # device can be one of: "cuda", "rocm", "cpu", "idk"
device = select_gpu() device = graphical_accelerator()
url = None url = None
optional_modules = "[onnx]" optional_modules = "[onnx]"
if OS == "Linux": if OS == "Linux":
if device.value == "rocm": if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.6" url = "https://download.pytorch.org/whl/rocm5.4.2"
elif device.value == "cpu": elif device == "cpu":
url = "https://download.pytorch.org/whl/cpu" url = "https://download.pytorch.org/whl/cpu"
elif OS == "Windows": if device == "cuda":
if device.value == "cuda": url = "https://download.pytorch.org/whl/cu121"
url = "https://download.pytorch.org/whl/cu121" optional_modules = "[xformers,onnx-cuda]"
optional_modules = "[xformers,onnx-cuda]" if device == "cuda_and_dml":
if device.value == "cuda_and_dml": url = "https://download.pytorch.org/whl/cu121"
url = "https://download.pytorch.org/whl/cu121" optional_modules = "[xformers,onnx-directml]"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13 # in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@ -5,11 +5,10 @@ Installer user interaction
import os import os
import platform import platform
from enum import Enum
from pathlib import Path from pathlib import Path
from prompt_toolkit import HTML, prompt from prompt_toolkit import HTML, prompt
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter from prompt_toolkit.completion import PathCompleter
from prompt_toolkit.validation import Validator from prompt_toolkit.validation import Validator
from rich import box, print from rich import box, print
from rich.console import Console, Group, group from rich.console import Console, Group, group
@ -36,26 +35,16 @@ else:
console = Console(style=Style(color="grey74", bgcolor="grey19")) console = Console(style=Style(color="grey74", bgcolor="grey19"))
def welcome(available_releases: tuple | None = None) -> None: def welcome():
@group() @group()
def text(): def text():
if (platform_specific := _platform_specific_help()) is not None: if (platform_specific := _platform_specific_help()) != "":
yield platform_specific yield platform_specific
yield "" yield ""
yield Text.from_markup( yield Text.from_markup(
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.", "Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
justify="center", justify="center",
) )
if available_releases is not None:
latest_stable = available_releases[0][0]
last_pre = available_releases[1][0]
yield ""
yield Text.from_markup(
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
)
yield Text.from_markup(
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
)
console.rule() console.rule()
print( print(
@ -72,30 +61,19 @@ def welcome(available_releases: tuple | None = None) -> None:
console.line() console.line()
def choose_version(available_releases: tuple | None = None) -> str: def confirm_install(dest: Path) -> bool:
""" if dest.exists():
Prompt the user to choose an Invoke version to install print(f":exclamation: Directory {dest} already exists :exclamation:")
""" dest_confirmed = Confirm.ask(
":stop_sign: (re)install in this location?",
# short circuit if we couldn't get a version list default=False,
# still try to install the latest stable version )
if available_releases is None: else:
return "stable" print(f"InvokeAI will be installed in {dest}")
dest_confirmed = Confirm.ask("Use this location?", default=True)
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
choices = available_releases[0] + available_releases[1]
response = prompt(
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
complete_while_typing=True,
completer=FuzzyWordCompleter(choices),
)
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
console.line() console.line()
return "stable" if response == "" else response return dest_confirmed
def user_wants_auto_configuration() -> bool: def user_wants_auto_configuration() -> bool:
@ -131,23 +109,7 @@ def user_wants_auto_configuration() -> bool:
return choice.lower().startswith("a") return choice.lower().startswith("a")
def confirm_install(dest: Path) -> bool: def dest_path(dest=None) -> Path:
if dest.exists():
print(f":stop_sign: Directory {dest} already exists!")
print(" Is this location correct?")
default = False
else:
print(f":file_folder: InvokeAI will be installed in {dest}")
default = True
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
console.line()
return dest_confirmed
def dest_path(dest=None) -> Path | None:
""" """
Prompt the user for the destination path and create the path Prompt the user for the destination path and create the path
@ -162,21 +124,25 @@ def dest_path(dest=None) -> Path | None:
else: else:
dest = Path.cwd().expanduser().resolve() dest = Path.cwd().expanduser().resolve()
prev_dest = init_path = dest prev_dest = init_path = dest
dest_confirmed = False
dest_confirmed = confirm_install(dest)
while not dest_confirmed: while not dest_confirmed:
browse_start = (dest or Path.cwd()).expanduser().resolve() # if the given destination already exists, the starting point for browsing is its parent directory.
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
# if the destination dir does NOT exist, then the user must have changed their mind about the selection.
# since we can't read their mind, start browsing at Path.cwd().
browse_start = (prev_dest.parent if prev_dest.exists() else Path.cwd()).expanduser().resolve()
path_completer = PathCompleter( path_completer = PathCompleter(
only_directories=True, only_directories=True,
expanduser=True, expanduser=True,
get_paths=lambda: [str(browse_start)], # noqa: B023 get_paths=lambda: [browse_start], # noqa: B023
# get_paths=lambda: [".."].extend(list(browse_start.iterdir())) # get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
) )
console.line() console.line()
console.print(f"[orange3]Please select the destination directory for the installation:[/] \\[{browse_start}]: ")
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
selected = prompt( selected = prompt(
">>> ", ">>> ",
complete_in_thread=True, complete_in_thread=True,
@ -189,7 +155,6 @@ def dest_path(dest=None) -> Path | None:
) )
prev_dest = dest prev_dest = dest
dest = Path(selected) dest = Path(selected)
console.line() console.line()
dest_confirmed = confirm_install(dest.expanduser().resolve()) dest_confirmed = confirm_install(dest.expanduser().resolve())
@ -217,45 +182,41 @@ def dest_path(dest=None) -> Path | None:
console.rule("Goodbye!") console.rule("Goodbye!")
class GpuType(Enum): def graphical_accelerator():
CUDA = "cuda"
CUDA_AND_DML = "cuda_and_dml"
ROCM = "rocm"
CPU = "cpu"
AUTODETECT = "autodetect"
def select_gpu() -> GpuType:
""" """
Prompt the user to select the GPU driver Prompt the user to select the graphical accelerator in their system
This does not validate user's choices (yet), but only offers choices
valid for the platform.
CUDA is the fallback.
We may be able to detect the GPU driver by shelling out to `modprobe` or `lspci`,
but this is not yet supported or reliable. Also, some users may have exotic preferences.
""" """
if ARCH == "arm64" and OS != "Darwin": if ARCH == "arm64" and OS != "Darwin":
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.") print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
return GpuType.CPU return "cpu"
nvidia = ( nvidia = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)", "an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
GpuType.CUDA, "cuda",
) )
nvidia_with_dml = ( nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA", "an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
GpuType.CUDA_AND_DML, "cuda_and_dml",
) )
amd = ( amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)", "an [gold1 b]AMD[/] GPU (using ROCm™)",
GpuType.ROCM, "rocm",
) )
cpu = ( cpu = (
"Do not install any GPU support, use CPU for generation (slow)", "no compatible GPU, or specifically prefer to use the CPU",
GpuType.CPU, "cpu",
) )
autodetect = ( idk = (
"I'm not sure what to choose", "I'm not sure what to choose",
GpuType.AUTODETECT, "idk",
) )
options = []
if OS == "Windows": if OS == "Windows":
options = [nvidia, nvidia_with_dml, cpu] options = [nvidia, nvidia_with_dml, cpu]
if OS == "Linux": if OS == "Linux":
@ -269,7 +230,7 @@ def select_gpu() -> GpuType:
return options[0][1] return options[0][1]
# "I don't know" is always added the last option # "I don't know" is always added the last option
options.append(autodetect) # type: ignore options.append(idk)
options = {str(i): opt for i, opt in enumerate(options, 1)} options = {str(i): opt for i, opt in enumerate(options, 1)}
@ -304,9 +265,9 @@ def select_gpu() -> GpuType:
), ),
) )
if options[choice][1] is GpuType.AUTODETECT: if options[choice][1] == "idk":
console.print( console.print(
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types." "No problem. We will try to install a version that [i]should[/i] be compatible. :crossed_fingers:"
) )
return options[choice][1] return options[choice][1]
@ -330,7 +291,7 @@ def windows_long_paths_registry() -> None:
""" """
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code: with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit") syntax = Syntax(code.read(), line_numbers=True)
console.print( console.print(
Panel( Panel(
@ -340,7 +301,7 @@ def windows_long_paths_registry() -> None:
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.", "We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
"", "",
"This is the change that will be applied:", "This is the change that will be applied:",
str(syntax), syntax,
] ]
) )
), ),
@ -379,7 +340,7 @@ def introduction() -> None:
console.line(2) console.line(2)
def _platform_specific_help() -> Text | None: def _platform_specific_help() -> str:
if OS == "Darwin": if OS == "Darwin":
text = Text.from_markup( text = Text.from_markup(
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/].""" """[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
@ -393,5 +354,5 @@ def _platform_specific_help() -> Text | None:
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]""" [deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
) )
else: else:
return text = ""
return text return text

View File

@ -15,7 +15,7 @@ echo 4. Download and install models
echo 5. Change InvokeAI startup options echo 5. Change InvokeAI startup options
echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 7. Open the developer console echo 7. Open the developer console
echo 8. Update InvokeAI (DEPRECATED - please use the installer) echo 8. Update InvokeAI
echo 9. Run the InvokeAI image database maintenance script echo 9. Run the InvokeAI image database maintenance script
echo 10. Command-line help echo 10. Command-line help
echo Q - Quit echo Q - Quit
@ -52,10 +52,8 @@ IF /I "%choice%" == "1" (
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment *** echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k call cmd /k
) ELSE IF /I "%choice%" == "8" ( ) ELSE IF /I "%choice%" == "8" (
echo UPDATING FROM WITHIN THE APP IS BEING DEPRECATED. echo Running invokeai-update...
echo Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation. python -m invokeai.frontend.install.invokeai_update
timeout 4
python -m invokeai.frontend.install.invokeai_update
) ELSE IF /I "%choice%" == "9" ( ) ELSE IF /I "%choice%" == "9" (
echo Running the db maintenance script... echo Running the db maintenance script...
python .venv\Scripts\invokeai-db-maintenance.exe python .venv\Scripts\invokeai-db-maintenance.exe
@ -79,3 +77,4 @@ pause
:ending :ending
exit /b exit /b

View File

@ -90,9 +90,7 @@ do_choice() {
;; ;;
8) 8)
clear clear
printf "UPDATING FROM WITHIN THE APP IS BEING DEPRECATED\n" printf "Update InvokeAI\n"
printf "Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.\n"
sleep 4
python -m invokeai.frontend.install.invokeai_update python -m invokeai.frontend.install.invokeai_update
;; ;;
9) 9)
@ -124,7 +122,7 @@ do_dialog() {
5 "Change InvokeAI startup options" 5 "Change InvokeAI startup options"
6 "Re-run the configure script to fix a broken install or to complete a major upgrade" 6 "Re-run the configure script to fix a broken install or to complete a major upgrade"
7 "Open the developer console" 7 "Open the developer console"
8 "Update InvokeAI (DEPRECATED - please use the installer)" 8 "Update InvokeAI"
9 "Run the InvokeAI image database maintenance script" 9 "Run the InvokeAI image database maintenance script"
10 "Command-line help" 10 "Command-line help"
) )

View File

@ -0,0 +1,72 @@
@echo off
setlocal EnableExtensions EnableDelayedExpansion
PUSHD "%~dp0"
set INVOKE_AI_VERSION=latest
set arg=%1
if "%arg%" neq "" (
if "%arg:~0,2%" equ "/?" (
echo Usage: update.bat ^<release name or branch^>
echo Updates InvokeAI to use the indicated version of the code base.
echo Find the version or branch for the release you want, and pass it as the argument.
echo For example '.\update.bat v2.2.5' for release 2.2.5.
echo '.\update.bat main' for the latest development version
echo.
echo If no argument provided then will install the most recent release, equivalent to
echo '.\update.bat latest'
exit /b
) else (
set INVOKE_AI_VERSION=%arg%
)
)
set INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/!INVOKE_AI_VERSION!.zip"
set INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/!INVOKE_AI_VERSION!/environments-and-requirements/requirements-base.txt
set INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
call curl -I "%INVOKE_AI_DEP%" -fs >.tmp.out
if %errorlevel% neq 0 (
echo '!INVOKE_AI_VERSION!' is not a known branch name or tag. Please check the version and try again.
echo "Press any key to continue"
pause
exit /b
)
del .tmp.out
echo This script will update InvokeAI and all its dependencies to !INVOKE_AI_SRC!.
echo If you do not want to do this, press control-C now!
pause
call curl -L "%INVOKE_AI_DEP%" > environments-and-requirements/requirements-base.txt
call curl -L "%INVOKE_AI_MODELS%" > configs/INITIAL_MODELS.yaml
call .venv\Scripts\activate.bat
call .venv\Scripts\python -mpip install -r requirements.txt
if %errorlevel% neq 0 (
echo Installation of requirements failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
call .venv\Scripts\python -mpip install !INVOKE_AI_SRC!
if %errorlevel% neq 0 (
echo Installation of InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
pause
exit /b
)
@rem call .venv\Scripts\invokeai-configure --root=.
@rem if %errorlevel% neq 0 (
@rem echo Configuration InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
@rem pause
@rem exit /b
@rem )
echo InvokeAI has been updated to '%INVOKE_AI_VERSION%'
echo "Press any key to continue"
pause
endlocal

View File

@ -0,0 +1,58 @@
#!/usr/bin/env bash
set -eu
if [ $# -ge 1 ] && [ "${1:0:2}" == "-h" ]; then
echo "Usage: update.sh <release>"
echo "Updates InvokeAI to use the indicated version of the code base."
echo "Find the version or branch for the release you want, and pass it as the argument."
echo "For example: update.sh v2.2.5 for release 2.2.5."
echo " update.sh main for the current development version."
echo ""
echo "If no argument provided then will install the version tagged with 'latest', equivalent to"
echo "update.sh latest"
exit -1
fi
INVOKE_AI_VERSION=${1:-latest}
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/$INVOKE_AI_VERSION.zip"
INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/environments-and-requirements/requirements-base.txt
INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
# ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname "$0")
cd "$scriptdir"
function _err_exit {
if test "$1" -ne 0
then
echo "Something went wrong while installing InvokeAI and/or its requirements."
echo "Update cannot continue. Please report this error to https://github.com/invoke-ai/InvokeAI/issues"
echo -e "Error code $1; Error caught was '$2'"
read -p "Press any key to exit..."
exit
fi
}
if ! curl -I "$INVOKE_AI_DEP" -fs >/dev/null; then
echo \'$INVOKE_AI_VERSION\' is not a known branch name or tag. Please check the version and try again.
exit
fi
echo This script will update InvokeAI and all its dependencies to version \'$INVOKE_AI_VERSION\'.
echo If you do not want to do this, press control-C now!
read -p "Press any key to continue, or CTRL-C to exit..."
curl -L "$INVOKE_AI_DEP" > environments-and-requirements/requirements-base.txt
curl -L "$INVOKE_AI_MODELS" > configs/INITIAL_MODELS.yaml
. .venv/bin/activate
./.venv/bin/python -mpip install -r requirements.txt
_err_exit $? "The pip program failed to install InvokeAI's requirements."
./.venv/bin/python -mpip install $INVOKE_AI_SRC
_err_exit $? "The pip program failed to install InvokeAI."
echo InvokeAI updated to \'$INVOKE_AI_VERSION\'

View File

@ -2,12 +2,7 @@
from logging import Logger from logging import Logger
import torch
from invokeai.app.services.object_serializer.object_serializer_disk import ObjectSerializerDisk
from invokeai.app.services.object_serializer.object_serializer_forward_cache import ObjectSerializerForwardCache
from invokeai.app.services.shared.sqlite.sqlite_util import init_db from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__ from invokeai.version.invokeai_version import __version__
@ -15,22 +10,27 @@ from ..services.board_image_records.board_image_records_sqlite import SqliteBoar
from ..services.board_images.board_images_default import BoardImagesService from ..services.board_images.board_images_default import BoardImagesService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
from ..services.boards.boards_default import BoardService from ..services.boards.boards_default import BoardService
from ..services.bulk_download.bulk_download_default import BulkDownloadService
from ..services.config import InvokeAIAppConfig from ..services.config import InvokeAIAppConfig
from ..services.download import DownloadQueueService
from ..services.image_files.image_files_disk import DiskImageFileStorage from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from ..services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
from ..services.invoker import Invoker from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
from ..services.model_install import ModelInstallService
from ..services.model_manager.model_manager_default import ModelManagerService from ..services.model_manager.model_manager_default import ModelManagerService
from ..services.model_metadata import ModelMetadataStoreSQL
from ..services.model_records import ModelRecordServiceSQL from ..services.model_records import ModelRecordServiceSQL
from ..services.names.names_default import SimpleNameService from ..services.names.names_default import SimpleNameService
from ..services.session_processor.session_processor_default import DefaultSessionProcessor from ..services.session_processor.session_processor_default import DefaultSessionProcessor
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.urls.urls_default import LocalUrlService from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService from .events import FastAPIEventService
@ -61,15 +61,12 @@ class ApiDependencies:
invoker: Invoker invoker: Invoker
@staticmethod @staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None: def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
logger.info(f"InvokeAI version {__version__}") logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}") logger.info(f"Root directory = {str(config.root_path)}")
logger.debug(f"Internet connectivity is {config.internet_available}") logger.debug(f"Internet connectivity is {config.internet_available}")
output_folder = config.output_path output_folder = config.output_path
if output_folder is None:
raise ValueError("Output folder is not set")
image_files = DiskImageFileStorage(f"{output_folder}/images") image_files = DiskImageFileStorage(f"{output_folder}/images")
db = init_db(config=config, logger=logger, image_files=image_files) db = init_db(config=config, logger=logger, image_files=image_files)
@ -82,26 +79,21 @@ class ApiDependencies:
board_records = SqliteBoardRecordStorage(db=db) board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService() boards = BoardService()
events = FastAPIEventService(event_handler_id) events = FastAPIEventService(event_handler_id)
bulk_download = BulkDownloadService() graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_records = SqliteImageRecordStorage(db=db) image_records = SqliteImageRecordStorage(db=db)
images = ImageService() images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size) invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
tensors = ObjectSerializerForwardCache( latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True) model_manager = ModelManagerService(config, logger)
) model_record_service = ModelRecordServiceSQL(db=db)
conditioning = ObjectSerializerForwardCache( model_install_service = ModelInstallService(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True) app_config=config, record_store=model_record_service, event_bus=events
)
download_queue_service = DownloadQueueService(event_bus=events)
model_metadata_service = ModelMetadataStoreSQL(db=db)
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,
model_record_service=ModelRecordServiceSQL(db=db, metadata_store=model_metadata_service),
download_queue=download_queue_service,
events=events,
) )
names = SimpleNameService() names = SimpleNameService()
performance_statistics = InvocationStatsService() performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
queue = MemoryInvocationQueue()
session_processor = DefaultSessionProcessor() session_processor = DefaultSessionProcessor()
session_queue = SqliteSessionQueue(db=db) session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService() urls = LocalUrlService()
@ -112,30 +104,35 @@ class ApiDependencies:
board_images=board_images, board_images=board_images,
board_records=board_records, board_records=board_records,
boards=boards, boards=boards,
bulk_download=bulk_download,
configuration=configuration, configuration=configuration,
events=events, events=events,
graph_execution_manager=graph_execution_manager,
graph_library=graph_library,
image_files=image_files, image_files=image_files,
image_records=image_records, image_records=image_records,
images=images, images=images,
invocation_cache=invocation_cache, invocation_cache=invocation_cache,
latents=latents,
logger=logger, logger=logger,
model_manager=model_manager, model_manager=model_manager,
download_queue=download_queue_service, model_records=model_record_service,
model_install=model_install_service,
names=names, names=names,
performance_statistics=performance_statistics, performance_statistics=performance_statistics,
processor=processor,
queue=queue,
session_processor=session_processor, session_processor=session_processor,
session_queue=session_queue, session_queue=session_queue,
urls=urls, urls=urls,
workflow_records=workflow_records, workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
) )
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services) ApiDependencies.invoker = Invoker(services)
db.clean() db.clean()
@staticmethod @staticmethod
def shutdown() -> None: def shutdown():
if ApiDependencies.invoker: if ApiDependencies.invoker:
ApiDependencies.invoker.stop() ApiDependencies.invoker.stop()

View File

@ -1,28 +0,0 @@
from typing import Any
from starlette.responses import Response
from starlette.staticfiles import StaticFiles
class NoCacheStaticFiles(StaticFiles):
"""
This class is used to override the default caching behavior of starlette for static files,
ensuring we *never* cache static files. It modifies the file response headers to strictly
never cache the files.
Static files include the javascript bundles, fonts, locales, and some images. Generated
images are not included, as they are served by a router.
"""
def __init__(self, *args: Any, **kwargs: Any):
self.cachecontrol = "max-age=0, no-cache, no-store, , must-revalidate"
self.pragma = "no-cache"
self.expires = "0"
super().__init__(*args, **kwargs)
def file_response(self, *args: Any, **kwargs: Any) -> Response:
resp = super().file_response(*args, **kwargs)
resp.headers.setdefault("Cache-Control", self.cachecontrol)
resp.headers.setdefault("Pragma", self.pragma)
resp.headers.setdefault("Expires", self.expires)
return resp

