Compare commits

..

315 Commits

Author SHA1 Message Date
46405c5f09 fix(mm): fix update error
whoops!
2023-08-08 12:25:45 +10:00
4367061b19 fix(ModelManager): fix overridden VAE with relative path (#4059) 2023-08-07 12:57:32 -07:00
f272a44feb Merge branch 'main' into refactor/model_manager_instantiate 2023-08-07 10:59:28 -07:00
ae17d01e1d Fix hue adjustment (#4182)
* Fix hue adjustment

Hue adjustment wasn't working correctly because color channels got swapped. This has now been fixed and we're using PIL rather than cv2 to do the RGBA->HSV->RGBA conversion. The range of hue adjustment is also the more typical 0..360 degrees.
2023-08-06 23:23:51 +00:00
5bfd6cb66f Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate
# Conflicts:
#	invokeai/backend/model_management/model_manager.py
2023-08-05 22:02:28 -07:00
d09dfc3e9b fix(api): use db_location instead of db_path_string
This may just be the SQLite memory sentinel value.
2023-08-06 14:09:04 +10:00
66f524cae7 fix(mm): fix a lot of typing issues
Most fixes are just things being typed as `str` but having default values of `None`, but there are some minor logic changes.
2023-08-06 14:09:04 +10:00
9ba50130a1 fix(api): fix db location types
The services all want strings instead of `Path`s; create variable for the string representation of the path provided by the config services.
2023-08-06 14:09:04 +10:00
d4cf2d2666 fix(api): fix ApiDependencies.invoker types
ApiDependencies.invoker` provides typing for the API's services layer. Marking it `Optional` results in all the routes seeing it as optional, which is not good.

Instead of marking it optional to satisfy the initial assignment to `None`, we can just skip the initial assignment. This preserves the IDE hinting in API layer and is types-legal.
2023-08-06 14:09:04 +10:00
b8b589c150 fix(nodes): fix hsl nodes rebase conflict 2023-08-06 09:57:49 +10:00
d93900a8de Added HSL Nodes 2023-08-06 09:57:49 +10:00
7f4c387080 test(model_management): factor out name strings 2023-08-05 15:46:46 -07:00
80876bbbd1 Merge remote-tracking branch 'origin/refactor/model_manager_instantiate' into refactor/model_manager_instantiate 2023-08-05 15:25:05 -07:00
7a4ff4c089 Merge branch 'main' into refactor/model_manager_instantiate 2023-08-05 15:23:38 -07:00
44bf308192 test(model_management): add a couple tests for _get_model_path 2023-08-05 15:22:23 -07:00
dc96a3e79d Fix random number generator
Passing in seed=0 is not equivalent to seed=None. The latter will get a new seed from entropy in the OS, and that's what we should be using.
2023-08-06 00:29:08 +10:00
c076f1397e rebuild frontend 2023-08-05 14:40:42 +10:00
2568aafc0b bump version number so that pip updates work 2023-08-05 14:40:42 +10:00
65ed224bfc Merge branch 'main' into refactor/model_manager_instantiate 2023-08-04 21:34:38 -07:00
b6e369c745 chore: black 2023-08-05 12:28:35 +10:00
ecabfc252b devices.py - Update MPS FP16 check to account for upcoming MacOS Sonoma
float16 doesn't seem to work on MacOS Sonoma due to further changes with Metal. This'll default back to float32 for Sonoma users.
2023-08-05 12:28:35 +10:00
d162b78767 fix broken civitai example link 2023-08-05 12:10:52 +10:00
eb6c317f04 chore: black 2023-08-05 12:05:24 +10:00
6d7223238f fix: fix typo in message 2023-08-05 12:05:24 +10:00
8607d124c5 improve message about the consequences of the --ignore_missing_core_models flag 2023-08-05 12:05:24 +10:00
23497bf759 add --ignore_missing_core_models CLI flag to bypass checking for missing core models 2023-08-05 12:05:24 +10:00
b10cf20eb1 Merge branch 'main' into refactor/model_manager_instantiate
# Conflicts:
#	invokeai/backend/model_management/model_manager.py
2023-08-04 18:28:18 -07:00
3d93851dba Installer should download fp16 models if user has specified 'auto' in config (#4129)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description

At install time, when the user's config specified "auto" precision, the
installer was downloading the fp32 models even when an fp16 model would
be appropriate for the OS.