View File

@ -1,111 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for the download queue."""
from typing import List, Optional
from fastapi import Body, Path, Response
from fastapi.routing import APIRouter
from pydantic.networks import AnyHttpUrl
from starlette.exceptions import HTTPException
from invokeai.app.services.download import (
DownloadJob,
UnknownJobIDException,
)
from ..dependencies import ApiDependencies
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
@download_queue_router.get(
"/",
operation_id="list_downloads",
)
async def list_downloads() -> List[DownloadJob]:
"""Get a list of active and inactive jobs."""
queue = ApiDependencies.invoker.services.download_queue
return queue.list_jobs()
@download_queue_router.patch(
"/",
operation_id="prune_downloads",
responses={
204: {"description": "All completed jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_downloads() -> Response:
"""Prune completed and errored jobs."""
queue = ApiDependencies.invoker.services.download_queue
queue.prune_jobs()
return Response(status_code=204)
@download_queue_router.post(
"/i/",
operation_id="download",
)
async def download(
source: AnyHttpUrl = Body(description="download source"),
dest: str = Body(description="download destination"),
priority: int = Body(default=10, description="queue priority"),
access_token: Optional[str] = Body(default=None, description="token for authorization to download"),
) -> DownloadJob:
"""Download the source URL to the file or directory indicted in dest."""
queue = ApiDependencies.invoker.services.download_queue
return queue.download(source, Path(dest), priority, access_token)
@download_queue_router.get(
"/i/{id}",
operation_id="get_download_job",
responses={
200: {"description": "Success"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def get_download_job(
id: int = Path(description="ID of the download job to fetch."),
) -> DownloadJob:
"""Get a download job using its ID."""
try:
job = ApiDependencies.invoker.services.download_queue.id_to_job(id)
return job
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i/{id}",
operation_id="cancel_download_job",
responses={
204: {"description": "Job has been cancelled"},
404: {"description": "The requested download JobID could not be found"},
},
)
async def cancel_download_job(
id: int = Path(description="ID of the download job to cancel."),
) -> Response:
"""Cancel a download job using its ID."""
try:
queue = ApiDependencies.invoker.services.download_queue
job = queue.id_to_job(id)
queue.cancel_job(job)
return Response(status_code=204)
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
@download_queue_router.delete(
"/i",
operation_id="cancel_all_download_jobs",
responses={
204: {"description": "Download jobs have been cancelled"},
},
)
async def cancel_all_download_jobs() -> Response:
"""Cancel all download jobs."""
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
return Response(status_code=204)

View File

@ -2,13 +2,13 @@ import io
import traceback import traceback
from typing import Optional from typing import Optional
from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request, Response, UploadFile from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse from fastapi.responses import FileResponse
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field, ValidationError from pydantic import BaseModel, Field, ValidationError
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.shared.pagination import OffsetPaginatedResults
@ -375,67 +375,16 @@ async def unstar_images_in_list(
class ImagesDownloaded(BaseModel): class ImagesDownloaded(BaseModel):
response: Optional[str] = Field( response: Optional[str] = Field(
default=None, description="The message to display to the user when images begin downloading" description="If defined, the message to display to the user when images begin downloading"
)
bulk_download_item_name: Optional[str] = Field(
default=None, description="The name of the bulk download item for which events will be emitted"
) )
@images_router.post( @images_router.post("/download", operation_id="download_images_from_list", response_model=ImagesDownloaded)
"/download", operation_id="download_images_from_list", response_model=ImagesDownloaded, status_code=202
)
async def download_images_from_list( async def download_images_from_list(
background_tasks: BackgroundTasks, image_names: list[str] = Body(description="The list of names of images to download", embed=True),
image_names: Optional[list[str]] = Body(
default=None, description="The list of names of images to download", embed=True
),
board_id: Optional[str] = Body( board_id: Optional[str] = Body(
default=None, description="The board from which image should be downloaded", embed=True default=None, description="The board from which image should be downloaded from", embed=True
), ),
) -> ImagesDownloaded: ) -> ImagesDownloaded:
if (image_names is None or len(image_names) == 0) and board_id is None: # return ImagesDownloaded(response="Your images are downloading")
raise HTTPException(status_code=400, detail="No images or board id specified.") raise HTTPException(status_code=501, detail="Endpoint is not yet implemented")
bulk_download_item_id: str = ApiDependencies.invoker.services.bulk_download.generate_item_id(board_id)
background_tasks.add_task(
ApiDependencies.invoker.services.bulk_download.handler,
image_names,
board_id,
bulk_download_item_id,
)
return ImagesDownloaded(bulk_download_item_name=bulk_download_item_id + ".zip")
@images_router.api_route(
"/download/{bulk_download_item_name}",
methods=["GET"],
operation_id="get_bulk_download_item",
response_class=Response,
responses={
200: {
"description": "Return the complete bulk download item",
"content": {"application/zip": {}},
},
404: {"description": "Image not found"},
},
)
async def get_bulk_download_item(
background_tasks: BackgroundTasks,
bulk_download_item_name: str = Path(description="The bulk_download_item_name of the bulk download item to get"),
) -> FileResponse:
"""Gets a bulk download zip file"""
try:
path = ApiDependencies.invoker.services.bulk_download.get_path(bulk_download_item_name)
response = FileResponse(
path,
media_type="application/zip",
filename=bulk_download_item_name,
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
background_tasks.add_task(ApiDependencies.invoker.services.bulk_download.delete, bulk_download_item_name)
return response
except Exception:
raise HTTPException(status_code=404)

View File

@ -1,751 +0,0 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
import pathlib
import shutil
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional, Set
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
ModelRecordOrderBy,
ModelSummary,
UnknownModelException,
)
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
MainCheckpointConfig,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
from invokeai.backend.model_manager.search import ModelSearch
from ..dependencies import ApiDependencies
model_manager_router = APIRouter(prefix="/v2/models", tags=["model_manager"])
class ModelsList(BaseModel):
"""Return list of configs."""
models: List[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
class ModelTagSet(BaseModel):
"""Return tags for a set of models."""
key: str
name: str
author: str
tags: Set[str]
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
##############################################################################
example_model_config = {
"path": "string",
"name": "string",
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config": "string",
"key": "string",
"original_hash": "string",
"current_hash": "string",
"description": "string",
"source": "string",
"last_modified": 0,
"vae": "string",
"variant": "normal",
"prediction_type": "epsilon",
"repo_variant": "fp16",
"upcast_attention": False,
"ztsnr_training": False,
}
example_model_input = {
"path": "/path/to/model",
"name": "model_name",
"base": "sd-1",
"type": "main",
"format": "checkpoint",
"config": "configs/stable-diffusion/v1-inference.yaml",
"description": "Model description",
"vae": None,
"variant": "normal",
}
example_model_metadata = {
"name": "ip_adapter_sd_image_encoder",
"author": "InvokeAI",
"tags": [
"transformers",
"safetensors",
"clip_vision_model",
"endpoints_compatible",
"region:us",
"has_space",
"license:apache-2.0",
],
"files": [
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/README.md",
"path": "ip_adapter_sd_image_encoder/README.md",
"size": 628,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/config.json",
"path": "ip_adapter_sd_image_encoder/config.json",
"size": 560,
"sha256": None,
},
{
"url": "https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder/resolve/main/model.safetensors",
"path": "ip_adapter_sd_image_encoder/model.safetensors",
"size": 2528373448,
"sha256": "6ca9667da1ca9e0b0f75e46bb030f7e011f44f86cbfb8d5a36590fcd7507b030",
},
],
"type": "huggingface",
"id": "InvokeAI/ip_adapter_sd_image_encoder",
"tag_dict": {"license": "apache-2.0"},
"last_modified": "2023-09-23T17:33:25Z",
}
##############################################################################
# ROUTES
##############################################################################
@model_manager_router.get(
"/",
operation_id="list_model_records",
)
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[ModelFormat] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_manager.store
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
return ModelsList(models=found_models)
@model_manager_router.get(
"/get_by_attrs",
operation_id="get_model_records_by_attrs",
response_model=AnyModelConfig,
)
async def get_model_records_by_attrs(
name: str = Query(description="The name of the model"),
type: ModelType = Query(description="The type of the model"),
base: BaseModelType = Query(description="The base model of the model"),
) -> AnyModelConfig:
"""Gets a model by its attributes. The main use of this route is to provide backwards compatibility with the old
model manager, which identified models by a combination of name, base and type."""
configs = ApiDependencies.invoker.services.model_manager.store.search_by_attr(
base_model=base, model_type=type, model_name=name
)
if not configs:
raise HTTPException(status_code=404, detail="No model found with these attributes")
return configs[0]
@model_manager_router.get(
"/i/{key}",
operation_id="get_model_record",
responses={
200: {
"description": "The model configuration was retrieved successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
},
)
async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
return config
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.get("/summary", operation_id="list_model_summary")
async def list_model_summary(
page: int = Query(default=0, description="The page to get"),
per_page: int = Query(default=10, description="The number of models per page"),
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
) -> PaginatedResults[ModelSummary]:
"""Gets a page of model summary data."""
record_store = ApiDependencies.invoker.services.model_manager.store
results: PaginatedResults[ModelSummary] = record_store.list_models(page=page, per_page=per_page, order_by=order_by)
return results
@model_manager_router.get(
"/i/{key}/metadata",
operation_id="get_model_metadata",
responses={
200: {
"description": "The model metadata was retrieved successfully",
"content": {"application/json": {"example": example_model_metadata}},
},
400: {"description": "Bad request"},
},
)
async def get_model_metadata(
key: str = Path(description="Key of the model repo metadata to fetch."),
) -> Optional[AnyModelRepoMetadata]:
"""Get a model metadata object."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Optional[AnyModelRepoMetadata] = record_store.get_metadata(key)
return result
@model_manager_router.get(
"/tags",
operation_id="list_tags",
)
async def list_tags() -> Set[str]:
"""Get a unique set of all the model tags."""
record_store = ApiDependencies.invoker.services.model_manager.store
result: Set[str] = record_store.list_tags()
return result
class FoundModel(BaseModel):
path: str = Field(description="Path to the model")
is_installed: bool = Field(description="Whether or not the model is already installed")
@model_manager_router.get(
"/scan_folder",
operation_id="scan_for_models",
responses={
200: {"description": "Directory scanned successfully"},
400: {"description": "Invalid directory path"},
},
status_code=200,
response_model=List[FoundModel],
)
async def scan_for_models(
scan_path: str = Query(description="Directory path to search for models", default=None),
) -> List[FoundModel]:
path = pathlib.Path(scan_path)
if not scan_path or not path.is_dir():
raise HTTPException(
status_code=400,
detail=f"The search path '{scan_path}' does not exist or is not directory",
)
search = ModelSearch()
try:
found_model_paths = search.search(path)
models_path = ApiDependencies.invoker.services.configuration.models_path
# If the search path includes the main models directory, we need to exclude core models from the list.
# TODO(MM2): Core models should be handled by the model manager so we can determine if they are installed
# without needing to crawl the filesystem.
core_models_path = pathlib.Path(models_path, "core").resolve()
non_core_model_paths = [p for p in found_model_paths if not p.is_relative_to(core_models_path)]
installed_models = ApiDependencies.invoker.services.model_manager.store.search_by_attr()
resolved_installed_model_paths: list[str] = []
installed_model_sources: list[str] = []
# This call lists all installed models.
for model in installed_models:
path = pathlib.Path(model.path)
# If the model has a source, we need to add it to the list of installed sources.
if model.source:
installed_model_sources.append(model.source)
# If the path is not absolute, that means it is in the app models directory, and we need to join it with
# the models path before resolving.
if not path.is_absolute():
resolved_installed_model_paths.append(str(pathlib.Path(models_path, path).resolve()))
continue
resolved_installed_model_paths.append(str(path.resolve()))
scan_results: list[FoundModel] = []
# Check if the model is installed by comparing the resolved paths, appending to the scan result.
for p in non_core_model_paths:
path = str(p)
is_installed = path in resolved_installed_model_paths or path in installed_model_sources
found_model = FoundModel(path=path, is_installed=is_installed)
scan_results.append(found_model)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"An error occurred while searching the directory: {e}",
)
return scan_results
@model_manager_router.get(
"/tags/search",
operation_id="search_by_metadata_tags",
)
async def search_by_metadata_tags(
tags: Set[str] = Query(default=None, description="Tags to search for"),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_manager.store
results = record_store.search_by_metadata_tag(tags)
return ModelsList(models=results)
@model_manager_router.patch(
"/i/{key}",
operation_id="update_model_record",
responses={
200: {
"description": "The model was updated successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
info: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
try:
model_response: AnyModelConfig = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
@model_manager_router.delete(
"/i/{key}",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
installer.delete(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.post(
"/i/",
operation_id="add_model_record",
responses={
201: {
"description": "The model added successfully",
"content": {"application/json": {"example": example_model_config}},
},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=201,
)
async def add_model_record(
config: Annotated[
AnyModelConfig, Body(description="Model config", discriminator="type", example=example_model_input)
],
) -> AnyModelConfig:
"""Add a model using the configuration information appropriate for its type."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_manager.store
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# now fetch it out
result: AnyModelConfig = record_store.get_model(config.key)
return result
@model_manager_router.post(
"/install",
operation_id="install_model",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def install_model(
source: str = Query(description="Model source to install, can be a local path, repo_id, or remote URL"),
# TODO(MM2): Can we type this?
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
example={"name": "string", "description": "string"},
),
access_token: Optional[str] = None,
) -> ModelInstallJob:
"""Install a model using a string identifier.
`source` can be any of the following.
1. A path on the local filesystem ('C:\\users\\fred\\model.safetensors')
2. A Url pointing to a single downloadable model file
3. A HuggingFace repo_id with any of the following formats:
- model/name
- model/name:fp16:vae
- model/name::vae -- use default precision
- model/name:fp16:path/to/model.safetensors
- model/name::path/to/model.safetensors
`config` is an optional dict containing model configuration values that will override
the ones that are probed automatically.
`access_token` is an optional access token for use with Urls that require
authentication.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
See the documentation for `import_model_record` for more information on
interpreting the job information returned by this route.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
result: ModelInstallJob = installer.heuristic_import(
source=source,
config=config,
access_token=access_token,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_manager_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""Return the list of model install jobs.
Install jobs have a numeric `id`, a `status`, and other fields that provide information on
the nature of the job and its progress. The `status` is one of:
* "waiting" -- Job is waiting in the queue to run
* "downloading" -- Model file(s) are downloading
* "running" -- Model has downloaded and the model probing and registration process is running
* "completed" -- Installation completed successfully
* "error" -- An error occurred. Details will be in the "error_type" and "error" fields.
* "cancelled" -- Job was cancelled before completion.
Once completed, information about the model such as its size, base
model, type, and metadata can be retrieved from the `config_out`
field. For multi-file models such as diffusers, information on individual files
can be retrieved from `download_parts`.
See the example and schema below for more information.
"""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_manager.install.list_jobs()
return jobs
@model_manager_router.get(
"/import/{id}",
operation_id="get_model_install_job",
responses={
200: {"description": "Success"},
404: {"description": "No such job"},
},
)
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
"""
Return model install job corresponding to the given source. See the documentation for 'List Model Install Jobs'
for information on the format of the return value.
"""
try:
result: ModelInstallJob = ApiDependencies.invoker.services.model_manager.install.get_job_by_id(id)
return result
except ValueError as e:
raise HTTPException(status_code=404, detail=str(e))
@model_manager_router.delete(
"/import/{id}",
operation_id="cancel_model_install_job",
responses={
201: {"description": "The job was cancelled successfully"},
415: {"description": "No such job"},
},
status_code=201,
)
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
"""Cancel the model install job(s) corresponding to the given job ID."""
installer = ApiDependencies.invoker.services.model_manager.install
try:
job = installer.get_job_by_id(id)
except ValueError as e:
raise HTTPException(status_code=415, detail=str(e))
installer.cancel_job(job)
@model_manager_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""Prune all completed and errored jobs from the install job list."""
ApiDependencies.invoker.services.model_manager.install.prune_jobs()
return Response(status_code=204)
@model_manager_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories.
Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_manager.install.sync_to_config()
return Response(status_code=204)
@model_manager_router.put(
"/convert/{key}",
operation_id="convert_model",
responses={
200: {
"description": "Model converted successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
409: {"description": "There is already a model registered at this location"},
},
)
async def convert_model(
key: str = Path(description="Unique key of the safetensors main model to convert to diffusers format."),
) -> AnyModelConfig:
"""
Permanently convert a model into diffusers format, replacing the safetensors version.
Note that during the conversion process the key and model hash will change.
The return value is the model configuration for the converted model.
"""
model_manager = ApiDependencies.invoker.services.model_manager
logger = ApiDependencies.invoker.services.logger
loader = ApiDependencies.invoker.services.model_manager.load
store = ApiDependencies.invoker.services.model_manager.store
installer = ApiDependencies.invoker.services.model_manager.install
try:
model_config = store.get_model(key)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
if not isinstance(model_config, MainCheckpointConfig):
logger.error(f"The model with key {key} is not a main checkpoint model.")
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
model_manager.load_model_by_config(model_config, submodel_type=SubModelType.Scheduler)
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)
assert cache_path.exists()
# temporarily rename the original safetensors file so that there is no naming conflict
original_name = model_config.name
model_config.name = f"{original_name}.DELETE"
store.update_model(key, config=model_config)
# install the diffusers
try:
new_key = installer.install_path(
cache_path,
config={
"name": original_name,
"description": model_config.description,
"original_hash": model_config.original_hash,
"source": model_config.source,
},
)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# get the original metadata
if orig_metadata := store.get_metadata(key):
store.metadata_store.add_metadata(new_key, orig_metadata)
# delete the original safetensors file
installer.delete(key)
# delete the cached version
shutil.rmtree(cache_path)
# return the config record for the new diffusers directory
new_config: AnyModelConfig = store.get_model(new_key)
return new_config
@model_manager_router.put(
"/merge",
operation_id="merge",
responses={
200: {
"description": "Model converted successfully",
"content": {"application/json": {"example": example_model_config}},
},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
409: {"description": "There is already a model registered at this location"},
},
)
async def merge(
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
force: bool = Body(
description="Force merging of models created with different versions of diffusers",
default=False,
),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> AnyModelConfig:
"""
Merge diffusers models. The process is controlled by a set parameters provided in the body of the request.
```
Argument Description [default]
-------- ----------------------
keys List of 2-3 model keys to merge together. All models must use the same base type.
merged_model_name Name for the merged model [Concat model names]
alpha Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
force If true, force the merge even if the models were generated by different versions of the diffusers library [False]
interp Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
merge_dest_directory Specify a directory to store the merged model in [models directory]
```
"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
installer = ApiDependencies.invoker.services.model_manager.install
merger = ModelMerger(installer)
model_names = [installer.record_store.get_model(x).name for x in keys]
response = merger.merge_diffusion_models_and_save(
model_keys=keys,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory=dest,
)
except UnknownModelException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{keys}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -0,0 +1,322 @@
# Copyright (c) 2023 Lincoln D. Stein
"""FastAPI route for model configuration records."""
from hashlib import sha1
from random import randbytes
from typing import Any, Dict, List, Optional
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import (
DuplicateModelException,
InvalidModelException,
UnknownModelException,
)
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelType,
)
from ..dependencies import ApiDependencies
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
class ModelsList(BaseModel):
"""Return list of configs."""
models: list[AnyModelConfig]
model_config = ConfigDict(use_enum_values=True)
@model_records_router.get(
"/",
operation_id="list_model_records",
)
async def list_model_records(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
model_format: Optional[str] = Query(
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
),
) -> ModelsList:
"""Get a list of models."""
record_store = ApiDependencies.invoker.services.model_records
found_models: list[AnyModelConfig] = []
if base_models:
for base_model in base_models:
found_models.extend(
record_store.search_by_attr(
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
)
)
else:
found_models.extend(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
return ModelsList(models=found_models)
@model_records_router.get(
"/i/{key}",
operation_id="get_model_record",
responses={
200: {"description": "Success"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
},
)
async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_records
try:
return record_store.get_model(key)
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.patch(
"/i/{key}",
operation_id="update_model_record",
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=AnyModelConfig,
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
info: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
try:
model_response = record_store.update_model(key, config=info)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
@model_records_router.delete(
"/i/{key}",
operation_id="del_model_record",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
)
async def del_model_record(
key: str = Path(description="Unique key of model to remove from model registry."),
) -> Response:
"""
Delete model record from database.
The configuration record will be removed. The corresponding weights files will be
deleted as well if they reside within the InvokeAI "models" directory.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
installer.delete(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204)
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@model_records_router.post(
"/i/",
operation_id="add_model_record",
responses={
201: {"description": "The model added successfully"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
},
status_code=201,
)
async def add_model_record(
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
) -> AnyModelConfig:
"""
Add a model using the configuration information appropriate for its type.
"""
logger = ApiDependencies.invoker.services.logger
record_store = ApiDependencies.invoker.services.model_records
if config.key == "<NOKEY>":
config.key = sha1(randbytes(100)).hexdigest()
logger.info(f"Created model {config.key} for {config.name}")
try:
record_store.add_model(config.key, config)
except DuplicateModelException as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
# now fetch it out
return record_store.get_model(config.key)
@model_records_router.post(
"/import",
operation_id="import_model_record",
responses={
201: {"description": "The model imported successfully"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
)
async def import_model(
source: ModelSource,
config: Optional[Dict[str, Any]] = Body(
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
default=None,
),
) -> ModelInstallJob:
"""Add a model using its local path, repo_id, or remote URL.
Models will be downloaded, probed, configured and installed in a
series of background threads. The return object has `status` attribute
that can be used to monitor progress.
The source object is a discriminated Union of LocalModelSource,
HFModelSource and URLModelSource. Set the "type" field to the
appropriate value:
* To install a local path using LocalModelSource, pass a source of form:
`{
"type": "local",
"path": "/path/to/model",
"inplace": false
}`
The "inplace" flag, if true, will register the model in place in its
current filesystem location. Otherwise, the model will be copied
into the InvokeAI models directory.
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
`{
"type": "hf",
"repo_id": "stabilityai/stable-diffusion-2.0",
"variant": "fp16",
"subfolder": "vae",
"access_token": "f5820a918aaf01"
}`
The `variant`, `subfolder` and `access_token` fields are optional.
* To install a remote model using an arbitrary URL, pass:
`{
"type": "url",
"url": "http://www.civitai.com/models/123456",
"access_token": "f5820a918aaf01"
}`
The `access_token` field is optonal
The model's configuration record will be probed and filled in
automatically. To override the default guesses, pass "metadata"
with a Dict containing the attributes you wish to override.
Installation occurs in the background. Either use list_model_install_jobs()
to poll for completion, or listen on the event bus for the following events:
"model_install_started"
"model_install_completed"
"model_install_error"
On successful completion, the event's payload will contain the field "key"
containing the installed ID of the model. On an error, the event's payload
will contain the fields "error_type" and "error" describing the nature of the
error and its traceback, respectively.
"""
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_install
result: ModelInstallJob = installer.import_model(
source=source,
config=config,
)
logger.info(f"Started installation of {source}")
except UnknownModelException as e:
logger.error(str(e))
raise HTTPException(status_code=424, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return result
@model_records_router.get(
"/import",
operation_id="list_model_install_jobs",
)
async def list_model_install_jobs() -> List[ModelInstallJob]:
"""
Return list of model install jobs.
If the optional 'source' argument is provided, then the list will be filtered
for partial string matches against the install source.
"""
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
return jobs
@model_records_router.patch(
"/import",
operation_id="prune_model_install_jobs",
responses={
204: {"description": "All completed and errored jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_model_install_jobs() -> Response:
"""
Prune all completed and errored jobs from the install job list.
"""
ApiDependencies.invoker.services.model_install.prune_jobs()
return Response(status_code=204)
@model_records_router.patch(
"/sync",
operation_id="sync_models_to_config",
responses={
204: {"description": "Model config record database resynced with files on disk"},
400: {"description": "Bad request"},
},
)
async def sync_models_to_config() -> Response:
"""
Traverse the models and autoimport directories. Model files without a corresponding
record in the database are added. Orphan records without a models file are deleted.
"""
ApiDependencies.invoker.services.model_install.sync_to_config()
return Response(status_code=204)

View File

@ -0,0 +1,427 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
import pathlib
from typing import Annotated, List, Literal, Optional, Union
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from starlette.exceptions import HTTPException
from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management import MergeInterpolationMethod
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS,
InvalidModelException,
ModelNotFoundException,
SchedulerPredictionType,
)
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
UpdateModelResponseValidator = TypeAdapter(UpdateModelResponse)
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelResponseValidator = TypeAdapter(ImportModelResponse)
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponseValidator = TypeAdapter(ConvertModelResponse)
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
model_config = ConfigDict(use_enum_values=True)
ModelsListValidator = TypeAdapter(ModelsList)
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList}},
)
async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
if base_models and len(base_models) > 0:
models_raw = []
for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = ModelsListValidator.validate_python({"models": models_raw})
return models
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code=200,
response_model=UpdateModelResponse,
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
# rename operation requested
if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model(
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=info.model_name,
new_base=info.base_model,
)
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes
model_name = info.model_name
base_model = info.base_model
new_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
if new_info.get("path") != previous_info.get(
"path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
# replace empty string values with None/null to avoid phenomenon of vae: ''
info_dict = info.model_dump()
info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()}
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info_dict,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = UpdateModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
except Exception as e:
logger.error(str(e))
raise HTTPException(status_code=400, detail=str(e))
return model_response
@models_router.post(
"/import",
operation_id="import_model",
responses={
201: {"description": "The model imported successfully"},
404: {"description": "The model could not be found"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse,
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
default=None,
),
) -> ImportModelResponse:
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
location = location.strip("\"' ")
items_to_import = {location}
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import=items_to_import,
prediction_type_helper=lambda x: prediction_types.get(prediction_type),
)
info = installed_models.get(location)
if not info:
logger.error("Import failed")
raise HTTPException(status_code=415)
logger.info(f"Successfully imported {location}, got {info}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, base_model=info.base_model, model_type=info.model_type
)
return ImportModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except InvalidModelException as e:
logger.error(str(e))
raise HTTPException(status_code=415)
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.post(
"/add",
operation_id="add_model",
responses={
201: {"description": "The model added successfully"},
404: {"description": "The model could not be found"},
424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse,
)
async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> ImportModelResponse:
"""Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.add_model(
info.model_name,
info.base_model,
info.model_type,
model_attributes=info.model_dump(),
)
logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type,
)
return ImportModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204,
response_model=None,
)
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
"""Delete Model"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.del_model(
model_name, base_model=base_model, model_type=model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
except ModelNotFoundException as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: {"description": "Model converted successfully"},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
},
status_code=200,
response_model=ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory"
),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model(
model_name,
base_model=base_model,
model_type=model_type,
convert_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type
)
response = ConvertModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.get(
"/search",
operation_id="search_for_models",
responses={
200: {"description": "Directory searched successfully"},
404: {"description": "Invalid directory path"},
},
status_code=200,
response_model=List[pathlib.Path],
)
async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models"),
) -> List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(
status_code=404,
detail=f"The search path '{search_path}' does not exist or is not directory",
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get(
"/ckpt_confs",
operation_id="list_ckpt_configs",
responses={
200: {"description": "paths retrieved successfully"},
},
status_code=200,
response_model=List[pathlib.Path],
)
async def list_ckpt_configs() -> List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@models_router.post(
"/sync",
operation_id="sync_to_config",
responses={
201: {"description": "synchronization successful"},
},
status_code=201,
response_model=bool,
)
async def sync_to_config() -> bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures."""
ApiDependencies.invoker.services.model_manager.sync_to_config()
return True
# There's some weird pydantic-fastapi behaviour that requires this to be a separate class
# TODO: After a few updates, see if it works inside the route operation handler?
class MergeModelsBody(BaseModel):
model_names: List[str] = Field(description="model name", min_length=2, max_length=3)
merged_model_name: Optional[str] = Field(description="Name of destination model")
alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5)
interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method")
force: Optional[bool] = Field(
description="Force merging of models created with different versions of diffusers",
default=False,
)
merge_dest_directory: Optional[str] = Field(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
)
model_config = ConfigDict(protected_namespaces=())
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: {"description": "Model converted successfully"},
400: {"description": "Incompatible models"},
404: {"description": "One or more models not found"},
},
status_code=200,
response_model=MergeModelResponse,
)
async def merge_models(
body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)],
base_model: BaseModelType = Path(description="Base model"),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(
f"Merging models: {body.model_names} into {body.merge_dest_directory or '<MODELS>'}/{body.merged_model_name}"
)
dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names=body.model_names,
base_model=base_model,
merged_model_name=body.merged_model_name or "+".join(body.model_names),
alpha=body.alpha,
interp=body.interp,
force=body.force,
merge_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
result.name,
base_model=base_model,
model_type=ModelType.Main,
)
response = ConvertModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{body.model_names}' not found",
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
return response

View File

@ -0,0 +1,276 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from fastapi import HTTPException, Path
from fastapi.routing import APIRouter
from ...services.shared.graph import GraphExecutionState
from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
# @session_router.post(
# "/",
# operation_id="create_session",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid json"},
# },
# deprecated=True,
# )
# async def create_session(
# queue_id: str = Query(default="", description="The id of the queue to associate the session with"),
# graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with"),
# ) -> GraphExecutionState:
# """Creates a new session, optionally initializing it with an invocation graph"""
# session = ApiDependencies.invoker.create_execution_state(queue_id=queue_id, graph=graph)
# return session
# @session_router.get(
# "/",
# operation_id="list_sessions",
# responses={200: {"model": PaginatedResults[GraphExecutionState]}},
# deprecated=True,
# )
# async def list_sessions(
# page: int = Query(default=0, description="The page of results to get"),
# per_page: int = Query(default=10, description="The number of results per page"),
# query: str = Query(default="", description="The query string to search for"),
# ) -> PaginatedResults[GraphExecutionState]:
# """Gets a list of sessions, optionally searching"""
# if query == "":
# result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page)
# else:
# result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page)
# return result
@session_router.get(
"/{session_id}",
operation_id="get_session",
responses={
200: {"model": GraphExecutionState},
404: {"description": "Session not found"},
},
)
async def get_session(
session_id: str = Path(description="The id of the session to get"),
) -> GraphExecutionState:
"""Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None:
raise HTTPException(status_code=404)
else:
return session
# @session_router.post(
# "/{session_id}/nodes",
# operation_id="add_node",
# responses={
# 200: {"model": str},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def add_node(
# session_id: str = Path(description="The id of the session"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The node to add"
# ),
# ) -> str:
# """Adds a node to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.add_node(node)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session.id
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.put(
# "/{session_id}/nodes/{node_path}",
# operation_id="update_node",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def update_node(
# session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node in the graph"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The new node"
# ),
# ) -> GraphExecutionState:
# """Updates a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.update_node(node_path, node)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.delete(
# "/{session_id}/nodes/{node_path}",
# operation_id="delete_node",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def delete_node(
# session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node to delete"),
# ) -> GraphExecutionState:
# """Deletes a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.delete_node(node_path)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.post(
# "/{session_id}/edges",
# operation_id="add_edge",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def add_edge(
# session_id: str = Path(description="The id of the session"),
# edge: Edge = Body(description="The edge to add"),
# ) -> GraphExecutionState:
# """Adds an edge to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# session.add_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# # TODO: the edge being in the path here is really ugly, find a better solution
# @session_router.delete(
# "/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}",
# operation_id="delete_edge",
# responses={
# 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def delete_edge(
# session_id: str = Path(description="The id of the session"),
# from_node_id: str = Path(description="The id of the node the edge is coming from"),
# from_field: str = Path(description="The field of the node the edge is coming from"),
# to_node_id: str = Path(description="The id of the node the edge is going to"),
# to_field: str = Path(description="The field of the node the edge is going to"),
# ) -> GraphExecutionState:
# """Deletes an edge from the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# try:
# edge = Edge(
# source=EdgeConnection(node_id=from_node_id, field=from_field),
# destination=EdgeConnection(node_id=to_node_id, field=to_field),
# )
# session.delete_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set(
# session
# ) # TODO: can this be done automatically, or add node through an API?
# return session
# except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400)
# except IndexError:
# raise HTTPException(status_code=400)
# @session_router.put(
# "/{session_id}/invoke",
# operation_id="invoke_session",
# responses={
# 200: {"model": None},
# 202: {"description": "The invocation is queued"},
# 400: {"description": "The session has no invocations ready to invoke"},
# 404: {"description": "Session not found"},
# },
# deprecated=True,
# )
# async def invoke_session(
# queue_id: str = Query(description="The id of the queue to associate the session with"),
# session_id: str = Path(description="The id of the session to invoke"),
# all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
# ) -> Response:
# """Invokes a session"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None:
# raise HTTPException(status_code=404)
# if session.is_complete():
# raise HTTPException(status_code=400)
# ApiDependencies.invoker.invoke(queue_id, session, invoke_all=all)
# return Response(status_code=202)
# @session_router.delete(
# "/{session_id}/invoke",
# operation_id="cancel_session_invoke",
# responses={202: {"description": "The invocation is canceled"}},
# deprecated=True,
# )
# async def cancel_session_invoke(
# session_id: str = Path(description="The id of the session to cancel"),
# ) -> Response:
# """Invokes a session"""
# ApiDependencies.invoker.cancel(session_id)
# return Response(status_code=202)

View File

@ -23,11 +23,10 @@ class DynamicPromptsResponse(BaseModel):
) )
async def parse_dynamicprompts( async def parse_dynamicprompts(
prompt: str = Body(description="The prompt to parse with dynamicprompts"), prompt: str = Body(description="The prompt to parse with dynamicprompts"),
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"), max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"), combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse: ) -> DynamicPromptsResponse:
"""Creates a batch process""" """Creates a batch process"""
max_prompts = min(max_prompts, 10000)
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator] generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try: try:
error: Optional[str] = None error: Optional[str] = None

View File

@ -12,26 +12,16 @@ class SocketIO:
__sio: AsyncServer __sio: AsyncServer
__app: ASGIApp __app: ASGIApp
__sub_queue: str = "subscribe_queue"
__unsub_queue: str = "unsubscribe_queue"
__sub_bulk_download: str = "subscribe_bulk_download"
__unsub_bulk_download: str = "unsubscribe_bulk_download"
def __init__(self, app: FastAPI): def __init__(self, app: FastAPI):
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*") self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io") self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
app.mount("/ws", self.__app) app.mount("/ws", self.__app)
self.__sio.on(self.__sub_queue, handler=self._handle_sub_queue) self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
self.__sio.on(self.__unsub_queue, handler=self._handle_unsub_queue) self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event) local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event) local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
self.__sio.on(self.__sub_bulk_download, handler=self._handle_sub_bulk_download)
self.__sio.on(self.__unsub_bulk_download, handler=self._handle_unsub_bulk_download)
local_handler.register(event_name=EventServiceBase.bulk_download_event, _func=self._handle_bulk_download_event)
async def _handle_queue_event(self, event: Event): async def _handle_queue_event(self, event: Event):
await self.__sio.emit( await self.__sio.emit(
event=event[1]["event"], event=event[1]["event"],
@ -49,18 +39,3 @@ class SocketIO:
async def _handle_model_event(self, event: Event) -> None: async def _handle_model_event(self, event: Event) -> None:
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"]) await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])
async def _handle_bulk_download_event(self, event: Event):
await self.__sio.emit(
event=event[1]["event"],
data=event[1]["data"],
room=event[1]["data"]["bulk_download_id"],
)
async def _handle_sub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.enter_room(sid, data["bulk_download_id"])
async def _handle_unsub_bulk_download(self, sid, data, *args, **kwargs):
if "bulk_download_id" in data:
await self.__sio.leave_room(sid, data["bulk_download_id"])

View File

@ -3,10 +3,8 @@
# values from the command line or config file. # values from the command line or config file.
import sys import sys
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
from invokeai.version.invokeai_version import __version__ from invokeai.version.invokeai_version import __version__
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
from .services.config import InvokeAIAppConfig from .services.config import InvokeAIAppConfig
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
@ -29,7 +27,8 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from fastapi.middleware.gzip import GZipMiddleware from fastapi.middleware.gzip import GZipMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
from fastapi.openapi.utils import get_openapi from fastapi.openapi.utils import get_openapi
from fastapi.responses import HTMLResponse from fastapi.responses import FileResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.json_schema import models_json_schema from pydantic.json_schema import models_json_schema
@ -46,16 +45,19 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
app_info, app_info,
board_images, board_images,
boards, boards,
download_queue,
images, images,
model_manager, model_records,
models,
session_queue, session_queue,
sessions,
utilities, utilities,
workflows, workflows,
) )
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations.baseinvocation import ( from .invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
InputFieldJSONSchemaExtra,
OutputFieldJSONSchemaExtra,
UIConfigBase, UIConfigBase,
) )
@ -73,7 +75,7 @@ mimetypes.add_type("text/css", ".css")
# Create the app # Create the app
# TODO: create this all in a method so configuration/etc. can be passed in? # TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False) app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
# Add event handler # Add event handler
event_handler_id: int = id(app) event_handler_id: int = id(app)
@ -109,9 +111,11 @@ async def shutdown_event() -> None:
# Include all routers # Include all routers
app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api") app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(model_manager.model_manager_router, prefix="/api") app.include_router(models.models_router, prefix="/api")
app.include_router(download_queue.download_queue_router, prefix="/api") app.include_router(model_records.model_records_router, prefix="/api")
app.include_router(images.images_router, prefix="/api") app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api") app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api") app.include_router(board_images.board_images_router, prefix="/api")
@ -148,8 +152,6 @@ def custom_openapi() -> dict[str, Any]:
# TODO: note that we assume the schema_key here is the TYPE.__name__ # TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it # This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"] output_type_titles[schema_key] = output_schema["title"]
openapi_schema["components"]["schemas"][schema_key] = output_schema
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
# Add Node Editor UI helper schemas # Add Node Editor UI helper schemas
ui_config_schemas = models_json_schema( ui_config_schemas = models_json_schema(
@ -172,24 +174,23 @@ def custom_openapi() -> dict[str, Any]:
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"} outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation" invoker_schema["class"] = "invocation"
openapi_schema["components"]["schemas"][f"{output_type_title}"]["class"] = "output"
# This code no longer seems to be necessary? from invokeai.backend.model_management.models import get_model_config_enums
# Leave it here just in case
#
# from invokeai.backend.model_manager import get_model_config_formats
# formats = get_model_config_formats()
# for model_config_name, enum_set in formats.items():
# if model_config_name in openapi_schema["components"]["schemas"]: for model_config_format_enum in set(get_model_config_enums()):
# # print(f"Config with name {name} already defined") name = model_config_format_enum.__qualname__
# continue
# openapi_schema["components"]["schemas"][model_config_name] = { if name in openapi_schema["components"]["schemas"]:
# "title": model_config_name, # print(f"Config with name {name} already defined")
# "description": "An enumeration.", continue
# "type": "string",
# "enum": [v.value for v in enum_set], openapi_schema["components"]["schemas"][name] = {
# } "title": name,
"description": "An enumeration.",
"type": "string",
"enum": [v.value for v in model_config_format_enum],
}
app.openapi_schema = openapi_schema app.openapi_schema = openapi_schema
return app.openapi_schema return app.openapi_schema
@ -202,8 +203,8 @@ app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid a
def overridden_swagger() -> HTMLResponse: def overridden_swagger() -> HTMLResponse:
return get_swagger_ui_html( return get_swagger_ui_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
title=f"{app.title} - Swagger UI", title=app.title,
swagger_favicon_url="static/docs/invoke-favicon-docs.svg", swagger_favicon_url="/static/docs/favicon.ico",
) )
@ -211,20 +212,26 @@ def overridden_swagger() -> HTMLResponse:
def overridden_redoc() -> HTMLResponse: def overridden_redoc() -> HTMLResponse:
return get_redoc_html( return get_redoc_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
title=f"{app.title} - Redoc", title=app.title,
redoc_favicon_url="static/docs/invoke-favicon-docs.svg", redoc_favicon_url="/static/docs/favicon.ico",
) )
web_root_path = Path(list(web_dir.__path__)[0]) web_root_path = Path(list(web_dir.__path__)[0])
try: # Only serve the UI if we it has a build
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui") if (web_root_path / "dist").exists():
except RuntimeError: # Cannot add headers to StaticFiles, so we must serve index.html with a custom route
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount") # Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
app.mount( @app.get("/", include_in_schema=False, name="ui_root")
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static" def get_index() -> FileResponse:
) # docs favicon is in here return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
# # Must mount *after* the other routes else it borks em
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
def invoke_api() -> None: def invoke_api() -> None:

View File

@ -8,33 +8,17 @@ import warnings
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum from enum import Enum
from inspect import signature from inspect import signature
from typing import ( from types import UnionType
TYPE_CHECKING, from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union, cast
Annotated,
Any,
Callable,
ClassVar,
Iterable,
Literal,
Optional,
Type,
TypeVar,
Union,
cast,
)
import semver import semver
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter, create_model from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
from pydantic.fields import FieldInfo from pydantic.fields import FieldInfo, _Unset
from pydantic_core import PydanticUndefined from pydantic_core import PydanticUndefined
from typing_extensions import TypeAliasType
from invokeai.app.invocations.fields import (
FieldKind,
Input,
)
from invokeai.app.services.config.config_default import InvokeAIAppConfig from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.metaenum import MetaEnum from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import uuid_string from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
@ -68,6 +52,393 @@ class Classification(str, Enum, metaclass=MetaEnum):
Prototype = "prototype" Prototype = "prototype"
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class FieldKind(str, Enum, metaclass=MetaEnum):
"""
The kind of field.
- `Input`: An input field on a node.
- `Output`: An output field on a node.
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
allowing "metadata" for that field.
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
but which are used to store information about the node. For example, the `id` and `type` fields are node
attributes.
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
startup, and when generating the OpenAPI schema for the workflow editor.
"""
Input = "input"
Output = "output"
Internal = "internal"
NodeAttribute = "node_attribute"
class UIType(str, Enum, metaclass=MetaEnum):
"""
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
- Model Fields
The most common node-author-facing use will be for model fields. Internally, there is no difference
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
the field is an SDXL main model field.
- Any Field
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
- Scheduler Field
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
- Internal Fields
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
should not be used by node authors.
- DEPRECATED Fields
These types are deprecated and should not be used by node authors. A warning will be logged if one is
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
# endregion
# region Internal Field Types
_Collection = "CollectionField"
_CollectionItem = "CollectionItemField"
# endregion
# region DEPRECATED
Boolean = "DEPRECATED_Boolean"
Color = "DEPRECATED_Color"
Conditioning = "DEPRECATED_Conditioning"
Control = "DEPRECATED_Control"
Float = "DEPRECATED_Float"
Image = "DEPRECATED_Image"
Integer = "DEPRECATED_Integer"
Latents = "DEPRECATED_Latents"
String = "DEPRECATED_String"
BooleanCollection = "DEPRECATED_BooleanCollection"
ColorCollection = "DEPRECATED_ColorCollection"
ConditioningCollection = "DEPRECATED_ConditioningCollection"
ControlCollection = "DEPRECATED_ControlCollection"
FloatCollection = "DEPRECATED_FloatCollection"
ImageCollection = "DEPRECATED_ImageCollection"
IntegerCollection = "DEPRECATED_IntegerCollection"
LatentsCollection = "DEPRECATED_LatentsCollection"
StringCollection = "DEPRECATED_StringCollection"
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
Collection = "DEPRECATED_Collection"
CollectionItem = "DEPRECATED_CollectionItem"
Enum = "DEPRECATED_Enum"
WorkflowField = "DEPRECATED_WorkflowField"
IsIntermediate = "DEPRECATED_IsIntermediate"
BoardField = "DEPRECATED_BoardField"
MetadataItem = "DEPRECATED_MetadataItem"
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
# endregion
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
The type of UI component to use for a field, used to override the default components, which are
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class InputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
and by the workflow editor during schema parsing and UI rendering.
"""
input: Input
orig_required: bool
field_kind: FieldKind
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
ui_type: Optional[UIType] = None
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class OutputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
during schema parsing and UI rendering.
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def InputField(
# copied from pydantic's Field
# TODO: Can we support default_factory?
default: Any = _Unset,
default_factory: Callable[[], Any] | None = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
On instantiation of a node, the invocation definition is used to create the python class. At this time,
any number of fields may be optional, because they may be provided by connections.
On calling of `invoke()`, however, those fields may be required.
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
`image` is required during the call to `invoke()`, but when the python class is instantiated,
the field may not be present. This is fine, because that image field will be provided by a
connection from an ancestor node, which outputs an image.
This means we want to type the `image` field as optional for the node class definition, but required
for the `invoke()` function.
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
any static type analysis tools will complain.
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
"""
if default_factory is not _Unset and default_factory is not None:
default = default_factory()
logger.warn('"default_factory" is not supported, calling it now to set "default"')
# These are the args we may wish pass to the pydantic `Field()` function
field_args = {
"default": default,
"title": title,
"description": description,
"pattern": pattern,
"strict": strict,
"gt": gt,
"ge": ge,
"lt": lt,
"le": le,
"multiple_of": multiple_of,
"allow_inf_nan": allow_inf_nan,
"max_digits": max_digits,
"decimal_places": decimal_places,
"min_length": min_length,
"max_length": max_length,
}
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
# Because we are manually making fields optional, we need to store the original required bool for reference later
json_schema_extra_.orig_required = default is PydanticUndefined
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if input is Input.Any or input is Input.Connection:
default_ = None if default is PydanticUndefined else default
provided_args.update({"default": default_})
if default is not PydanticUndefined:
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
json_schema_extra_.default = default
json_schema_extra_.orig_default = default
elif default is not PydanticUndefined:
default_ = default
provided_args.update({"default": default_})
json_schema_extra_.orig_default = default_
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
)
def OutputField(
# copied from pydantic's Field
default: Any = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
"""
return Field(
default=default,
title=title,
description=description,
pattern=pattern,
strict=strict,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)
class UIConfigBase(BaseModel): class UIConfigBase(BaseModel):
""" """
Provides additional node configuration to the UI. Provides additional node configuration to the UI.
@ -89,6 +460,33 @@ class UIConfigBase(BaseModel):
) )
class InvocationContext:
"""Initialized and provided to on execution of invocations."""
services: InvocationServices
graph_execution_state_id: str
queue_id: str
queue_item_id: int
queue_batch_id: str
workflow: Optional[WorkflowWithoutID]
def __init__(
self,
services: InvocationServices,
queue_id: str,
queue_item_id: int,
queue_batch_id: str,
graph_execution_state_id: str,
workflow: Optional[WorkflowWithoutID],
):
self.services = services
self.graph_execution_state_id = graph_execution_state_id
self.queue_id = queue_id
self.queue_item_id = queue_item_id
self.queue_batch_id = queue_batch_id
self.workflow = workflow
class BaseInvocationOutput(BaseModel): class BaseInvocationOutput(BaseModel):
""" """
Base class for all invocation outputs. Base class for all invocation outputs.
@ -97,7 +495,6 @@ class BaseInvocationOutput(BaseModel):
""" """
_output_classes: ClassVar[set[BaseInvocationOutput]] = set() _output_classes: ClassVar[set[BaseInvocationOutput]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
@classmethod @classmethod
def register_output(cls, output: BaseInvocationOutput) -> None: def register_output(cls, output: BaseInvocationOutput) -> None:
@ -110,14 +507,10 @@ class BaseInvocationOutput(BaseModel):
return cls._output_classes return cls._output_classes
@classmethod @classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]: def get_outputs_union(cls) -> UnionType:
"""Gets a pydantc TypeAdapter for the union of all invocation output types.""" """Gets a union of all invocation outputs."""
if not cls._typeadapter: outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
InvocationOutputsUnion = TypeAliasType( return outputs_union # type: ignore [return-value]
"InvocationOutputsUnion", Annotated[Union[tuple(cls._output_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationOutputsUnion)
return cls._typeadapter
@classmethod @classmethod
def get_output_types(cls) -> Iterable[str]: def get_output_types(cls) -> Iterable[str]:
@ -166,7 +559,6 @@ class BaseInvocation(ABC, BaseModel):
""" """
_invocation_classes: ClassVar[set[BaseInvocation]] = set() _invocation_classes: ClassVar[set[BaseInvocation]] = set()
_typeadapter: ClassVar[Optional[TypeAdapter[Any]]] = None
@classmethod @classmethod
def get_type(cls) -> str: def get_type(cls) -> str:
@ -179,14 +571,10 @@ class BaseInvocation(ABC, BaseModel):
cls._invocation_classes.add(invocation) cls._invocation_classes.add(invocation)
@classmethod @classmethod
def get_typeadapter(cls) -> TypeAdapter[Any]: def get_invocations_union(cls) -> UnionType:
"""Gets a pydantc TypeAdapter for the union of all invocation types.""" """Gets a union of all invocation types."""
if not cls._typeadapter: invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
InvocationsUnion = TypeAliasType( return invocations_union # type: ignore [return-value]
"InvocationsUnion", Annotated[Union[tuple(cls._invocation_classes)], Field(discriminator="type")]
)
cls._typeadapter = TypeAdapter(InvocationsUnion)
return cls._typeadapter
@classmethod @classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]: def get_invocations(cls) -> Iterable[BaseInvocation]:
@ -244,7 +632,7 @@ class BaseInvocation(ABC, BaseModel):
"""Invoke with provided context and return outputs.""" """Invoke with provided context and return outputs."""
pass pass
def invoke_internal(self, context: InvocationContext, services: "InvocationServices") -> BaseInvocationOutput: def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
""" """
Internal invoke method, calls `invoke()` after some prep. Internal invoke method, calls `invoke()` after some prep.
Handles optional fields that are required to call `invoke()` and invocation cache. Handles optional fields that are required to call `invoke()` and invocation cache.
@ -269,23 +657,23 @@ class BaseInvocation(ABC, BaseModel):
raise MissingInputException(self.model_fields["type"].default, field_name) raise MissingInputException(self.model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled # skip node cache codepath if it's disabled
if services.configuration.node_cache_size == 0: if context.services.configuration.node_cache_size == 0:
return self.invoke(context) return self.invoke(context)
output: BaseInvocationOutput output: BaseInvocationOutput
if self.use_cache: if self.use_cache:
key = services.invocation_cache.create_key(self) key = context.services.invocation_cache.create_key(self)
cached_value = services.invocation_cache.get(key) cached_value = context.services.invocation_cache.get(key)
if cached_value is None: if cached_value is None:
services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}') context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
output = self.invoke(context) output = self.invoke(context)
services.invocation_cache.save(key, output) context.services.invocation_cache.save(key, output)
return output return output
else: else:
services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}') context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
return cached_value return cached_value
else: else:
services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}') context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
return self.invoke(context) return self.invoke(context)
id: str = Field( id: str = Field(
@ -326,7 +714,9 @@ RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
"workflow", "workflow",
} }
RESERVED_INPUT_FIELD_NAMES = {"metadata", "board"} RESERVED_INPUT_FIELD_NAMES = {
"metadata",
}
RESERVED_OUTPUT_FIELD_NAMES = {"type"} RESERVED_OUTPUT_FIELD_NAMES = {"type"}
@ -536,3 +926,37 @@ def invocation_output(
return cls return cls
return wrapper return wrapper
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The metadata")
MetadataFieldValidator = TypeAdapter(MetadataField)
class WithMetadata(BaseModel):
metadata: Optional[MetadataField] = Field(
default=None,
description=FieldDescriptions.metadata,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Connection,
orig_required=False,
).model_dump(exclude_none=True),
)
class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()

View File

@ -5,11 +5,9 @@ import numpy as np
from pydantic import ValidationInfo, field_validator from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX from invokeai.app.util.misc import SEED_MAX
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .fields import InputField
@invocation( @invocation(

View File

@ -1,39 +1,40 @@
from typing import Iterator, List, Optional, Tuple, Union import re
from dataclasses import dataclass
from typing import List, Optional, Union
import torch import torch
from compel import Compel, ReturnedEmbeddingsType from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
from transformers import CLIPTextModel, CLIPTokenizer
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
FieldDescriptions, from invokeai.app.shared.fields import FieldDescriptions
Input,
InputField,
OutputField,
UIComponent,
)
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ( from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo, BasicConditioningInfo,
ConditioningFieldData,
ExtraConditioningInfo, ExtraConditioningInfo,
SDXLConditioningInfo, SDXLConditioningInfo,
) )
from invokeai.backend.util.devices import torch_dtype
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import ModelNotFoundException, ModelType
from ...backend.util.devices import torch_dtype
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation, invocation,
invocation_output, invocation_output,
) )
from .model import ClipField from .model import ClipField
# unconditioned: Optional[torch.Tensor]
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo]
# unconditioned: Optional[torch.Tensor]
# class ConditioningAlgo(str, Enum): # class ConditioningAlgo(str, Enum):
@ -47,7 +48,7 @@ from .model import ClipField
title="Prompt", title="Prompt",
tags=["prompt", "compel"], tags=["prompt", "compel"],
category="conditioning", category="conditioning",
version="1.0.1", version="1.0.0",
) )
class CompelInvocation(BaseInvocation): class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -65,27 +66,49 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump()) tokenizer_info = context.services.model_manager.get_model(
tokenizer_model = tokenizer_info.model **self.clip.tokenizer.model_dump(),
assert isinstance(tokenizer_model, CLIPTokenizer) context=context,
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump()) )
text_encoder_model = text_encoder_info.model text_encoder_info = context.services.model_manager.get_model(
assert isinstance(text_encoder_model, CLIPTextModel) **self.clip.text_encoder.model_dump(),
context=context,
)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]: def _lora_loader():
for lora in self.clip.loras: for lora in self.clip.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"})) lora_info = context.services.model_manager.get_model(
assert isinstance(lora_info.model, LoRAModelRaw) **lora.model_dump(exclude={"weight"}), context=context
yield (lora_info.model, lora.weight) )
yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context) ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ( with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as ( ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer, tokenizer,
ti_manager, ti_manager,
), ),
@ -93,9 +116,8 @@ class CompelInvocation(BaseInvocation):
# Apply the LoRA after text_encoder has been moved to its target device for faster patching. # Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()), ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers. # Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
): ):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
@ -106,7 +128,7 @@ class CompelInvocation(BaseInvocation):
conjunction = Compel.parse_prompt_string(self.prompt) conjunction = Compel.parse_prompt_string(self.prompt)
if context.config.get().log_tokenization: if context.services.configuration.log_tokenization:
log_tokenization_for_conjunction(conjunction, tokenizer) log_tokenization_for_conjunction(conjunction, tokenizer)
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction) c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
@ -127,14 +149,17 @@ class CompelInvocation(BaseInvocation):
] ]
) )
conditioning_name = context.conditioning.save(conditioning_data) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return ConditioningOutput.build(conditioning_name) return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
class SDXLPromptInvocationBase: class SDXLPromptInvocationBase:
"""Prompt processor for SDXL models."""
def run_clip_compel( def run_clip_compel(
self, self,
context: InvocationContext, context: InvocationContext,
@ -143,25 +168,26 @@ class SDXLPromptInvocationBase:
get_pooled: bool, get_pooled: bool,
lora_prefix: str, lora_prefix: str,
zero_on_empty: bool, zero_on_empty: bool,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]: ):
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump()) tokenizer_info = context.services.model_manager.get_model(
tokenizer_model = tokenizer_info.model **clip_field.tokenizer.model_dump(),
assert isinstance(tokenizer_model, CLIPTokenizer) context=context,
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump()) )
text_encoder_model = text_encoder_info.model text_encoder_info = context.services.model_manager.get_model(
assert isinstance(text_encoder_model, CLIPTextModel) **clip_field.text_encoder.model_dump(),
context=context,
)
# return zero on empty # return zero on empty
if prompt == "" and zero_on_empty: if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.model cpu_text_encoder = text_encoder_info.context.model
assert isinstance(cpu_text_encoder, torch.nn.Module)
c = torch.zeros( c = torch.zeros(
( (
1, 1,
cpu_text_encoder.config.max_position_embeddings, cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size, cpu_text_encoder.config.hidden_size,
), ),
dtype=cpu_text_encoder.dtype, dtype=text_encoder_info.context.cache.precision,
) )
if get_pooled: if get_pooled:
c_pooled = torch.zeros( c_pooled = torch.zeros(
@ -172,21 +198,40 @@ class SDXLPromptInvocationBase:
c_pooled = None c_pooled = None
return c, c_pooled, None return c, c_pooled, None
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]: def _lora_loader():
for lora in clip_field.loras: for lora in clip_field.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"})) lora_info = context.services.model_manager.get_model(
lora_model = lora_info.model **lora.model_dump(exclude={"weight"}), context=context
assert isinstance(lora_model, LoRAModelRaw) )
yield (lora_model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context) ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ( with (
ModelPatcher.apply_ti(tokenizer_model, text_encoder_model, ti_list) as ( ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer, tokenizer,
ti_manager, ti_manager,
), ),
@ -194,9 +239,8 @@ class SDXLPromptInvocationBase:
# Apply the LoRA after text_encoder has been moved to its target device for faster patching. # Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix), ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers. # Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
): ):
assert isinstance(text_encoder, CLIPTextModel)
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
text_encoder=text_encoder, text_encoder=text_encoder,
@ -209,7 +253,7 @@ class SDXLPromptInvocationBase:
conjunction = Compel.parse_prompt_string(prompt) conjunction = Compel.parse_prompt_string(prompt)
if context.config.get().log_tokenization: if context.services.configuration.log_tokenization:
# TODO: better logging for and syntax # TODO: better logging for and syntax
log_tokenization_for_conjunction(conjunction, tokenizer) log_tokenization_for_conjunction(conjunction, tokenizer)
@ -242,7 +286,7 @@ class SDXLPromptInvocationBase:
title="SDXL Prompt", title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"], tags=["sdxl", "compel", "prompt"],
category="conditioning", category="conditioning",
version="1.0.1", version="1.0.0",
) )
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -313,7 +357,6 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
dim=1, dim=1,
) )
assert c2_pooled is not None
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
SDXLConditioningInfo( SDXLConditioningInfo(
@ -325,9 +368,14 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
] ]
) )
conditioning_name = context.conditioning.save(conditioning_data) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return ConditioningOutput.build(conditioning_name) return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
@invocation( @invocation(
@ -335,7 +383,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
title="SDXL Refiner Prompt", title="SDXL Refiner Prompt",
tags=["sdxl", "compel", "prompt"], tags=["sdxl", "compel", "prompt"],
category="conditioning", category="conditioning",
version="1.0.1", version="1.0.0",
) )
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -362,7 +410,6 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)]) add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
assert c2_pooled is not None
conditioning_data = ConditioningFieldData( conditioning_data = ConditioningFieldData(
conditionings=[ conditionings=[
SDXLConditioningInfo( SDXLConditioningInfo(
@ -374,9 +421,14 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
] ]
) )
conditioning_name = context.conditioning.save(conditioning_data) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return ConditioningOutput.build(conditioning_name) return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
@invocation_output("clip_skip_output") @invocation_output("clip_skip_output")
@ -397,7 +449,7 @@ class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model.""" """Skip layers in clip text_encoder model."""
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP") clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers) skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput: def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers self.clip.skipped_layers += self.skipped_layers
@ -407,9 +459,9 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count( def get_max_token_count(
tokenizer: CLIPTokenizer, tokenizer,
prompt: Union[FlattenedPrompt, Blend, Conjunction], prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long: bool = False, truncate_if_too_long=False,
) -> int: ) -> int:
if type(prompt) is Blend: if type(prompt) is Blend:
blend: Blend = prompt blend: Blend = prompt
@ -421,9 +473,7 @@ def get_max_token_count(
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)) return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object( def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
) -> List[str]:
if type(parsed_prompt) is Blend: if type(parsed_prompt) is Blend:
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children") raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
@ -436,29 +486,24 @@ def get_tokens_for_prompt_object(
for x in parsed_prompt.children for x in parsed_prompt.children
] ]
text = " ".join(text_fragments) text = " ".join(text_fragments)
tokens: List[str] = tokenizer.tokenize(text) tokens = tokenizer.tokenize(text)
if truncate_if_too_long: if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75 max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length] tokens = tokens[0:max_tokens_length]
return tokens return tokens
def log_tokenization_for_conjunction( def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or "" display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts): for i, p in enumerate(c.prompts):
if len(c.prompts) > 1: if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})" this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else: else:
assert display_label_prefix is not None
this_display_label_prefix = display_label_prefix this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix) log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
def log_tokenization_for_prompt_object( def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
) -> None:
display_label_prefix = display_label_prefix or "" display_label_prefix = display_label_prefix or ""
if type(p) is Blend: if type(p) is Blend:
blend: Blend = p blend: Blend = p
@ -498,12 +543,7 @@ def log_tokenization_for_prompt_object(
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix) log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
def log_tokenization_for_text( def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
text: str,
tokenizer: CLIPTokenizer,
display_label: Optional[str] = None,
truncate_if_too_long: Optional[bool] = False,
) -> None:
"""shows how the prompt is tokenized """shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word, # usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' ' # but for readability it has been replaced with ' '

View File

@ -1,17 +0,0 @@
from typing import Literal
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
LATENT_SCALE_FACTOR = 8
"""
HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
factor is hard-coded to a literal '8' rather than using this constant.
The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
"""
SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
"""A literal type representing the valid scheduler names."""
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""