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Closes #4127
2023-08-05 01:56:25 +03:00
9bacd77a79 Merge branch 'main' into bugfix/fp16-models 2023-08-05 01:42:43 +03:00
1b158f62c4 resolve vae overrides correctly 2023-08-04 18:24:47 -04:00
6ad565d84c folded in changes from 4099 2023-08-04 18:24:47 -04:00
04229082d6 Provide ti name from model manager, not from ti itself 2023-08-04 18:24:47 -04:00
03c27412f7 [WIP] Add sdxl lora support (#4097)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No


## Description
Add lora loading for sdxl.
NOT TESTED - I run only 2 loras, please check more(including lycoris if
they already exists).

## QA Instructions, Screenshots, Recordings
https://civitai.com/models/118536/voxel-xl

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/76a6abff-cb0a-43b4-b779-a0b0e5b46e56)


## Added/updated tests?

- [ ] Yes
- [x] No
2023-08-04 16:12:22 -04:00
f0613bb0ef Fix merge conflict resolve - restore full/diff layer support 2023-08-04 19:53:27 +03:00
0e9f92b868 Merge branch 'main' into feat/sdxl_lora 2023-08-04 19:22:13 +03:00
7d0cc6ec3f chore: black 2023-08-05 02:04:22 +10:00
2f8b928486 Add support for diff/full lora layers 2023-08-05 02:04:22 +10:00
0d3c27f46c Fix typo
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-08-04 11:44:56 -04:00
cff91f06d3 Add lora apply in sdxl l2l node 2023-08-04 11:44:56 -04:00
1d5d187ba1 model probe detects sdxl lora models 2023-08-04 11:44:56 -04:00
1ac14a1e43 add sdxl lora support 2023-08-04 11:44:56 -04:00
cfc3a20565 autoAddBoardId should always be defined 2023-08-04 22:19:11 +10:00
05ae4e283c Stop checking for unet/model.onnx when a model_index.json is detected (#4132)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-03 22:10:37 -04:00
f06fee4581 Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-03 22:02:05 -04:00
9091e19de8 Add execution stat reporting after each invocation (#4125)
## What type of PR is this? (check all applicable)

- [X] Feature


## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No

## Description

This PR adds execution time and VRAM usage reporting to each graph
invocation. The log output will look like this:

```
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3                                                                                              
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node                 Calls  Seconds  VRAM Used                                                                                                 
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader        1   0.005s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip                1   0.004s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel                   2   0.512s     0.26G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int                 1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size            1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate                  1   0.001s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator     1   0.002s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise                    1   0.002s     0.01G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l                      1   3.541s     1.93G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i                      1   0.679s     0.58G                                                                                                  
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME:  4.749s                                                                                                            
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G                                                                                                                 
```
On systems without CUDA, the VRAM stats are not printed.

The current implementation keeps track of graph ids separately so will
not be confused when several graphs are executing in parallel. It
handles exceptions, and it is integrated into the app framework by
defining an abstract base class and storing an implementation instance
in `InvocationServices`.
2023-08-03 20:05:21 -04:00
0a0b7141af Merge branch 'main' into feat/execution-stats 2023-08-03 19:49:00 -04:00
446fb4a438 blackify 2023-08-03 19:24:23 -04:00
ab5d938a1d use variant instead of revision 2023-08-03 19:23:52 -04:00
9942af756a Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-03 10:10:51 -04:00
06742faca7 Merge branch 'feat/execution-stats' of github.com:invoke-ai/InvokeAI into feat/execution-stats 2023-08-03 08:48:05 -04:00
d2bddf7f91 tweak formatting to accommodate longer runtimes 2023-08-03 08:47:56 -04:00
91ebf9f76e Merge branch 'main' into refactor/model_manager_instantiate 2023-08-02 19:01:21 -07:00
bf94412d14 feat: add multi-select to gallery
multi-select actions include:
- drag to board to move all to that board
- right click to add all to board or delete all