View File

@ -17,30 +17,31 @@ from controlnet_aux import (
MidasDetector, MidasDetector,
MLSDdetector, MLSDdetector,
NormalBaeDetector, NormalBaeDetector,
OpenposeDetector,
PidiNetDetector, PidiNetDetector,
SamDetector, SamDetector,
ZoeDetector, ZoeDetector,
) )
from controlnet_aux.util import HWC3, ade_palette from controlnet_aux.util import HWC3, ade_palette
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator from pydantic import BaseModel, ConfigDict, Field, field_validator
from invokeai.app.invocations.fields import ( from invokeai.app.invocations.primitives import ImageField, ImageOutput
FieldDescriptions, from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
ImageField, from invokeai.app.shared.fields import FieldDescriptions
from ...backend.model_management import BaseModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input, Input,
InputField, InputField,
InvocationContext,
OutputField, OutputField,
WithBoard,
WithMetadata, WithMetadata,
invocation,
invocation_output,
) )
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"] CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[ CONTROLNET_RESIZE_VALUES = Literal[
@ -54,7 +55,10 @@ CONTROLNET_RESIZE_VALUES = Literal[
class ControlNetModelField(BaseModel): class ControlNetModelField(BaseModel):
"""ControlNet model field""" """ControlNet model field"""
key: str = Field(description="Model config record key for the ControlNet model") model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class ControlField(BaseModel): class ControlField(BaseModel):
@ -71,16 +75,17 @@ class ControlField(BaseModel):
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use") resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight") @field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v): def validate_control_weight(cls, v):
validate_weights(v) """Validate that all control weights in the valid range"""
if isinstance(v, list):
for i in v:
if i < -1 or i > 2:
raise ValueError("Control weights must be within -1 to 2 range")
else:
if v < -1 or v > 2:
raise ValueError("Control weights must be within -1 to 2 range")
return v return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("control_output") @invocation_output("control_output")
class ControlOutput(BaseInvocationOutput): class ControlOutput(BaseInvocationOutput):
@ -90,17 +95,17 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control) control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1") @invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.0")
class ControlNetInvocation(BaseInvocation): class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes""" """Collects ControlNet info to pass to other nodes"""
image: ImageField = InputField(description="The control image") image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct) control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
control_weight: Union[float, List[float]] = InputField( control_weight: Union[float, List[float]] = InputField(
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet" default=1.0, description="The weight given to the ControlNet"
) )
begin_step_percent: float = InputField( begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)" default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
) )
end_step_percent: float = InputField( end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)" default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
@ -108,17 +113,6 @@ class ControlNetInvocation(BaseInvocation):
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used") control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used") resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
@field_validator("control_weight")
@classmethod
def validate_control_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> ControlOutput: def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput( return ControlOutput(
control=ControlField( control=ControlField(
@ -134,7 +128,7 @@ class ControlNetInvocation(BaseInvocation):
# This invocation exists for other invocations to subclass it - do not register with @invocation! # This invocation exists for other invocations to subclass it - do not register with @invocation!
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard): class ImageProcessorInvocation(BaseInvocation, WithMetadata):
"""Base class for invocations that preprocess images for ControlNet""" """Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process") image: ImageField = InputField(description="The image to process")
@ -143,18 +137,23 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
# superclass just passes through image without processing # superclass just passes through image without processing
return image return image
def load_image(self, context: InvocationContext) -> Image.Image:
# allows override for any special formatting specific to the preprocessor
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
raw_image = self.load_image(context) raw_image = context.services.images.get_pil_image(self.image.image_name)
# image type should be PIL.PngImagePlugin.PngImageFile ? # image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image) processed_image = self.run_processor(raw_image)
# currently can't see processed image in node UI without a showImage node, # currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery # so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
image_dto = context.images.save(image=processed_image) image_dto = context.services.images.create(
image=processed_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.CONTROL,
session_id=context.graph_execution_state_id,
node_id=self.id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
"""Builds an ImageOutput and its ImageField""" """Builds an ImageOutput and its ImageField"""
processed_image_field = ImageField(image_name=image_dto.image_name) processed_image_field = ImageField(image_name=image_dto.image_name)
@ -173,7 +172,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Canny Processor", title="Canny Processor",
tags=["controlnet", "canny"], tags=["controlnet", "canny"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class CannyImageProcessorInvocation(ImageProcessorInvocation): class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet""" """Canny edge detection for ControlNet"""
@ -185,10 +184,6 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)" default=200, ge=0, le=255, description="The high threshold of the Canny pixel gradient (0-255)"
) )
def load_image(self, context: InvocationContext) -> Image.Image:
# Keep alpha channel for Canny processing to detect edges of transparent areas
return context.images.get_pil(self.image.image_name, "RGBA")
def run_processor(self, image): def run_processor(self, image):
canny_processor = CannyDetector() canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold) processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
@ -200,7 +195,7 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
title="HED (softedge) Processor", title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"], tags=["controlnet", "hed", "softedge"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class HedImageProcessorInvocation(ImageProcessorInvocation): class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image""" """Applies HED edge detection to image"""
@ -229,7 +224,7 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Processor", title="Lineart Processor",
tags=["controlnet", "lineart"], tags=["controlnet", "lineart"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class LineartImageProcessorInvocation(ImageProcessorInvocation): class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image""" """Applies line art processing to image"""
@ -251,7 +246,7 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Anime Processor", title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"], tags=["controlnet", "lineart", "anime"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation): class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image""" """Applies line art anime processing to image"""
@ -269,12 +264,37 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
return processed_image return processed_image
@invocation(
"openpose_image_processor",
title="Openpose Processor",
tags=["controlnet", "openpose", "pose"],
category="controlnet",
version="1.2.0",
)
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Openpose processing to image"""
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image):
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(
image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
)
return processed_image
@invocation( @invocation(
"midas_depth_image_processor", "midas_depth_image_processor",
title="Midas Depth Processor", title="Midas Depth Processor",
tags=["controlnet", "midas"], tags=["controlnet", "midas"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation): class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image""" """Applies Midas depth processing to image"""
@ -301,7 +321,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Normal BAE Processor", title="Normal BAE Processor",
tags=["controlnet"], tags=["controlnet"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation): class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image""" """Applies NormalBae processing to image"""
@ -318,7 +338,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
@invocation( @invocation(
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.1" "mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.0"
) )
class MlsdImageProcessorInvocation(ImageProcessorInvocation): class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image""" """Applies MLSD processing to image"""
@ -341,7 +361,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
@invocation( @invocation(
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.1" "pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.0"
) )
class PidiImageProcessorInvocation(ImageProcessorInvocation): class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image""" """Applies PIDI processing to image"""
@ -368,7 +388,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
title="Content Shuffle Processor", title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"], tags=["controlnet", "contentshuffle"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation): class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image""" """Applies content shuffle processing to image"""
@ -398,7 +418,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
title="Zoe (Depth) Processor", title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"], tags=["controlnet", "zoe", "depth"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation): class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image""" """Applies Zoe depth processing to image"""
@ -414,7 +434,7 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor", title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"], tags=["controlnet", "mediapipe", "face"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation): class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image""" """Applies mediapipe face processing to image"""
@ -423,6 +443,10 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection") min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
def run_processor(self, image): def run_processor(self, image):
# MediaPipeFaceDetector throws an error if image has alpha channel
# so convert to RGB if needed
if image.mode == "RGBA":
image = image.convert("RGB")
mediapipe_face_processor = MediapipeFaceDetector() mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence) processed_image = mediapipe_face_processor(image, max_faces=self.max_faces, min_confidence=self.min_confidence)
return processed_image return processed_image
@ -433,7 +457,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
title="Leres (Depth) Processor", title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"], tags=["controlnet", "leres", "depth"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class LeresImageProcessorInvocation(ImageProcessorInvocation): class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image""" """Applies leres processing to image"""
@ -462,7 +486,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
title="Tile Resample Processor", title="Tile Resample Processor",
tags=["controlnet", "tile"], tags=["controlnet", "tile"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class TileResamplerProcessorInvocation(ImageProcessorInvocation): class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor""" """Tile resampler processor"""
@ -502,7 +526,7 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor", title="Segment Anything Processor",
tags=["controlnet", "segmentanything"], tags=["controlnet", "segmentanything"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation): class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image""" """Applies segment anything processing to image"""
@ -544,7 +568,7 @@ class SamDetectorReproducibleColors(SamDetector):
title="Color Map Processor", title="Color Map Processor",
tags=["controlnet"], tags=["controlnet"],
category="controlnet", category="controlnet",
version="1.2.1", version="1.2.0",
) )
class ColorMapImageProcessorInvocation(ImageProcessorInvocation): class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image""" """Generates a color map from the provided image"""
@ -552,6 +576,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map_tile_size: int = InputField(default=64, ge=0, description=FieldDescriptions.tile_size) color_map_tile_size: int = InputField(default=64, ge=0, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image): def run_processor(self, image: Image.Image):
image = image.convert("RGB")
np_image = np.array(image, dtype=np.uint8) np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2] height, width = np_image.shape[:2]
@ -566,57 +591,3 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST) color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
color_map = Image.fromarray(color_map) color_map = Image.fromarray(color_map)
return color_map return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
"depth_anything_image_processor",
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.0.0",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
offload: bool = InputField(default=False)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
return processed_image
@invocation(
"dw_openpose_image_processor",
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.0.0",
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
processed_image = dw_openpose(
image,
draw_face=self.draw_face,
draw_hands=self.draw_hands,
draw_body=self.draw_body,
resolution=self.image_resolution,
)
return processed_image

View File

@ -5,24 +5,22 @@ import cv2 as cv
import numpy import numpy
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.fields import ImageField from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .fields import InputField, WithBoard, WithMetadata
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.1") @invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard): class CvInpaintInvocation(BaseInvocation, WithMetadata):
"""Simple inpaint using opencv.""" """Simple inpaint using opencv."""
image: ImageField = InputField(description="The image to inpaint") image: ImageField = InputField(description="The image to inpaint")
mask: ImageField = InputField(description="The mask to use when inpainting") mask: ImageField = InputField(description="The mask to use when inpainting")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
mask = context.images.get_pil(self.mask.image_name) mask = context.services.images.get_pil_image(self.mask.image_name)
# Convert to cv image/mask # Convert to cv image/mask
# TODO: consider making these utility functions # TODO: consider making these utility functions
@ -36,6 +34,18 @@ class CvInpaintInvocation(BaseInvocation, WithMetadata, WithBoard):
# TODO: consider making a utility function # TODO: consider making a utility function
image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB)) image_inpainted = Image.fromarray(cv.cvtColor(cv_inpainted, cv.COLOR_BGR2RGB))
image_dto = context.images.save(image=image_inpainted) image_dto = context.services.images.create(
image=image_inpainted,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -13,13 +13,15 @@ from pydantic import field_validator
import invokeai.assets.fonts as font_assets import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.fields import ImageField, InputField, OutputField, WithBoard, WithMetadata from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.image_records.image_records_common import ImageCategory
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("face_mask_output") @invocation_output("face_mask_output")
@ -304,37 +306,37 @@ def extract_face(
# Adjust the crop boundaries to stay within the original image's dimensions # Adjust the crop boundaries to stay within the original image's dimensions
if x_min < 0: if x_min < 0:
context.logger.warning("FaceTools --> -X-axis padding reached image edge.") context.services.logger.warning("FaceTools --> -X-axis padding reached image edge.")
x_max -= x_min x_max -= x_min
x_min = 0 x_min = 0
elif x_max > mask.width: elif x_max > mask.width:
context.logger.warning("FaceTools --> +X-axis padding reached image edge.") context.services.logger.warning("FaceTools --> +X-axis padding reached image edge.")
x_min -= x_max - mask.width x_min -= x_max - mask.width
x_max = mask.width x_max = mask.width
if y_min < 0: if y_min < 0:
context.logger.warning("FaceTools --> +Y-axis padding reached image edge.") context.services.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
y_max -= y_min y_max -= y_min
y_min = 0 y_min = 0
elif y_max > mask.height: elif y_max > mask.height:
context.logger.warning("FaceTools --> -Y-axis padding reached image edge.") context.services.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
y_min -= y_max - mask.height y_min -= y_max - mask.height
y_max = mask.height y_max = mask.height
# Ensure the crop is square and adjust the boundaries if needed # Ensure the crop is square and adjust the boundaries if needed
if x_max - x_min != crop_size: if x_max - x_min != crop_size:
context.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.") context.services.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
diff = crop_size - (x_max - x_min) diff = crop_size - (x_max - x_min)
x_min -= diff // 2 x_min -= diff // 2
x_max += diff - diff // 2 x_max += diff - diff // 2
if y_max - y_min != crop_size: if y_max - y_min != crop_size:
context.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.") context.services.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
diff = crop_size - (y_max - y_min) diff = crop_size - (y_max - y_min)
y_min -= diff // 2 y_min -= diff // 2
y_max += diff - diff // 2 y_max += diff - diff // 2
context.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}") context.services.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
# Crop the output image to the specified size with the center of the face mesh as the center. # Crop the output image to the specified size with the center of the face mesh as the center.
mask = mask.crop((x_min, y_min, x_max, y_max)) mask = mask.crop((x_min, y_min, x_max, y_max))
@ -366,7 +368,7 @@ def get_faces_list(
# Generate the face box mask and get the center of the face. # Generate the face box mask and get the center of the face.
if not should_chunk: if not should_chunk:
context.logger.info("FaceTools --> Attempting full image face detection.") context.services.logger.info("FaceTools --> Attempting full image face detection.")
result = generate_face_box_mask( result = generate_face_box_mask(
context=context, context=context,
minimum_confidence=minimum_confidence, minimum_confidence=minimum_confidence,
@ -378,7 +380,7 @@ def get_faces_list(
draw_mesh=draw_mesh, draw_mesh=draw_mesh,
) )
if should_chunk or len(result) == 0: if should_chunk or len(result) == 0:
context.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).") context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
width, height = image.size width, height = image.size
image_chunks = [] image_chunks = []
x_offsets = [] x_offsets = []
@ -397,7 +399,7 @@ def get_faces_list(
x_offsets.append(x) x_offsets.append(x)
y_offsets.append(0) y_offsets.append(0)
fx += increment fx += increment
context.logger.info(f"FaceTools --> Chunk starting at x = {x}") context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width: elif height > width:
# Portrait - slice the image vertically # Portrait - slice the image vertically
fy = 0.0 fy = 0.0
@ -409,10 +411,10 @@ def get_faces_list(
x_offsets.append(0) x_offsets.append(0)
y_offsets.append(y) y_offsets.append(y)
fy += increment fy += increment
context.logger.info(f"FaceTools --> Chunk starting at y = {y}") context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)): for idx in range(len(image_chunks)):
context.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}") context.services.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
result = result + generate_face_box_mask( result = result + generate_face_box_mask(
context=context, context=context,
minimum_confidence=minimum_confidence, minimum_confidence=minimum_confidence,
@ -426,7 +428,7 @@ def get_faces_list(
if len(result) == 0: if len(result) == 0:
# Give up # Give up
context.logger.warning( context.services.logger.warning(
"FaceTools --> No face detected in chunked input image. Passing through original image." "FaceTools --> No face detected in chunked input image. Passing through original image."
) )
@ -435,7 +437,7 @@ def get_faces_list(
return all_faces return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.1") @invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.0")
class FaceOffInvocation(BaseInvocation, WithMetadata): class FaceOffInvocation(BaseInvocation, WithMetadata):
"""Bound, extract, and mask a face from an image using MediaPipe detection""" """Bound, extract, and mask a face from an image using MediaPipe detection"""
@ -468,11 +470,11 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
) )
if len(all_faces) == 0: if len(all_faces) == 0:
context.logger.warning("FaceOff --> No faces detected. Passing through original image.") context.services.logger.warning("FaceOff --> No faces detected. Passing through original image.")
return None return None
if self.face_id > len(all_faces) - 1: if self.face_id > len(all_faces) - 1:
context.logger.warning( context.services.logger.warning(
f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image." f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image."
) )
return None return None
@ -484,7 +486,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
return face_data return face_data
def invoke(self, context: InvocationContext) -> FaceOffOutput: def invoke(self, context: InvocationContext) -> FaceOffOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
result = self.faceoff(context=context, image=image) result = self.faceoff(context=context, image=image)
if result is None: if result is None:
@ -498,9 +500,24 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
x = result["x_min"] x = result["x_min"]
y = result["y_min"] y = result["y_min"]
image_dto = context.images.save(image=result_image) image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
mask_dto = context.images.save(image=result_mask, image_category=ImageCategory.MASK) mask_dto = context.services.images.create(
image=result_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceOffOutput( output = FaceOffOutput(
image=ImageField(image_name=image_dto.image_name), image=ImageField(image_name=image_dto.image_name),
@ -514,7 +531,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
return output return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.1") @invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.0")
class FaceMaskInvocation(BaseInvocation, WithMetadata): class FaceMaskInvocation(BaseInvocation, WithMetadata):
"""Face mask creation using mediapipe face detection""" """Face mask creation using mediapipe face detection"""
@ -563,7 +580,7 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
if len(intersected_face_ids) == 0: if len(intersected_face_ids) == 0:
id_range_str = ",".join([str(id) for id in id_range]) id_range_str = ",".join([str(id) for id in id_range])
context.logger.warning( context.services.logger.warning(
f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image." f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image."
) )
return FaceMaskResult( return FaceMaskResult(
@ -599,12 +616,27 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
) )
def invoke(self, context: InvocationContext) -> FaceMaskOutput: def invoke(self, context: InvocationContext) -> FaceMaskOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
result = self.facemask(context=context, image=image) result = self.facemask(context=context, image=image)
image_dto = context.images.save(image=result["image"]) image_dto = context.services.images.create(
image=result["image"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
mask_dto = context.images.save(image=result["mask"], image_category=ImageCategory.MASK) mask_dto = context.services.images.create(
image=result["mask"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceMaskOutput( output = FaceMaskOutput(
image=ImageField(image_name=image_dto.image_name), image=ImageField(image_name=image_dto.image_name),
@ -617,9 +649,9 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
@invocation( @invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.1" "face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.0"
) )
class FaceIdentifierInvocation(BaseInvocation, WithMetadata, WithBoard): class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools.""" """Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect") image: ImageField = InputField(description="Image to face detect")
@ -673,9 +705,21 @@ class FaceIdentifierInvocation(BaseInvocation, WithMetadata, WithBoard):
return image return image
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
result_image = self.faceidentifier(context=context, image=image) result_image = self.faceidentifier(context=context, image=image)
image_dto = context.images.save(image=result_image) image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,566 +0,0 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
from invokeai.app.util.metaenum import MetaEnum
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
class UIType(str, Enum, metaclass=MetaEnum):
"""
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
- Model Fields
The most common node-author-facing use will be for model fields. Internally, there is no difference
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
the field is an SDXL main model field.
- Any Field
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
- Scheduler Field
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
- Internal Fields
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
should not be used by node authors.
- DEPRECATED Fields
These types are deprecated and should not be used by node authors. A warning will be logged if one is
used, and the type will be ignored. They are included here for backwards compatibility.
"""
# region Model Field Types
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
ONNXModel = "ONNXModelField"
VaeModel = "VAEModelField"
LoRAModel = "LoRAModelField"
ControlNetModel = "ControlNetModelField"
IPAdapterModel = "IPAdapterModelField"
# endregion
# region Misc Field Types
Scheduler = "SchedulerField"
Any = "AnyField"
# endregion
# region Internal Field Types
_Collection = "CollectionField"
_CollectionItem = "CollectionItemField"
# endregion
# region DEPRECATED
Boolean = "DEPRECATED_Boolean"
Color = "DEPRECATED_Color"
Conditioning = "DEPRECATED_Conditioning"
Control = "DEPRECATED_Control"
Float = "DEPRECATED_Float"
Image = "DEPRECATED_Image"
Integer = "DEPRECATED_Integer"
Latents = "DEPRECATED_Latents"
String = "DEPRECATED_String"
BooleanCollection = "DEPRECATED_BooleanCollection"
ColorCollection = "DEPRECATED_ColorCollection"
ConditioningCollection = "DEPRECATED_ConditioningCollection"
ControlCollection = "DEPRECATED_ControlCollection"
FloatCollection = "DEPRECATED_FloatCollection"
ImageCollection = "DEPRECATED_ImageCollection"
IntegerCollection = "DEPRECATED_IntegerCollection"
LatentsCollection = "DEPRECATED_LatentsCollection"
StringCollection = "DEPRECATED_StringCollection"
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
StringPolymorphic = "DEPRECATED_StringPolymorphic"
MainModel = "DEPRECATED_MainModel"
UNet = "DEPRECATED_UNet"
Vae = "DEPRECATED_Vae"
CLIP = "DEPRECATED_CLIP"
Collection = "DEPRECATED_Collection"
CollectionItem = "DEPRECATED_CollectionItem"
Enum = "DEPRECATED_Enum"
WorkflowField = "DEPRECATED_WorkflowField"
IsIntermediate = "DEPRECATED_IsIntermediate"
BoardField = "DEPRECATED_BoardField"
MetadataItem = "DEPRECATED_MetadataItem"
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
MetadataDict = "DEPRECATED_MetadataDict"
class UIComponent(str, Enum, metaclass=MetaEnum):
"""
The type of UI component to use for a field, used to override the default components, which are
inferred from the field type.
"""
None_ = "none"
Textarea = "textarea"
Slider = "slider"
class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps"
cfg_scale = "Classifier-Free Guidance scale"
cfg_rescale_multiplier = "Rescale multiplier for CFG guidance, used for models trained with zero-terminal SNR"
scheduler = "Scheduler to use during inference"
positive_cond = "Positive conditioning tensor"
negative_cond = "Negative conditioning tensor"
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
vae_model = "VAE model to load"
lora_model = "LoRA model to load"
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
raw_prompt = "Raw prompt text (no parsing)"
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
skipped_layers = "Number of layers to skip in text encoder"
seed = "Seed for random number generation"
steps = "Number of steps to run"
width = "Width of output (px)"
height = "Height of output (px)"
control = "ControlNet(s) to apply"
ip_adapter = "IP-Adapter to apply"
t2i_adapter = "T2I-Adapter(s) to apply"
denoised_latents = "Denoised latents tensor"
latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision"
precision = "Precision to use"
tiled = "Processing using overlapping tiles (reduce memory consumption)"
detect_res = "Pixel resolution for detection"
image_res = "Pixel resolution for output image"
safe_mode = "Whether or not to use safe mode"
scribble_mode = "Whether or not to use scribble mode"
scale_factor = "The factor by which to scale"
blend_alpha = (
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
)
num_1 = "The first number"
num_2 = "The second number"
mask = "The mask to use for the operation"
board = "The board to save the image to"
image = "The image to process"
tile_size = "Tile size"
inclusive_low = "The inclusive low value"
exclusive_high = "The exclusive high value"
decimal_places = "The number of decimal places to round to"
freeu_s1 = 'Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_s2 = 'Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process.'
freeu_b1 = "Scaling factor for stage 1 to amplify the contributions of backbone features."
freeu_b2 = "Scaling factor for stage 2 to amplify the contributions of backbone features."
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
class BoardField(BaseModel):
"""A board primitive field"""
board_id: str = Field(description="The id of the board")
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents")
gradient: bool = Field(default=False, description="Used for gradient inpainting")
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
# endregion
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The metadata")
MetadataFieldValidator = TypeAdapter(MetadataField)
class Input(str, Enum, metaclass=MetaEnum):
"""
The type of input a field accepts.
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
are instantiated.
- `Input.Connection`: The field must have its value provided by a connection.
- `Input.Any`: The field may have its value provided either directly or by a connection.
"""
Connection = "connection"
Direct = "direct"
Any = "any"
class FieldKind(str, Enum, metaclass=MetaEnum):
"""
The kind of field.
- `Input`: An input field on a node.
- `Output`: An output field on a node.
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
allowing "metadata" for that field.
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
but which are used to store information about the node. For example, the `id` and `type` fields are node
attributes.
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
startup, and when generating the OpenAPI schema for the workflow editor.
"""
Input = "input"
Output = "output"
Internal = "internal"
NodeAttribute = "node_attribute"
class InputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
and by the workflow editor during schema parsing and UI rendering.
"""
input: Input
orig_required: bool
field_kind: FieldKind
default: Optional[Any] = None
orig_default: Optional[Any] = None
ui_hidden: bool = False
ui_type: Optional[UIType] = None
ui_component: Optional[UIComponent] = None
ui_order: Optional[int] = None
ui_choice_labels: Optional[dict[str, str]] = None
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class WithMetadata(BaseModel):
"""
Inherit from this class if your node needs a metadata input field.
"""
metadata: Optional[MetadataField] = Field(
default=None,
description=FieldDescriptions.metadata,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Connection,
orig_required=False,
).model_dump(exclude_none=True),
)
class WithWorkflow:
workflow = None
def __init_subclass__(cls) -> None:
logger.warn(
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
)
super().__init_subclass__()
class WithBoard(BaseModel):
"""
Inherit from this class if your node needs a board input field.
"""
board: Optional[BoardField] = Field(
default=None,
description=FieldDescriptions.board,
json_schema_extra=InputFieldJSONSchemaExtra(
field_kind=FieldKind.Internal,
input=Input.Direct,
orig_required=False,
).model_dump(exclude_none=True),
)
class OutputFieldJSONSchemaExtra(BaseModel):
"""
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
during schema parsing and UI rendering.
"""
field_kind: FieldKind
ui_hidden: bool
ui_type: Optional[UIType]
ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def InputField(
# copied from pydantic's Field
# TODO: Can we support default_factory?
default: Any = _Unset,
default_factory: Callable[[], Any] | None = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
input: Input = Input.Any,
ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None,
) -> Any:
"""
Creates an input field for an invocation.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param Input input: [Input.Any] The kind of input this field requires. \
`Input.Direct` means a value must be provided on instantiation. \
`Input.Connection` means the value must be provided by a connection. \
`Input.Any` means either will do.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
The UI will always render a suitable component, but sometimes you want something different than the default. \
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
For this case, you could provide `UIComponent.Textarea`.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
"""
json_schema_extra_ = InputFieldJSONSchemaExtra(
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
ui_choice_labels=ui_choice_labels,
field_kind=FieldKind.Input,
orig_required=True,
)
"""
There is a conflict between the typing of invocation definitions and the typing of an invocation's
`invoke()` function.
On instantiation of a node, the invocation definition is used to create the python class. At this time,
any number of fields may be optional, because they may be provided by connections.
On calling of `invoke()`, however, those fields may be required.
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
`image` is required during the call to `invoke()`, but when the python class is instantiated,
the field may not be present. This is fine, because that image field will be provided by a
connection from an ancestor node, which outputs an image.
This means we want to type the `image` field as optional for the node class definition, but required
for the `invoke()` function.
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
any static type analysis tools will complain.
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
"""
if default_factory is not _Unset and default_factory is not None:
default = default_factory()
logger.warn('"default_factory" is not supported, calling it now to set "default"')
# These are the args we may wish pass to the pydantic `Field()` function
field_args = {
"default": default,
"title": title,
"description": description,
"pattern": pattern,
"strict": strict,
"gt": gt,
"ge": ge,
"lt": lt,
"le": le,
"multiple_of": multiple_of,
"allow_inf_nan": allow_inf_nan,
"max_digits": max_digits,
"decimal_places": decimal_places,
"min_length": min_length,
"max_length": max_length,
}
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
# Because we are manually making fields optional, we need to store the original required bool for reference later
json_schema_extra_.orig_required = default is PydanticUndefined
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if input is Input.Any or input is Input.Connection:
default_ = None if default is PydanticUndefined else default
provided_args.update({"default": default_})
if default is not PydanticUndefined:
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
json_schema_extra_.default = default
json_schema_extra_.orig_default = default
elif default is not PydanticUndefined:
default_ = default
provided_args.update({"default": default_})
json_schema_extra_.orig_default = default_
return Field(
**provided_args,
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
)
def OutputField(
# copied from pydantic's Field
default: Any = _Unset,
title: str | None = _Unset,
description: str | None = _Unset,
pattern: str | None = _Unset,
strict: bool | None = _Unset,
gt: float | None = _Unset,
ge: float | None = _Unset,
lt: float | None = _Unset,
le: float | None = _Unset,
multiple_of: float | None = _Unset,
allow_inf_nan: bool | None = _Unset,
max_digits: int | None = _Unset,
decimal_places: int | None = _Unset,
min_length: int | None = _Unset,
max_length: int | None = _Unset,
# custom
ui_type: Optional[UIType] = None,
ui_hidden: bool = False,
ui_order: Optional[int] = None,
) -> Any:
"""
Creates an output field for an invocation output.
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
that adds a few extra parameters to support graph execution and the node editor UI.
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
In some situations, the field's type is not enough to infer the correct UI type. \
For example, model selection fields should render a dropdown UI component to select a model. \
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
"""
return Field(
default=default,
title=title,
description=description,
pattern=pattern,
strict=strict,
gt=gt,
ge=ge,
lt=lt,
le=le,
multiple_of=multiple_of,
allow_inf_nan=allow_inf_nan,
max_digits=max_digits,
decimal_places=decimal_places,
min_length=min_length,
max_length=max_length,
json_schema_extra=OutputFieldJSONSchemaExtra(
ui_type=ui_type,
ui_hidden=ui_hidden,
ui_order=ui_order,
field_kind=FieldKind.Output,
).model_dump(exclude_none=True),
)

File diff suppressed because it is too large Load Diff

View File

@ -6,16 +6,14 @@ from typing import Literal, Optional, get_args
import numpy as np import numpy as np
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.fields import ColorField, ImageField from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.patchmatch import PatchMatch
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .fields import InputField, WithBoard, WithMetadata
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
@ -120,8 +118,8 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
return si return si
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1") @invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillColorInvocation(BaseInvocation, WithMetadata):
"""Infills transparent areas of an image with a solid color""" """Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -131,20 +129,33 @@ class InfillColorInvocation(BaseInvocation, WithMetadata, WithBoard):
) )
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
solid_bg = Image.new("RGBA", image.size, self.color.tuple()) solid_bg = Image.new("RGBA", image.size, self.color.tuple())
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA")) infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
infilled.paste(image, (0, 0), image.split()[-1]) infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled) image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2") @invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillTileInvocation(BaseInvocation, WithMetadata):
"""Infills transparent areas of an image with tiles of the image""" """Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -157,20 +168,33 @@ class InfillTileInvocation(BaseInvocation, WithMetadata, WithBoard):
) )
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size) infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1]) infilled.paste(image, (0, 0), image.split()[-1])
image_dto = context.images.save(image=infilled) image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation( @invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1" "infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0"
) )
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard): class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
"""Infills transparent areas of an image using the PatchMatch algorithm""" """Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -178,7 +202,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard):
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode") resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name).convert("RGBA") image = context.services.images.get_pil_image(self.image.image_name).convert("RGBA")
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode] resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
@ -203,38 +227,77 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata, WithBoard):
infilled.paste(image, (0, 0), mask=image.split()[-1]) infilled.paste(image, (0, 0), mask=image.split()[-1])
# image.paste(infilled, (0, 0), mask=image.split()[-1]) # image.paste(infilled, (0, 0), mask=image.split()[-1])
image_dto = context.images.save(image=infilled) image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1") @invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class LaMaInfillInvocation(BaseInvocation, WithMetadata, WithBoard): class LaMaInfillInvocation(BaseInvocation, WithMetadata):
"""Infills transparent areas of an image using the LaMa model""" """Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
infilled = infill_lama(image.copy()) infilled = infill_lama(image.copy())
image_dto = context.images.save(image=infilled) image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1") @invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
class CV2InfillInvocation(BaseInvocation, WithMetadata, WithBoard): class CV2InfillInvocation(BaseInvocation, WithMetadata):
"""Infills transparent areas of an image using OpenCV Inpainting""" """Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
infilled = infill_cv2(image.copy()) infilled = infill_cv2(image.copy())
image_dto = context.images.save(image=infilled) image_dto = context.services.images.create(
image=infilled,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,29 +1,37 @@
import os
from builtins import float from builtins import float
from typing import List, Union from typing import List, Union
from pydantic import BaseModel, Field, field_validator, model_validator from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_manager.config import BaseModelType, ModelType from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
# LS: Consider moving these two classes into model.py
class IPAdapterModelField(BaseModel): class IPAdapterModelField(BaseModel):
key: str = Field(description="Key to the IP-Adapter model") model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class CLIPVisionModelField(BaseModel): class CLIPVisionModelField(BaseModel):
key: str = Field(description="Key to the CLIP Vision image encoder model") model_name: str = Field(description="Name of the CLIP Vision image encoder model")
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
model_config = ConfigDict(protected_namespaces=())
class IPAdapterField(BaseModel): class IPAdapterField(BaseModel):
@ -31,6 +39,7 @@ class IPAdapterField(BaseModel):
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.") ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.") image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
begin_step_percent: float = Field( begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
) )
@ -38,17 +47,6 @@ class IPAdapterField(BaseModel):
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
) )
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("ip_adapter_output") @invocation_output("ip_adapter_output")
class IPAdapterOutput(BaseInvocationOutput): class IPAdapterOutput(BaseInvocationOutput):
@ -56,7 +54,7 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.2") @invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0")
class IPAdapterInvocation(BaseInvocation): class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes.""" """Collects IP-Adapter info to pass to other nodes."""
@ -66,37 +64,36 @@ class IPAdapterInvocation(BaseInvocation):
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1 description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
) )
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
weight: Union[float, List[float]] = InputField( weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight" default=1, ge=-1, description="The weight given to the IP-Adapter", title="Weight"
) )
begin_step_percent: float = InputField( begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
) )
end_step_percent: float = InputField( end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
) )
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput: def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model. # Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.models.get_config(self.ip_adapter_model.key) ip_adapter_info = context.services.model_manager.model_info(
image_encoder_model_id = ip_adapter_info.image_encoder_model_id self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip() )
image_encoder_models = context.models.search_by_attrs( # HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model
model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision # directly, and 2) we are reading from disk every time this invocation is called without caching the result.
# A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this
# is currently messy due to differences between how the model info is generated when installing a model from
# disk vs. downloading the model.
image_encoder_model_id = get_ip_adapter_image_encoder_model_id(
os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info["path"])
)
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_model = CLIPVisionModelField(
model_name=image_encoder_model_name,
base_model=BaseModelType.Any,
) )
assert len(image_encoder_models) == 1
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
return IPAdapterOutput( return IPAdapterOutput(
ip_adapter=IPAdapterField( ip_adapter=IPAdapterField(
image=self.image, image=self.image,

View File

@ -1,17 +1,14 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import math
from contextlib import ExitStack from contextlib import ExitStack
from functools import singledispatchmethod from functools import singledispatchmethod
from typing import Any, Iterator, List, Literal, Optional, Tuple, Union from typing import List, Literal, Optional, Union
import einops import einops
import numpy as np import numpy as np
import numpy.typing as npt
import torch import torch
import torchvision.transforms as T import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter from diffusers.models.adapter import T2IAdapter
from diffusers.models.attention_processor import ( from diffusers.models.attention_processor import (
@ -20,44 +17,34 @@ from diffusers.models.attention_processor import (
LoRAXFormersAttnProcessor, LoRAXFormersAttnProcessor,
XFormersAttnProcessor, XFormersAttnProcessor,
) )
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.primitives import ( from invokeai.app.invocations.primitives import (
DenoiseMaskField,
DenoiseMaskOutput, DenoiseMaskOutput,
ImageField,
ImageOutput, ImageOutput,
LatentsField,
LatentsOutput, LatentsOutput,
build_latents_output,
) )
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from invokeai.backend.util.silence_warnings import SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.models import BaseModelType
from ...backend.model_management.seamless import set_seamless
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import ( from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData, ControlNetData,
IPAdapterData, IPAdapterData,
@ -71,9 +58,16 @@ from ...backend.util.devices import choose_precision, choose_torch_device
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
WithMetadata,
invocation, invocation,
invocation_output, invocation_output,
) )
from .compel import ConditioningField
from .controlnet_image_processors import ControlField from .controlnet_image_processors import ControlField
from .model import ModelInfo, UNetField, VaeField from .model import ModelInfo, UNetField, VaeField
@ -82,10 +76,18 @@ if choose_torch_device() == torch.device("mps"):
DEFAULT_PRECISION = choose_precision(choose_torch_device()) DEFAULT_PRECISION = choose_precision(choose_torch_device())
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
# HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
# be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
# factor is hard-coded to a literal '8' rather than using this constant.
# The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
LATENT_SCALE_FACTOR = 8
@invocation_output("scheduler_output") @invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput): class SchedulerOutput(BaseInvocationOutput):
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler) scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation( @invocation(
@ -98,7 +100,7 @@ class SchedulerOutput(BaseInvocationOutput):
class SchedulerInvocation(BaseInvocation): class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler.""" """Selects a scheduler."""
scheduler: SCHEDULER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", default="euler",
description=FieldDescriptions.scheduler, description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler, ui_type=UIType.Scheduler,
@ -113,7 +115,7 @@ class SchedulerInvocation(BaseInvocation):
title="Create Denoise Mask", title="Create Denoise Mask",
tags=["mask", "denoise"], tags=["mask", "denoise"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
class CreateDenoiseMaskInvocation(BaseInvocation): class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run.""" """Creates mask for denoising model run."""
@ -128,10 +130,10 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
ui_order=4, ui_order=4,
) )
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor: def prep_mask_tensor(self, mask_image):
if mask_image.mode != "L": if mask_image.mode != "L":
mask_image = mask_image.convert("L") mask_image = mask_image.convert("L")
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False) mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3: if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0) mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None: # if shape is not None:
@ -141,90 +143,41 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput: def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None: if self.image is not None:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) image = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3: if image.dim() == 3:
image_tensor = image_tensor.unsqueeze(0) image = image.unsqueeze(0)
else: else:
image_tensor = None image = None
mask = self.prep_mask_tensor( mask = self.prep_mask_tensor(
context.images.get_pil(self.mask.image_name), context.services.images.get_pil_image(self.mask.image_name),
) )
if image_tensor is not None: if image is not None:
vae_info = context.models.load(**self.vae.vae.model_dump()) vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False) img_mask = tv_resize(mask, image.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0) masked_image = image * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO: # TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone()) masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents) masked_latents_name = f"{context.graph_execution_state_id}__{self.id}_masked_latents"
context.services.latents.save(masked_latents_name, masked_latents)
else: else:
masked_latents_name = None masked_latents_name = None
mask_name = context.tensors.save(tensor=mask) mask_name = f"{context.graph_execution_state_id}__{self.id}_mask"
context.services.latents.save(mask_name, mask)
return DenoiseMaskOutput.build( return DenoiseMaskOutput(
mask_name=mask_name, denoise_mask=DenoiseMaskField(
masked_latents_name=masked_latents_name, mask_name=mask_name,
gradient=False, masked_latents_name=masked_latents_name,
) ),
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the edges are 0 and blur out to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is masked to any degree, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
# multiply original mask to force actually masked regions to 0
blur_tensor = mask_tensor * blur_tensor
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=None,
gradient=True,
) )
@ -235,7 +188,10 @@ def get_scheduler(
seed: int, seed: int,
) -> Scheduler: ) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"]) scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(**scheduler_info.model_dump()) orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.model_dump(),
context=context,
)
with orig_scheduler_info as orig_scheduler: with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config scheduler_config = orig_scheduler.config
@ -243,7 +199,7 @@ def get_scheduler(
scheduler_config = scheduler_config["_backup"] scheduler_config = scheduler_config["_backup"]
scheduler_config = { scheduler_config = {
**scheduler_config, **scheduler_config,
**scheduler_extra_config, # FIXME **scheduler_extra_config,
"_backup": scheduler_config, "_backup": scheduler_config,
} }
@ -256,7 +212,6 @@ def get_scheduler(
# hack copied over from generate.py # hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"): if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler return scheduler
@ -265,7 +220,7 @@ def get_scheduler(
title="Denoise Latents", title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"], tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents", category="latents",
version="1.5.2", version="1.5.0",
) )
class DenoiseLatentsInvocation(BaseInvocation): class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images""" """Denoises noisy latents to decodable images"""
@ -293,7 +248,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
description=FieldDescriptions.denoising_start, description=FieldDescriptions.denoising_start,
) )
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end) denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", default="euler",
description=FieldDescriptions.scheduler, description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler, ui_type=UIType.Scheduler,
@ -324,7 +279,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
ui_order=7, ui_order=7,
) )
cfg_rescale_multiplier: float = InputField( cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
) )
latents: Optional[LatentsField] = InputField( latents: Optional[LatentsField] = InputField(
default=None, default=None,
@ -340,7 +295,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
) )
@field_validator("cfg_scale") @field_validator("cfg_scale")
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]: def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1""" """validate that all cfg_scale values are >= 1"""
if isinstance(v, list): if isinstance(v, list):
for i in v: for i in v:
@ -351,18 +306,34 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1") raise ValueError("cfg_scale must be greater than 1")
return v return v
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
base_model: BaseModelType,
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.model_dump(),
source_node_id=source_node_id,
base_model=base_model,
)
def get_conditioning_data( def get_conditioning_data(
self, self,
context: InvocationContext, context: InvocationContext,
scheduler: Scheduler, scheduler,
unet: UNet2DConditionModel, unet,
seed: int, seed,
) -> ConditioningData: ) -> ConditioningData:
positive_cond_data = context.conditioning.load(self.positive_conditioning.conditioning_name) positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype) c = positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
extra_conditioning_info = c.extra_conditioning extra_conditioning_info = c.extra_conditioning
negative_cond_data = context.conditioning.load(self.negative_conditioning.conditioning_name) negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype) uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)
conditioning_data = ConditioningData( conditioning_data = ConditioningData(
@ -379,7 +350,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
), ),
) )
conditioning_data = conditioning_data.add_scheduler_args_if_applicable( # FIXME conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler, scheduler,
# for ddim scheduler # for ddim scheduler
eta=0.0, # ddim_eta eta=0.0, # ddim_eta
@ -391,8 +362,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
def create_pipeline( def create_pipeline(
self, self,
unet: UNet2DConditionModel, unet,
scheduler: Scheduler, scheduler,
) -> StableDiffusionGeneratorPipeline: ) -> StableDiffusionGeneratorPipeline:
# TODO: # TODO:
# configure_model_padding( # configure_model_padding(
@ -403,10 +374,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
class FakeVae: class FakeVae:
class FakeVaeConfig: class FakeVaeConfig:
def __init__(self) -> None: def __init__(self):
self.block_out_channels = [0] self.block_out_channels = [0]
def __init__(self) -> None: def __init__(self):
self.config = FakeVae.FakeVaeConfig() self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline( return StableDiffusionGeneratorPipeline(
@ -423,11 +394,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_control_data( def prep_control_data(
self, self,
context: InvocationContext, context: InvocationContext,
control_input: Optional[Union[ControlField, List[ControlField]]], control_input: Union[ControlField, List[ControlField]],
latents_shape: List[int], latents_shape: List[int],
exit_stack: ExitStack, exit_stack: ExitStack,
do_classifier_free_guidance: bool = True, do_classifier_free_guidance: bool = True,
) -> Optional[List[ControlNetData]]: ) -> List[ControlNetData]:
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR. # Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
@ -449,11 +420,18 @@ class DenoiseLatentsInvocation(BaseInvocation):
# and if weight is None, populate with default 1.0? # and if weight is None, populate with default 1.0?
controlnet_data = [] controlnet_data = []
for control_info in control_list: for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(key=control_info.control_model.key)) control_model = exit_stack.enter_context(
context.services.model_manager.get_model(
model_name=control_info.control_model.model_name,
model_type=ModelType.ControlNet,
base_model=control_info.control_model.base_model,
context=context,
)
)
# control_models.append(control_model) # control_models.append(control_model)
control_image_field = control_info.image control_image_field = control_info.image
input_image = context.images.get_pil(control_image_field.image_name) input_image = context.services.images.get_pil_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name # self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes # FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt? # and add in batch_size, num_images_per_prompt?
@ -511,17 +489,27 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = [] conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context( ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.models.load(key=single_ip_adapter.ip_adapter_model.key) context.services.model_manager.get_model(
model_name=single_ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter,
base_model=single_ip_adapter.ip_adapter_model.base_model,
context=context,
)
) )
image_encoder_model_info = context.models.load(key=single_ip_adapter.image_encoder_model.key) image_encoder_model_info = context.services.model_manager.get_model(
model_name=single_ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision,
base_model=single_ip_adapter.image_encoder_model.base_model,
context=context,
)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here. # `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image single_ipa_images = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list): if not isinstance(single_ipa_images, list):
single_ipa_image_fields = [single_ipa_image_fields] single_ipa_images = [single_ipa_images]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields] single_ipa_images = [context.services.images.get_pil_image(image.image_name) for image in single_ipa_images]
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other # TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments. # models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
@ -565,20 +553,26 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = [] t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter: for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(key=t2i_adapter_field.t2i_adapter_model.key) t2i_adapter_model_info = context.services.model_manager.get_model(
t2i_adapter_loaded_model = context.models.load(key=t2i_adapter_field.t2i_adapter_model.key) model_name=t2i_adapter_field.t2i_adapter_model.model_name,
image = context.images.get_pil(t2i_adapter_field.image.image_name) model_type=ModelType.T2IAdapter,
base_model=t2i_adapter_field.t2i_adapter_model.base_model,
context=context,
)
image = context.services.images.get_pil_image(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally. # The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1: if t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusion1:
max_unet_downscale = 8 max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL: elif t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4 max_unet_downscale = 4
else: else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.") raise ValueError(
f"Unexpected T2I-Adapter base model type: '{t2i_adapter_field.t2i_adapter_model.base_model}'."
)
t2i_adapter_model: T2IAdapter t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model: with t2i_adapter_model_info as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image. # Resize the T2I-Adapter input image.
@ -598,7 +592,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=False, do_classifier_free_guidance=False,
width=t2i_input_width, width=t2i_input_width,
height=t2i_input_height, height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict num_channels=t2i_adapter_model.config.in_channels,
device=t2i_adapter_model.device, device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype, dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode, resize_mode=t2i_adapter_field.resize_mode,
@ -623,15 +617,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter # original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps # TODO: research more for second order schedulers timesteps
def init_scheduler( def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end):
self,
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
) -> Tuple[int, List[int], int]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False): if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu") scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device) timesteps = scheduler.timesteps.to(device=device)
@ -643,11 +629,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
_timesteps = timesteps[:: scheduler.order] _timesteps = timesteps[:: scheduler.order]
# get start timestep index # get start timestep index
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start))) t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps))) t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# get end timestep index # get end timestep index
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end))) t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:]))) t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# apply order to indexes # apply order to indexes
@ -660,20 +646,18 @@ class DenoiseLatentsInvocation(BaseInvocation):
return num_inference_steps, timesteps, init_timestep return num_inference_steps, timesteps, init_timestep
def prep_inpaint_mask( def prep_inpaint_mask(self, context, latents):
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None: if self.denoise_mask is None:
return None, None, False return None, None
mask = context.tensors.load(self.denoise_mask.mask_name) mask = context.services.latents.get(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False) mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None: if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name) masked_latents = context.services.latents.get(self.denoise_mask.masked_latents_name)
else: else:
masked_latents = None masked_latents = None
return 1 - mask, masked_latents, self.denoise_mask.gradient return 1 - mask, masked_latents
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
@ -681,11 +665,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed = None seed = None
noise = None noise = None
if self.noise is not None: if self.noise is not None:
noise = context.tensors.load(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
seed = self.noise.seed seed = self.noise.seed
if self.latents is not None: if self.latents is not None:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
if seed is None: if seed is None:
seed = self.latents.seed seed = self.latents.seed
@ -700,7 +684,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if seed is None: if seed is None:
seed = 0 seed = 0
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents) mask, masked_latents = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate. # below. Investigate whether this is appropriate.
@ -711,30 +695,35 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=True, do_classifier_free_guidance=True,
) )
# get the unet's config so that we can pass the base to dispatch_progress() # Get the source node id (we are invoking the prepared node)
unet_config = context.models.get_config(self.unet.unet.key) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState) -> None: def step_callback(state: PipelineIntermediateState):
context.util.sd_step_callback(state, unet_config.base) self.dispatch_progress(context, source_node_id, state, self.unet.unet.base_model)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]: def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.models.load(**lora.model_dump(exclude={"weight"})) lora_info = context.services.model_manager.get_model(
yield (lora_info.model, lora.weight) **lora.model_dump(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
unet_info = context.models.load(**self.unet.unet.model_dump()) unet_info = context.services.model_manager.get_model(
assert isinstance(unet_info.model, UNet2DConditionModel) **self.unet.unet.model_dump(),
context=context,
)
with ( with (
ExitStack() as exit_stack, ExitStack() as exit_stack,
ModelPatcher.apply_freeu(unet_info.model, self.unet.freeu_config), ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet, unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching. # Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()), ModelPatcher.apply_lora_unet(unet, _lora_loader()),
): ):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype) latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None: if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype) noise = noise.to(device=unet.device, dtype=unet.dtype)
@ -788,7 +777,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed=seed, seed=seed,
mask=mask, mask=mask,
masked_latents=masked_latents, masked_latents=masked_latents,
gradient_mask=gradient_mask,
num_inference_steps=num_inference_steps, num_inference_steps=num_inference_steps,
conditioning_data=conditioning_data, conditioning_data=conditioning_data,
control_data=controlnet_data, control_data=controlnet_data,
@ -803,8 +791,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
if choose_torch_device() == torch.device("mps"): if choose_torch_device() == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
name = context.tensors.save(tensor=result_latents) name = f"{context.graph_execution_state_id}__{self.id}"
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=seed) context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents, seed=seed)
@invocation( @invocation(
@ -812,9 +801,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
title="Latents to Image", title="Latents to Image",
tags=["latents", "image", "vae", "l2i"], tags=["latents", "image", "vae", "l2i"],
category="latents", category="latents",
version="1.2.1", version="1.2.0",
) )
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard): class LatentsToImageInvocation(BaseInvocation, WithMetadata):
"""Generates an image from latents.""" """Generates an image from latents."""
latents: LatentsField = InputField( latents: LatentsField = InputField(
@ -830,12 +819,14 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.models.load(**self.vae.vae.model_dump()) vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae: with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device) latents = latents.to(vae.device)
if self.fp32: if self.fp32:
vae.to(dtype=torch.float32) vae.to(dtype=torch.float32)
@ -862,7 +853,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16) vae.to(dtype=torch.float16)
latents = latents.half() latents = latents.half()
if self.tiled or context.config.get().tiled_decode: if self.tiled or context.services.configuration.tiled_decode:
vae.enable_tiling() vae.enable_tiling()
else: else:
vae.disable_tiling() vae.disable_tiling()
@ -886,9 +877,22 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
if choose_torch_device() == torch.device("mps"): if choose_torch_device() == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
image_dto = context.images.save(image=image) image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"] LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@ -899,7 +903,7 @@ LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic",
title="Resize Latents", title="Resize Latents",
tags=["latents", "resize"], tags=["latents", "resize"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
class ResizeLatentsInvocation(BaseInvocation): class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
@ -922,7 +926,7 @@ class ResizeLatentsInvocation(BaseInvocation):
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias) antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
# TODO: # TODO:
device = choose_torch_device() device = choose_torch_device()
@ -940,8 +944,10 @@ class ResizeLatentsInvocation(BaseInvocation):
if device == torch.device("mps"): if device == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
name = context.tensors.save(tensor=resized_latents) name = f"{context.graph_execution_state_id}__{self.id}"
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed) # context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation( @invocation(
@ -949,7 +955,7 @@ class ResizeLatentsInvocation(BaseInvocation):
title="Scale Latents", title="Scale Latents",
tags=["latents", "resize"], tags=["latents", "resize"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
class ScaleLatentsInvocation(BaseInvocation): class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor.""" """Scales latents by a given factor."""
@ -963,7 +969,7 @@ class ScaleLatentsInvocation(BaseInvocation):
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias) antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
# TODO: # TODO:
device = choose_torch_device() device = choose_torch_device()
@ -982,8 +988,10 @@ class ScaleLatentsInvocation(BaseInvocation):
if device == torch.device("mps"): if device == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
name = context.tensors.save(tensor=resized_latents) name = f"{context.graph_execution_state_id}__{self.id}"
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed) # context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation( @invocation(
@ -991,7 +999,7 @@ class ScaleLatentsInvocation(BaseInvocation):
title="Image to Latents", title="Image to Latents",
tags=["latents", "image", "vae", "i2l"], tags=["latents", "image", "vae", "i2l"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
class ImageToLatentsInvocation(BaseInvocation): class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents.""" """Encodes an image into latents."""
@ -1007,9 +1015,8 @@ class ImageToLatentsInvocation(BaseInvocation):
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
@staticmethod @staticmethod
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor: def vae_encode(vae_info, upcast, tiled, image_tensor):
with vae_info as vae: with vae_info as vae:
assert isinstance(vae, torch.nn.Module)
orig_dtype = vae.dtype orig_dtype = vae.dtype
if upcast: if upcast:
vae.to(dtype=torch.float32) vae.to(dtype=torch.float32)
@ -1053,9 +1060,12 @@ class ImageToLatentsInvocation(BaseInvocation):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
vae_info = context.models.load(**self.vae.vae.model_dump()) vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
context=context,
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3: if image_tensor.dim() == 3:
@ -1063,26 +1073,22 @@ class ImageToLatentsInvocation(BaseInvocation):
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor) latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
name = f"{context.graph_execution_state_id}__{self.id}"
latents = latents.to("cpu") latents = latents.to("cpu")
name = context.tensors.save(tensor=latents) context.services.latents.save(name, latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None) return build_latents_output(latents_name=name, latents=latents, seed=None)
@singledispatchmethod @singledispatchmethod
@staticmethod @staticmethod
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor: def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
image_tensor_dist = vae.encode(image_tensor).latent_dist image_tensor_dist = vae.encode(image_tensor).latent_dist
latents: torch.Tensor = image_tensor_dist.sample().to( latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
return latents return latents
@_encode_to_tensor.register @_encode_to_tensor.register
@staticmethod @staticmethod
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor: def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module) return vae.encode(image_tensor).latents
latents: torch.FloatTensor = vae.encode(image_tensor).latents
return latents
@invocation( @invocation(
@ -1090,7 +1096,7 @@ class ImageToLatentsInvocation(BaseInvocation):
title="Blend Latents", title="Blend Latents",
tags=["latents", "blend"], tags=["latents", "blend"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
class BlendLatentsInvocation(BaseInvocation): class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size.""" """Blend two latents using a given alpha. Latents must have same size."""
@ -1106,8 +1112,8 @@ class BlendLatentsInvocation(BaseInvocation):
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha) alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name) latents_a = context.services.latents.get(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name) latents_b = context.services.latents.get(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape: if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.") raise Exception("Latents to blend must be the same size.")
@ -1115,12 +1121,7 @@ class BlendLatentsInvocation(BaseInvocation):
# TODO: # TODO:
device = choose_torch_device() device = choose_torch_device()
def slerp( def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
""" """
Spherical linear interpolation Spherical linear interpolation
Args: Args:
@ -1153,16 +1154,12 @@ class BlendLatentsInvocation(BaseInvocation):
v2 = s0 * v0 + s1 * v1 v2 = s0 * v0 + s1 * v1
if inputs_are_torch: if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device) v2 = torch.from_numpy(v2).to(device)
return v2_torch
else: return v2
assert isinstance(v2, np.ndarray)
return v2
# blend # blend
bl = slerp(self.alpha, latents_a, latents_b) blended_latents = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu") blended_latents = blended_latents.to("cpu")
@ -1170,8 +1167,10 @@ class BlendLatentsInvocation(BaseInvocation):
if device == torch.device("mps"): if device == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
name = context.tensors.save(tensor=blended_latents) name = f"{context.graph_execution_state_id}__{self.id}"
return LatentsOutput.build(latents_name=name, latents=blended_latents) # context.services.latents.set(name, resized_latents)
context.services.latents.save(name, blended_latents)
return build_latents_output(latents_name=name, latents=blended_latents)
# The Crop Latents node was copied from @skunkworxdark's implementation here: # The Crop Latents node was copied from @skunkworxdark's implementation here:
@ -1181,7 +1180,7 @@ class BlendLatentsInvocation(BaseInvocation):
title="Crop Latents", title="Crop Latents",
tags=["latents", "crop"], tags=["latents", "crop"],
category="latents", category="latents",
version="1.0.1", version="1.0.0",
) )
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`. # TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
# Currently, if the class names conflict then 'GET /openapi.json' fails. # Currently, if the class names conflict then 'GET /openapi.json' fails.
@ -1216,7 +1215,7 @@ class CropLatentsCoreInvocation(BaseInvocation):
) )
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
x1 = self.x // LATENT_SCALE_FACTOR x1 = self.x // LATENT_SCALE_FACTOR
y1 = self.y // LATENT_SCALE_FACTOR y1 = self.y // LATENT_SCALE_FACTOR
@ -1225,61 +1224,7 @@ class CropLatentsCoreInvocation(BaseInvocation):
cropped_latents = latents[..., y1:y2, x1:x2] cropped_latents = latents[..., y1:y2, x1:x2]
name = context.tensors.save(tensor=cropped_latents) name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, cropped_latents)
return LatentsOutput.build(latents_name=name, latents=cropped_latents) return build_latents_output(latents_name=name, latents=cropped_latents)
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image (in pixels)")
height: int = OutputField(description="The ideal height of the image (in pixels)")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.2",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(**self.unet.unet.model_dump())
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif unet_config.base == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)