backend changes:
- add routes for changing board for list of image names, deleting list of images
- change image-specific routes to `images/i/{image_name}` to not clobber other routes (like `images/upload`, `images/delete`)
- subclass pydantic `BaseModel` as `BaseModelExcludeNull`, which excludes null values when calling `dict()` on the model. this fixes inconsistent types related to JSON parsing null values into `null` instead of `undefined`
- remove `board_id` from `remove_image_from_board`

frontend changes:
- multi-selection stuff uses `ImageDTO[]` as payloads, for dnd and other mutations. this gives us access to image `board_id`s when hitting routes, and enables efficient cache updates.
- consolidate change board and delete image modals to handle single and multiples
- board totals are now re-fetched on mutation and not kept in sync manually - was way too tedious to do this
- fixed warning about nested `<p>` elements
- closes #4088 , need to handle case when `autoAddBoardId` is `"none"`
- add option to show gallery image delete button on every gallery image

frontend refactors/organisation:
- make typegen script js instead of ts
- enable `noUncheckedIndexedAccess` to help avoid bugs when indexing into arrays, many small changes needed to satisfy TS after this
- move all image-related endpoints into `endpoints/images.ts`, its a big file now, but this fixes a number of circular dependency issues that were otherwise felt impossible to resolve
2023-08-03 11:46:59 +10:00
e080fd1e08 blackify 2023-08-03 11:25:20 +10:00
eeef1e08f8 restore ability to convert merged inpaint .safetensors files 2023-08-03 11:25:20 +10:00
b3b94b5a8d use correct prop 2023-08-03 11:01:21 +10:00
5c9787c145 add project-id header to requests 2023-08-03 11:01:21 +10:00
cf72eba15c Merge branch 'main' into feat/execution-stats 2023-08-03 10:53:25 +10:00
a6f9396a30 fix(db): retrieve metadata even when no session_id
this was unnecessarily skipped if there was no `session_id`.
2023-08-03 10:43:44 +10:00
118d5b387b deploy: refactor github workflows
Currently we use some workflow trigger conditionals to run either a real test workflow (installing the app and running it) or a fake workflow, disguised as the real one, that just auto-passes.

This change refactors the workflow to use a single workflow that can be skipped, using another github action to determine which things to run depending on the paths changed.
2023-08-03 10:32:50 +10:00
02d2cc758d Merge branch 'main' into refactor/model_manager_instantiate 2023-08-02 17:11:23 -07:00
db545f8801 chore: move PR template to .github/ dir (#4060)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Have you discussed this change with the InvokeAI team?
- [x] No, because it's pretty minor

      
## Have you updated all relevant documentation?
- [x] No


## Description

This PR just moves the PR template to within the `.github/` directory
leading to a overall minimal project structure.

## Added/updated tests?

- [x] No : because this change doesn't affect or need a separate test
2023-08-03 10:08:17 +10:00
b0d72b15b3 Merge branch 'main' into patch-1 2023-08-03 10:04:47 +10:00
4e0949fa55 fix .swap() by reverting improperly merged @classmethod change 2023-08-03 10:00:43 +10:00
f028342f5b Merge branch 'main' into patch-1 2023-08-03 10:00:10 +10:00
7021467048 (ci) do not install all dependencies when running static checks (#4036)
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-08-02 23:46:02 +00:00
26ef5249b1 guard board switching in board context menu 2023-08-03 09:18:46 +10:00
87424be95d block auto add board change during generation. Switch condition to isProcessing 2023-08-03 09:18:46 +10:00
366952f810 fix localization 2023-08-03 09:18:46 +10:00
450e95de59 auto change board waiting for isReady 2023-08-03 09:18:46 +10:00
0ba8a0ea6c Board assignment changing on click 2023-08-03 09:18:46 +10:00
f4981f26d5 Merge branch 'main' into bugfix/fp16-models 2023-08-02 19:17:55 -04:00
43d6312587 Merge branch 'main' into feat/execution-stats 2023-08-02 19:12:08 -04:00
0d125bf3e4 chore: delete nonfunctional shell.nix
This was for v2.3 and is very broken. See `flake.nix`, thanks to @zopieux
2023-08-03 09:09:40 +10:00
921ccad04d added stats service to the cli_app startup 2023-08-02 18:41:43 -04:00
05c9207e7b Merge branch 'feat/execution-stats' of github.com:invoke-ai/InvokeAI into feat/execution-stats 2023-08-02 18:31:33 -04:00
3fc789a7ee fix unit tests 2023-08-02 18:31:10 -04:00
008362918e Merge branch 'main' into feat/execution-stats 2023-08-02 18:15:51 -04:00
8fc75a71ee integrate correctly into app API and add features
- Create abstract base class InvocationStatsServiceBase
- Store InvocationStatsService in the InvocationServices object
- Collect and report stats on simultaneous graph execution
  independently for each graph id
- Track VRAM usage for each node
- Handle cancellations and other exceptions gracefully
2023-08-02 18:10:52 -04:00
82d259f43b Merge branch 'main' into remove-onnx-model-check-from-pipeline-download 2023-08-02 16:35:46 -04:00
818c55cd53 Refactor/cleanup root detection (#4102)
## What type of PR is this? (check all applicable)