View File

@ -5,11 +5,10 @@ from typing import Literal
import numpy as np import numpy as np
from pydantic import ValidationInfo, field_validator from pydantic import ValidationInfo, field_validator
from invokeai.app.invocations.fields import FieldDescriptions, InputField
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.shared.fields import FieldDescriptions
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0") @invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")

View File

@ -5,22 +5,20 @@ from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
InputField,
InvocationContext,
MetadataField,
OutputField,
UIType,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.controlnet_image_processors import ControlField from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
MetadataField,
OutputField,
UIType,
)
from invokeai.app.invocations.ip_adapter import IPAdapterModelField from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.shared.fields import FieldDescriptions
from ...version import __version__ from ...version import __version__
@ -33,7 +31,7 @@ class MetadataItemField(BaseModel):
class LoRAMetadataField(BaseModel): class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field""" """LoRA Metadata Field"""
model: LoRAModelField = Field(description=FieldDescriptions.lora_model) lora: LoRAModelField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight) weight: float = Field(description=FieldDescriptions.lora_weight)
@ -114,7 +112,7 @@ GENERATION_MODES = Literal[
] ]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.1.1") @invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.1")
class CoreMetadataInvocation(BaseInvocation): class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField""" """Collects core generation metadata into a MetadataField"""

View File

@ -1,24 +1,31 @@
import copy import copy
from typing import List, Optional from typing import List, Optional
from pydantic import BaseModel, Field from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig from invokeai.app.shared.models import FreeUConfig
from ...backend.model_manager import SubModelType from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation, invocation,
invocation_output, invocation_output,
) )
class ModelInfo(BaseModel): class ModelInfo(BaseModel):
key: str = Field(description="Key of model as returned by ModelRecordServiceBase.get_model()") model_name: str = Field(description="Info to load submodel")
submodel_type: Optional[SubModelType] = Field(default=None, description="Info to load submodel") base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class LoraInfo(ModelInfo): class LoraInfo(ModelInfo):
@ -48,7 +55,7 @@ class VaeField(BaseModel):
@invocation_output("unet_output") @invocation_output("unet_output")
class UNetOutput(BaseInvocationOutput): class UNetOutput(BaseInvocationOutput):
"""Base class for invocations that output a UNet field.""" """Base class for invocations that output a UNet field"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet") unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
@ -77,13 +84,20 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
class MainModelField(BaseModel): class MainModelField(BaseModel):
"""Main model field""" """Main model field"""
key: str = Field(description="Model key") model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel): class LoRAModelField(BaseModel):
"""LoRA model field""" """LoRA model field"""
key: str = Field(description="LoRA model key") model_name: str = Field(description="Name of the LoRA model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation( @invocation(
@ -91,7 +105,7 @@ class LoRAModelField(BaseModel):
title="Main Model", title="Main Model",
tags=["model"], tags=["model"],
category="model", category="model",
version="1.0.1", version="1.0.0",
) )
class MainModelLoaderInvocation(BaseInvocation): class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""
@ -100,40 +114,85 @@ class MainModelLoaderInvocation(BaseInvocation):
# TODO: precision? # TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput: def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
key = self.model.key base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.models.exists(key): if not context.services.model_manager.model_exists(
raise Exception(f"Unknown model {key}") model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ModelLoaderOutput( return ModelLoaderOutput(
unet=UNetField( unet=UNetField(
unet=ModelInfo( unet=ModelInfo(
key=key, model_name=model_name,
submodel_type=SubModelType.UNet, base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
), ),
scheduler=ModelInfo( scheduler=ModelInfo(
key=key, model_name=model_name,
submodel_type=SubModelType.Scheduler, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
), ),
loras=[], loras=[],
), ),
clip=ClipField( clip=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
key=key, model_name=model_name,
submodel_type=SubModelType.Tokenizer, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
), ),
text_encoder=ModelInfo( text_encoder=ModelInfo(
key=key, model_name=model_name,
submodel_type=SubModelType.TextEncoder, base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
), ),
loras=[], loras=[],
skipped_layers=0, skipped_layers=0,
), ),
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(
key=key, model_name=model_name,
submodel_type=SubModelType.Vae, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
), ),
), ),
) )
@ -147,7 +206,7 @@ class LoraLoaderOutput(BaseInvocationOutput):
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.1") @invocation("lora_loader", title="LoRA", tags=["model"], category="model", version="1.0.0")
class LoraLoaderInvocation(BaseInvocation): class LoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
@ -170,16 +229,21 @@ class LoraLoaderInvocation(BaseInvocation):
if self.lora is None: if self.lora is None:
raise Exception("No LoRA provided") raise Exception("No LoRA provided")
lora_key = self.lora.key base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.models.exists(lora_key): if not context.services.model_manager.model_exists(
raise Exception(f"Unkown lora: {lora_key}!") base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras): if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet') raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras): if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip') raise Exception(f'Lora "{lora_name}" already applied to clip')
output = LoraLoaderOutput() output = LoraLoaderOutput()
@ -187,8 +251,10 @@ class LoraLoaderInvocation(BaseInvocation):
output.unet = copy.deepcopy(self.unet) output.unet = copy.deepcopy(self.unet)
output.unet.loras.append( output.unet.loras.append(
LoraInfo( LoraInfo(
key=lora_key, base_model=base_model,
submodel_type=None, model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight, weight=self.weight,
) )
) )
@ -197,8 +263,10 @@ class LoraLoaderInvocation(BaseInvocation):
output.clip = copy.deepcopy(self.clip) output.clip = copy.deepcopy(self.clip)
output.clip.loras.append( output.clip.loras.append(
LoraInfo( LoraInfo(
key=lora_key, base_model=base_model,
submodel_type=None, model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight, weight=self.weight,
) )
) )
@ -220,7 +288,7 @@ class SDXLLoraLoaderOutput(BaseInvocationOutput):
title="SDXL LoRA", title="SDXL LoRA",
tags=["lora", "model"], tags=["lora", "model"],
category="model", category="model",
version="1.0.1", version="1.0.0",
) )
class SDXLLoraLoaderInvocation(BaseInvocation): class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
@ -250,19 +318,24 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
if self.lora is None: if self.lora is None:
raise Exception("No LoRA provided") raise Exception("No LoRA provided")
lora_key = self.lora.key base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.models.exists(lora_key): if not context.services.model_manager.model_exists(
raise Exception(f"Unknown lora: {lora_key}!") base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unknown lora name: {lora_name}!")
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras): if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_key}" already applied to unet') raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras): if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip') raise Exception(f'Lora "{lora_name}" already applied to clip')
if self.clip2 is not None and any(lora.key == lora_key for lora in self.clip2.loras): if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_key}" already applied to clip2') raise Exception(f'Lora "{lora_name}" already applied to clip2')
output = SDXLLoraLoaderOutput() output = SDXLLoraLoaderOutput()
@ -270,8 +343,10 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.unet = copy.deepcopy(self.unet) output.unet = copy.deepcopy(self.unet)
output.unet.loras.append( output.unet.loras.append(
LoraInfo( LoraInfo(
key=lora_key, base_model=base_model,
submodel_type=None, model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight, weight=self.weight,
) )
) )
@ -280,8 +355,10 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.clip = copy.deepcopy(self.clip) output.clip = copy.deepcopy(self.clip)
output.clip.loras.append( output.clip.loras.append(
LoraInfo( LoraInfo(
key=lora_key, base_model=base_model,
submodel_type=None, model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight, weight=self.weight,
) )
) )
@ -290,8 +367,10 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.clip2 = copy.deepcopy(self.clip2) output.clip2 = copy.deepcopy(self.clip2)
output.clip2.loras.append( output.clip2.loras.append(
LoraInfo( LoraInfo(
key=lora_key, base_model=base_model,
submodel_type=None, model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight, weight=self.weight,
) )
) )
@ -302,10 +381,13 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
class VAEModelField(BaseModel): class VAEModelField(BaseModel):
"""Vae model field""" """Vae model field"""
key: str = Field(description="Model's key") model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1") @invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation): class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput""" """Loads a VAE model, outputting a VaeLoaderOutput"""
@ -316,12 +398,25 @@ class VaeLoaderInvocation(BaseInvocation):
) )
def invoke(self, context: InvocationContext) -> VAEOutput: def invoke(self, context: InvocationContext) -> VAEOutput:
key = self.vae_model.key base_model = self.vae_model.base_model
model_name = self.vae_model.model_name
model_type = ModelType.Vae
if not context.models.exists(key): if not context.services.model_manager.model_exists(
raise Exception(f"Unkown vae: {key}!") base_model=base_model,
model_name=model_name,
return VAEOutput(vae=VaeField(vae=ModelInfo(key=key))) model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VAEOutput(
vae=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
)
@invocation_output("seamless_output") @invocation_output("seamless_output")

View File

@ -4,15 +4,17 @@
import torch import torch
from pydantic import field_validator from pydantic import field_validator
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR from invokeai.app.invocations.latent import LatentsField
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX from invokeai.app.util.misc import SEED_MAX
from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -67,13 +69,13 @@ class NoiseOutput(BaseInvocationOutput):
width: int = OutputField(description=FieldDescriptions.width) width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height) height: int = OutputField(description=FieldDescriptions.height)
@classmethod
def build(cls, latents_name: str, latents: torch.Tensor, seed: int) -> "NoiseOutput": def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
return cls( return NoiseOutput(
noise=LatentsField(latents_name=latents_name, seed=seed), noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * LATENT_SCALE_FACTOR, width=latents.size()[3] * 8,
height=latents.size()[2] * LATENT_SCALE_FACTOR, height=latents.size()[2] * 8,
) )
@invocation( @invocation(
@ -94,13 +96,13 @@ class NoiseInvocation(BaseInvocation):
) )
width: int = InputField( width: int = InputField(
default=512, default=512,
multiple_of=LATENT_SCALE_FACTOR, multiple_of=8,
gt=0, gt=0,
description=FieldDescriptions.width, description=FieldDescriptions.width,
) )
height: int = InputField( height: int = InputField(
default=512, default=512,
multiple_of=LATENT_SCALE_FACTOR, multiple_of=8,
gt=0, gt=0,
description=FieldDescriptions.height, description=FieldDescriptions.height,
) )
@ -122,5 +124,6 @@ class NoiseInvocation(BaseInvocation):
seed=self.seed, seed=self.seed,
use_cpu=self.use_cpu, use_cpu=self.use_cpu,
) )
name = context.tensors.save(tensor=noise) name = f"{context.graph_execution_state_id}__{self.id}"
return NoiseOutput.build(latents_name=name, latents=noise, seed=self.seed) context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise, seed=self.seed)

View File

@ -0,0 +1,508 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
import inspect
import re
# from contextlib import ExitStack
from typing import List, Literal, Union
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, ConfigDict, Field, field_validator
from tqdm import tqdm
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
UIType,
WithMetadata,
invocation,
invocation_output,
)
from .controlnet_image_processors import ControlField
from .latent import SAMPLER_NAME_VALUES, LatentsField, LatentsOutput, build_latents_output, get_scheduler
from .model import ClipField, ModelInfo, UNetField, VaeField
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
PRECISION_VALUES = Literal[tuple(ORT_TO_NP_TYPE.keys())]
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0")
class ONNXPromptInvocation(BaseInvocation):
prompt: str = InputField(default="", description=FieldDescriptions.raw_prompt, ui_component=UIComponent.Textarea)
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.model_dump(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.model_dump(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.clip.loras
]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model,
)
)
except Exception:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
if loras or ti_list:
text_encoder.release_session()
with (
ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager),
):
text_encoder.create_session()
# copy from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
text_inputs = tokenizer(
self.prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
"""
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
"""
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# Text to image
@invocation(
"t2l_onnx",
title="ONNX Text to Latents",
tags=["latents", "inference", "txt2img", "onnx"],
category="latents",
version="1.0.0",
)
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond,
input=Input.Connection,
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond,
input=Input.Connection,
)
noise: LatentsField = InputField(
description=FieldDescriptions.noise,
input=Input.Connection,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5,
ge=1,
description=FieldDescriptions.cfg_scale,
)
scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler
)
precision: PRECISION_VALUES = InputField(default="tensor(float16)", description=FieldDescriptions.precision)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
)
control: Union[ControlField, list[ControlField]] = InputField(
default=None,
description=FieldDescriptions.control,
)
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@field_validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
if isinstance(c, torch.Tensor):
c = c.cpu().numpy()
if isinstance(uc, torch.Tensor):
uc = uc.cpu().numpy()
device = torch.device(choose_torch_device())
prompt_embeds = np.concatenate([uc, c])
latents = context.services.latents.get(self.noise.latents_name)
if isinstance(latents, torch.Tensor):
latents = latents.cpu().numpy()
# TODO: better execution device handling
latents = latents.astype(ORT_TO_NP_TYPE[self.precision])
# get the initial random noise unless the user supplied it
do_classifier_free_guidance = True
# latents_dtype = prompt_embeds.dtype
# latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
# if latents.shape != latents_shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=0, # TODO: refactor this node
)
def torch2numpy(latent: torch.Tensor):
return latent.cpu().numpy()
def numpy2torch(latent, device):
return torch.from_numpy(latent).to(device)
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.model_dump(),
source_node_id=source_node_id,
)
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = {}
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump())
with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.unet.loras
]
if loras:
unet.release_session()
with ONNXModelPatcher.apply_lora_unet(unet, loras):
# TODO:
_, _, h, w = latents.shape
unet.create_session(h, w)
timestep_dtype = next(
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
for i in tqdm(range(len(scheduler.timesteps))):
t = scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
latent_model_input = latent_model_input.cpu().numpy()
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
noise_pred = noise_pred[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = scheduler.step(
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
)
latents = torch2numpy(scheduler_output.prev_sample)
state = PipelineIntermediateState(
run_id="test", step=i, timestep=timestep, latents=scheduler_output.prev_sample
)
dispatch_progress(self, context=context, source_node_id=source_node_id, intermediate_state=state)
# call the callback, if provided
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
# Latent to image
@invocation(
"l2i_onnx",
title="ONNX Latents to Image",
tags=["latents", "image", "vae", "onnx"],
category="image",
version="1.2.0",
)
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.denoised_latents,
input=Input.Connection,
)
vae: VaeField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
# tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.model_dump(),
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with vae_info as vae:
vae.create_session()
# copied from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate([vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])])
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
image = VaeImageProcessor.numpy_to_pil(image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation_output("model_loader_output_onnx")
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
unet: UNetField = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
vae_decoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Decoder")
vae_encoder: VaeField = OutputField(default=None, description=FieldDescriptions.vae, title="VAE Encoder")
class OnnxModelField(BaseModel):
"""Onnx model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
model: OnnxModelField = InputField(
description=FieldDescriptions.onnx_main_model, input=Input.Direct, ui_type=UIType.ONNXModel
)
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.ONNX
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeEncoder,
),
),
)

View File

@ -40,10 +40,8 @@ from easing_functions import (
from matplotlib.ticker import MaxNLocator from matplotlib.ticker import MaxNLocator
from invokeai.app.invocations.primitives import FloatCollectionOutput from invokeai.app.invocations.primitives import FloatCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .fields import InputField
@invocation( @invocation(
@ -111,7 +109,7 @@ EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
title="Step Param Easing", title="Step Param Easing",
tags=["step", "easing"], tags=["step", "easing"],
category="step", category="step",
version="1.0.1", version="1.0.0",
) )
class StepParamEasingInvocation(BaseInvocation): class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps""" """Experimental per-step parameter easing for denoising steps"""
@ -150,19 +148,19 @@ class StepParamEasingInvocation(BaseInvocation):
postlist = list(num_poststeps * [self.post_end_value]) postlist = list(num_poststeps * [self.post_end_value])
if log_diagnostics: if log_diagnostics:
context.logger.debug("start_step: " + str(start_step)) context.services.logger.debug("start_step: " + str(start_step))
context.logger.debug("end_step: " + str(end_step)) context.services.logger.debug("end_step: " + str(end_step))
context.logger.debug("num_easing_steps: " + str(num_easing_steps)) context.services.logger.debug("num_easing_steps: " + str(num_easing_steps))
context.logger.debug("num_presteps: " + str(num_presteps)) context.services.logger.debug("num_presteps: " + str(num_presteps))
context.logger.debug("num_poststeps: " + str(num_poststeps)) context.services.logger.debug("num_poststeps: " + str(num_poststeps))
context.logger.debug("prelist size: " + str(len(prelist))) context.services.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("postlist size: " + str(len(postlist))) context.services.logger.debug("postlist size: " + str(len(postlist)))
context.logger.debug("prelist: " + str(prelist)) context.services.logger.debug("prelist: " + str(prelist))
context.logger.debug("postlist: " + str(postlist)) context.services.logger.debug("postlist: " + str(postlist))
easing_class = EASING_FUNCTIONS_MAP[self.easing] easing_class = EASING_FUNCTIONS_MAP[self.easing]
if log_diagnostics: if log_diagnostics:
context.logger.debug("easing class: " + str(easing_class)) context.services.logger.debug("easing class: " + str(easing_class))
easing_list = [] easing_list = []
if self.mirror: # "expected" mirroring if self.mirror: # "expected" mirroring
# if number of steps is even, squeeze duration down to (number_of_steps)/2 # if number of steps is even, squeeze duration down to (number_of_steps)/2
@ -173,7 +171,7 @@ class StepParamEasingInvocation(BaseInvocation):
base_easing_duration = int(np.ceil(num_easing_steps / 2.0)) base_easing_duration = int(np.ceil(num_easing_steps / 2.0))
if log_diagnostics: if log_diagnostics:
context.logger.debug("base easing duration: " + str(base_easing_duration)) context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class( easing_function = easing_class(
start=self.start_value, start=self.start_value,
@ -185,14 +183,14 @@ class StepParamEasingInvocation(BaseInvocation):
easing_val = easing_function.ease(step_index) easing_val = easing_function.ease(step_index)
base_easing_vals.append(easing_val) base_easing_vals.append(easing_val)
if log_diagnostics: if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val)) context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(easing_val))
if even_num_steps: if even_num_steps:
mirror_easing_vals = list(reversed(base_easing_vals)) mirror_easing_vals = list(reversed(base_easing_vals))
else: else:
mirror_easing_vals = list(reversed(base_easing_vals[0:-1])) mirror_easing_vals = list(reversed(base_easing_vals[0:-1]))
if log_diagnostics: if log_diagnostics:
context.logger.debug("base easing vals: " + str(base_easing_vals)) context.services.logger.debug("base easing vals: " + str(base_easing_vals))
context.logger.debug("mirror easing vals: " + str(mirror_easing_vals)) context.services.logger.debug("mirror easing vals: " + str(mirror_easing_vals))
easing_list = base_easing_vals + mirror_easing_vals easing_list = base_easing_vals + mirror_easing_vals
# FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely # FIXME: add alt_mirror option (alternative to default or mirror), or remove entirely
@ -227,12 +225,12 @@ class StepParamEasingInvocation(BaseInvocation):
step_val = easing_function.ease(step_index) step_val = easing_function.ease(step_index)
easing_list.append(step_val) easing_list.append(step_val)
if log_diagnostics: if log_diagnostics:
context.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val)) context.services.logger.debug("step_index: " + str(step_index) + ", easing_val: " + str(step_val))
if log_diagnostics: if log_diagnostics:
context.logger.debug("prelist size: " + str(len(prelist))) context.services.logger.debug("prelist size: " + str(len(prelist)))
context.logger.debug("easing_list size: " + str(len(easing_list))) context.services.logger.debug("easing_list size: " + str(len(easing_list)))
context.logger.debug("postlist size: " + str(len(postlist))) context.services.logger.debug("postlist size: " + str(len(postlist)))
param_list = prelist + easing_list + postlist param_list = prelist + easing_list + postlist

View File

@ -1,28 +1,20 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional from typing import Optional, Tuple
import torch import torch
from pydantic import BaseModel, Field
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.invocations.fields import (
ColorField,
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
LatentsField,
OutputField,
UIComponent,
)
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -229,6 +221,18 @@ class StringCollectionInvocation(BaseInvocation):
# region Image # region Image
class ImageField(BaseModel):
"""An image primitive field"""
image_name: str = Field(description="The name of the image")
class BoardField(BaseModel):
"""A board primitive field"""
board_id: str = Field(description="The id of the board")
@invocation_output("image_output") @invocation_output("image_output")
class ImageOutput(BaseInvocationOutput): class ImageOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image""" """Base class for nodes that output a single image"""
@ -237,14 +241,6 @@ class ImageOutput(BaseInvocationOutput):
width: int = OutputField(description="The width of the image in pixels") width: int = OutputField(description="The width of the image in pixels")
height: int = OutputField(description="The height of the image in pixels") height: int = OutputField(description="The height of the image in pixels")
@classmethod
def build(cls, image_dto: ImageDTO) -> "ImageOutput":
return cls(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
@invocation_output("image_collection_output") @invocation_output("image_collection_output")
class ImageCollectionOutput(BaseInvocationOutput): class ImageCollectionOutput(BaseInvocationOutput):
@ -255,14 +251,16 @@ class ImageCollectionOutput(BaseInvocationOutput):
) )
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.1") @invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0")
class ImageInvocation(BaseInvocation): class ImageInvocation(
BaseInvocation,
):
"""An image primitive value""" """An image primitive value"""
image: ImageField = InputField(description="The image to load") image: ImageField = InputField(description="The image to load")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput( return ImageOutput(
image=ImageField(image_name=self.image.image_name), image=ImageField(image_name=self.image.image_name),
@ -292,44 +290,42 @@ class ImageCollectionInvocation(BaseInvocation):
# region DenoiseMask # region DenoiseMask
class DenoiseMaskField(BaseModel):
"""An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents")
@invocation_output("denoise_mask_output") @invocation_output("denoise_mask_output")
class DenoiseMaskOutput(BaseInvocationOutput): class DenoiseMaskOutput(BaseInvocationOutput):
"""Base class for nodes that output a single image""" """Base class for nodes that output a single image"""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run") denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
@classmethod
def build(
cls, mask_name: str, masked_latents_name: Optional[str] = None, gradient: bool = False
) -> "DenoiseMaskOutput":
return cls(
denoise_mask=DenoiseMaskField(
mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=gradient
),
)
# endregion # endregion
# region Latents # region Latents
class LatentsField(BaseModel):
"""A latents tensor primitive field"""
latents_name: str = Field(description="The name of the latents")
seed: Optional[int] = Field(default=None, description="Seed used to generate this latents")
@invocation_output("latents_output") @invocation_output("latents_output")
class LatentsOutput(BaseInvocationOutput): class LatentsOutput(BaseInvocationOutput):
"""Base class for nodes that output a single latents tensor""" """Base class for nodes that output a single latents tensor"""
latents: LatentsField = OutputField(description=FieldDescriptions.latents) latents: LatentsField = OutputField(
description=FieldDescriptions.latents,
)
width: int = OutputField(description=FieldDescriptions.width) width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height) height: int = OutputField(description=FieldDescriptions.height)
@classmethod
def build(cls, latents_name: str, latents: torch.Tensor, seed: Optional[int] = None) -> "LatentsOutput":
return cls(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * LATENT_SCALE_FACTOR,
height=latents.size()[2] * LATENT_SCALE_FACTOR,
)
@invocation_output("latents_collection_output") @invocation_output("latents_collection_output")
class LatentsCollectionOutput(BaseInvocationOutput): class LatentsCollectionOutput(BaseInvocationOutput):
@ -341,7 +337,7 @@ class LatentsCollectionOutput(BaseInvocationOutput):
@invocation( @invocation(
"latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.1" "latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.0"
) )
class LatentsInvocation(BaseInvocation): class LatentsInvocation(BaseInvocation):
"""A latents tensor primitive value""" """A latents tensor primitive value"""
@ -349,9 +345,9 @@ class LatentsInvocation(BaseInvocation):
latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection) latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection)
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
return LatentsOutput.build(self.latents.latents_name, latents) return build_latents_output(self.latents.latents_name, latents)
@invocation( @invocation(
@ -372,11 +368,31 @@ class LatentsCollectionInvocation(BaseInvocation):
return LatentsCollectionOutput(collection=self.collection) return LatentsCollectionOutput(collection=self.collection)
def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int] = None):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
# endregion # endregion
# region Color # region Color
class ColorField(BaseModel):
"""A color primitive field"""
r: int = Field(ge=0, le=255, description="The red component")
g: int = Field(ge=0, le=255, description="The green component")
b: int = Field(ge=0, le=255, description="The blue component")
a: int = Field(ge=0, le=255, description="The alpha component")
def tuple(self) -> Tuple[int, int, int, int]:
return (self.r, self.g, self.b, self.a)
@invocation_output("color_output") @invocation_output("color_output")
class ColorOutput(BaseInvocationOutput): class ColorOutput(BaseInvocationOutput):
"""Base class for nodes that output a single color""" """Base class for nodes that output a single color"""
@ -408,16 +424,18 @@ class ColorInvocation(BaseInvocation):
# region Conditioning # region Conditioning
class ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""
conditioning_name: str = Field(description="The name of conditioning tensor")
@invocation_output("conditioning_output") @invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput): class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor""" """Base class for nodes that output a single conditioning tensor"""
conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond) conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond)
@classmethod
def build(cls, conditioning_name: str) -> "ConditioningOutput":
return cls(conditioning=ConditioningField(conditioning_name=conditioning_name))
@invocation_output("conditioning_collection_output") @invocation_output("conditioning_collection_output")
class ConditioningCollectionOutput(BaseInvocationOutput): class ConditioningCollectionOutput(BaseInvocationOutput):

View File

@ -6,10 +6,8 @@ from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPrompt
from pydantic import field_validator from pydantic import field_validator
from invokeai.app.invocations.primitives import StringCollectionOutput from invokeai.app.invocations.primitives import StringCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
from .fields import InputField, UIComponent
@invocation( @invocation(

View File

@ -1,10 +1,14 @@
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from ...backend.model_management import ModelType, SubModelType
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -30,7 +34,7 @@ class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE") vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.1") @invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.0")
class SDXLModelLoaderInvocation(BaseInvocation): class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels.""" """Loads an sdxl base model, outputting its submodels."""
@ -40,52 +44,72 @@ class SDXLModelLoaderInvocation(BaseInvocation):
# TODO: precision? # TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput: def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
model_key = self.model.key base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.models.exists(model_key): if not context.services.model_manager.model_exists(
raise Exception(f"Unknown model: {model_key}") model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
return SDXLModelLoaderOutput( return SDXLModelLoaderOutput(
unet=UNetField( unet=UNetField(
unet=ModelInfo( unet=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.UNet, base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
), ),
scheduler=ModelInfo( scheduler=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Scheduler, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
), ),
loras=[], loras=[],
), ),
clip=ClipField( clip=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Tokenizer, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
), ),
text_encoder=ModelInfo( text_encoder=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.TextEncoder, base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
), ),
loras=[], loras=[],
skipped_layers=0, skipped_layers=0,
), ),
clip2=ClipField( clip2=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Tokenizer2, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer2,
), ),
text_encoder=ModelInfo( text_encoder=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.TextEncoder2, base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder2,
), ),
loras=[], loras=[],
skipped_layers=0, skipped_layers=0,
), ),
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Vae, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
), ),
), ),
) )
@ -96,7 +120,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
title="SDXL Refiner Model", title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"], tags=["model", "sdxl", "refiner"],
category="model", category="model",
version="1.0.1", version="1.0.0",
) )
class SDXLRefinerModelLoaderInvocation(BaseInvocation): class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels.""" """Loads an sdxl refiner model, outputting its submodels."""
@ -109,40 +133,56 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
# TODO: precision? # TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput: def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
model_key = self.model.key base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.models.exists(model_key): if not context.services.model_manager.model_exists(
raise Exception(f"Unknown model: {model_key}") model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
return SDXLRefinerModelLoaderOutput( return SDXLRefinerModelLoaderOutput(
unet=UNetField( unet=UNetField(
unet=ModelInfo( unet=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.UNet, base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
), ),
scheduler=ModelInfo( scheduler=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Scheduler, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
), ),
loras=[], loras=[],
), ),
clip2=ClipField( clip2=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Tokenizer2, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer2,
), ),
text_encoder=ModelInfo( text_encoder=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.TextEncoder2, base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder2,
), ),
loras=[], loras=[],
skipped_layers=0, skipped_layers=0,
), ),
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(
key=model_key, model_name=model_name,
submodel_type=SubModelType.Vae, base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae,
), ),
), ),
) )

View File

@ -2,15 +2,16 @@
import re import re
from invokeai.app.services.shared.invocation_context import InvocationContext
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
InputField,
InvocationContext,
OutputField,
UIComponent,
invocation, invocation,
invocation_output, invocation_output,
) )
from .fields import InputField, OutputField, UIComponent
from .primitives import StringOutput from .primitives import StringOutput

View File

@ -1,21 +1,28 @@
from typing import Union from typing import Union
from pydantic import BaseModel, Field, field_validator, model_validator from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Input,
InputField,
InvocationContext,
OutputField,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.shared.fields import FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.model_management.models.base import BaseModelType
class T2IAdapterModelField(BaseModel): class T2IAdapterModelField(BaseModel):
key: str = Field(description="Model record key for the T2I-Adapter model") model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class T2IAdapterField(BaseModel): class T2IAdapterField(BaseModel):
@ -30,17 +37,6 @@ class T2IAdapterField(BaseModel):
) )
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use") resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("t2i_adapter_output") @invocation_output("t2i_adapter_output")
class T2IAdapterOutput(BaseInvocationOutput): class T2IAdapterOutput(BaseInvocationOutput):
@ -48,7 +44,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
@invocation( @invocation(
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1" "t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.0"
) )
class T2IAdapterInvocation(BaseInvocation): class T2IAdapterInvocation(BaseInvocation):
"""Collects T2I-Adapter info to pass to other nodes.""" """Collects T2I-Adapter info to pass to other nodes."""
@ -65,7 +61,7 @@ class T2IAdapterInvocation(BaseInvocation):
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight" default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"
) )
begin_step_percent: float = InputField( begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)" default=0, ge=-1, le=2, description="When the T2I-Adapter is first applied (% of total steps)"
) )
end_step_percent: float = InputField( end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)" default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
@ -75,17 +71,6 @@ class T2IAdapterInvocation(BaseInvocation):
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.", description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
) )
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v):
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self):
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> T2IAdapterOutput: def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
return T2IAdapterOutput( return T2IAdapterOutput(
t2i_adapter=T2IAdapterField( t2i_adapter=T2IAdapterField(

View File

@ -8,12 +8,16 @@ from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
Classification, Classification,
Input,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.fields import ImageField, Input, InputField, OutputField, WithBoard, WithMetadata from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.tiles.tiles import ( from invokeai.backend.tiles.tiles import (
calc_tiles_even_split, calc_tiles_even_split,
calc_tiles_min_overlap, calc_tiles_min_overlap,
@ -232,7 +236,7 @@ BLEND_MODES = Literal["Linear", "Seam"]
version="1.1.0", version="1.1.0",
classification=Classification.Beta, classification=Classification.Beta,
) )
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard): class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
"""Merge multiple tile images into a single image.""" """Merge multiple tile images into a single image."""
# Inputs # Inputs
@ -264,7 +268,7 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# existed in memory at an earlier point in the graph. # existed in memory at an earlier point in the graph.
tile_np_images: list[np.ndarray] = [] tile_np_images: list[np.ndarray] = []
for image in images: for image in images:
pil_image = context.images.get_pil(image.image_name) pil_image = context.services.images.get_pil_image(image.image_name)
pil_image = pil_image.convert("RGB") pil_image = pil_image.convert("RGB")
tile_np_images.append(np.array(pil_image)) tile_np_images.append(np.array(pil_image))
@ -287,5 +291,18 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
# Convert into a PIL image and save # Convert into a PIL image and save
pil_image = Image.fromarray(np_image) pil_image = Image.fromarray(np_image)
image_dto = context.images.save(image=pil_image) image_dto = context.services.images.create(
return ImageOutput.build(image_dto) image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -5,18 +5,16 @@ from typing import Literal
import cv2 import cv2
import numpy as np import numpy as np
import torch import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image from PIL import Image
from pydantic import ConfigDict from pydantic import ConfigDict
from invokeai.app.invocations.fields import ImageField from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
from .fields import InputField, WithBoard, WithMetadata
# TODO: Populate this from disk? # TODO: Populate this from disk?
# TODO: Use model manager to load? # TODO: Use model manager to load?
@ -31,8 +29,8 @@ if choose_torch_device() == torch.device("mps"):
from torch import mps from torch import mps
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.1") @invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.3.0")
class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard): class ESRGANInvocation(BaseInvocation, WithMetadata):
"""Upscales an image using RealESRGAN.""" """Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image") image: ImageField = InputField(description="The input image")
@ -44,8 +42,8 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
model_config = ConfigDict(protected_namespaces=()) model_config = ConfigDict(protected_namespaces=())
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.config.get().models_path models_path = context.services.configuration.models_path
rrdbnet_model = None rrdbnet_model = None
netscale = None netscale = None
@ -89,7 +87,7 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
netscale = 2 netscale = 2
else: else:
msg = f"Invalid RealESRGAN model: {self.model_name}" msg = f"Invalid RealESRGAN model: {self.model_name}"
context.logger.error(msg) context.services.logger.error(msg)
raise ValueError(msg) raise ValueError(msg)
esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}") esrgan_model_path = Path(f"core/upscaling/realesrgan/{self.model_name}")
@ -112,6 +110,19 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
if choose_torch_device() == torch.device("mps"): if choose_torch_device() == torch.device("mps"):
mps.empty_cache() mps.empty_cache()
image_dto = context.images.save(image=pil_image) image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=context.workflow,
)
return ImageOutput.build(image_dto) return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -1,14 +0,0 @@
from typing import Union
def validate_weights(weights: Union[float, list[float]]) -> None:
"""Validate that all control weights in the valid range"""
to_validate = weights if isinstance(weights, list) else [weights]
if any(i < -1 or i > 2 for i in to_validate):
raise ValueError("Control weights must be within -1 to 2 range")
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
"""Validate that begin_step_percent is less than end_step_percent"""
if begin_step_percent >= end_step_percent:
raise ValueError("Begin step percent must be less than or equal to end step percent")

Some files were not shown because too many files have changed in this diff Show More