- [ X] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ X] No, because: invisible change

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

There was a problem in 3.0.1 with root resolution. If INVOKEAI_ROOT were
set to "." (or any relative path), then the location of root would
change if the code did an os.chdir() after config initialization. I
fixed this in a quick and dirty way for 3.0.1.post3.

This PR cleans up the code with a little refactoring.

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-08-02 10:36:12 -04:00
0db1e97119 Merge branch 'main' into refactor/cleanup-root-detection 2023-08-02 09:46:46 -04:00
ed76250dba Stop checking for unet/model.onnx when a model_index.json is detected 2023-08-02 07:21:21 -04:00
4d22cafdad Installer should download fp16 models if user has specified 'auto' in config
- Closes #4127
2023-08-01 22:06:27 -04:00
1f9e984b0d Merge branch 'main' into refactor/model_manager_instantiate 2023-08-01 16:49:39 -07:00
8a4e5f73aa reset stats on exception 2023-08-01 19:39:42 -04:00
4599575e65 fix(ui): use const for wsProtocol, lint 2023-08-02 09:26:20 +10:00
242d860a47 fix https/wss behind reverse proxy 2023-08-02 09:26:20 +10:00
0c1a7e72d4 Fix manual installation documentation (#4107)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ]X Bug Fix
- [ ] Optimization
- [ X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ X] No, because: obvious problem

      
## Have you updated all relevant documentation?
- [ X] Yes
- [ ] No


## Description

The manual installation documentation in both README.md and
020_MANUAL_INSTALL give an incomplete `invokeai-configure` command which
leaves out the path to the root directory to create. As a result, the
invokeai root directory gets created in the user’s home directory, even
if they intended it to be placed somewhere else.

This is a fairly important issue.
2023-08-01 18:55:53 -04:00
11a44b944d fix installation documentation 2023-08-01 18:52:17 -04:00
fd7b842419 add execution stat reporting after each invocation 2023-08-01 17:44:09 -04:00
5998509888 Merge branch 'main' into refactor/model_manager_instantiate 2023-08-01 11:09:43 -07:00
403a6e88f2 fix: flake: add opencv with CUDA, new patchmatch dependency. 2023-08-01 23:56:41 +10:00
c9d452b9d4 fix: Model Manager Tab Issues (#4087)
## What type of PR is this? (check all applicable)

- [x] Refactor
- [x] Feature
- [x] Bug Fix
- [?] Optimization


## Have you discussed this change with the InvokeAI team?
- [x] No

     
## Description

- Fixed filter type select using `images` instead of `all` -- Probably
some merge conflict.
- Added loading state for model lists. Handy when the model list takes
longer than a second for any reason to fetch. Better to show this than
an empty screen.
- Refactored the render model list function so we modify the display
component in one area rather than have repeated code.

### Other Issues

- The list can get a bit laggy on initial load when you have a hundreds
of models / loras. This needs to be fixed. Will make another PR for
this.
2023-08-02 01:06:53 +12:00
dcc274a2b9 feat: Make ModelListWrapper instead of rendering conditionally 2023-08-01 22:50:10 +10:00
f404669831 fix: Rename loading vars for consistency 2023-08-01 22:42:05 +10:00
ce687b28ef fix: Model Manager Tab Issues 2023-08-01 22:41:32 +10:00
7292d89108 Merge branch 'main' into refactor/cleanup-root-detection 2023-08-01 22:14:56 +10:00
41d6a38690 Update lint-frontend.yml
The action should run on every PR. We can make this more efficient in the future.
2023-08-01 22:10:56 +10:00
fb8f218901 fix(ui): post-onnx fixes 2023-08-01 07:59:01 -04:00
437f45a97f do not depend on existence of /tmp directory 2023-08-01 00:41:35 -04:00
13ef33ed64 Merge branch 'refactor/cleanup-root-detection' of github.com:invoke-ai/InvokeAI into refactor/cleanup-root-detection 2023-08-01 00:19:55 -04:00
86d8b46fca Merge branch 'main' into refactor/cleanup-root-detection 2023-08-01 00:14:26 -04:00
e86925d424 Add onnxruntime to the main dependencies 2023-08-01 00:03:10 -04:00
df53b62048 get rid of dangling debug statements 2023-07-31 22:39:11 -04:00
55d3f04476 additional refactoring 2023-07-31 22:36:11 -04:00
72ebe2ce68 refactor root directory detection to be cleaner 2023-07-31 22:30:06 -04:00
7cd8b2f207 Refactor root detection code 2023-07-31 21:15:44 -04:00
52437205bb chore(ui): lint 2023-08-01 08:54:03 +10:00
ceebb501a4 try named export 2023-08-01 08:54:03 +10:00
cbe874b964 add chakra as peer dep 2023-08-01 08:54:03 +10:00
e2e5918ee2 export theme nad move chakra to peer dep 2023-08-01 08:54:03 +10:00
1b131e328a add optional projectId - unused so far 2023-08-01 08:54:03 +10:00
81654daed7 ONNX Support (#3562)
Note: this branch based on #3548, not on main

While find out what needs to be done to implement onnx, found that I can
do draft of it pretty quickly, so... here it is)
Supports LoRA and TI.
As example - cat with sadcatmeme lora:

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/dbd1a5df-0629-4741-94b3-8e09f4b4d5a3)

![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/d918836c-fdc7-43c0-aa81-dde9182f2e0f)
2023-07-31 17:34:27 -04:00
746afcd235 Merge branch 'main' into feat/onnx 2023-07-31 16:56:34 -04:00
ae0f4efcca Add missing Optional on a few nullable fields (#4076)
## What type of PR is this? (check all applicable)

- [x] Refactor

## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [x] No, because: trivial

## Description

Adds a few obviously missing `Optional` on fields that default to
`None`.
2023-07-31 16:56:10 -04:00
23647336ce Merge branch 'main' into fix-optional 2023-07-31 16:55:57 -04:00
4ca54dd5fa Added a getting started guide & updated the user landing page flow (#4028)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [X] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because: Just a documentation update

      
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No


## Description
Updated documentation with a getting started guide & a glossary of terms
needed to get started
Updated the landing page flow for users 

<img width="1430" alt="Screenshot 2023-07-27 at 9 53 25 PM"
src="https://github.com/invoke-ai/InvokeAI/assets/7254508/d0006ba7-2ed4-4044-a1bc-ca9a99df9397">

## Related Tickets & Documents

<!--
For pull requests that relate or
 close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-31 16:55:25 -04:00
d3a3067164 Merge branch 'main' into main 2023-07-31 16:54:48 -04:00
aeac557c41 Run python black, point out that onnx is an alpha feature in the installer 2023-07-31 16:47:48 -04:00
af4fd328a6 Merge branch 'main' into feat/onnx 2023-07-31 16:45:12 -04:00
c40c7424b6 Merge branch 'main' into fix-optional 2023-07-31 15:59:12 -04:00
a6b907150b Add python black check to pre-commit (#4094)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [x] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-31 15:58:20 -04:00
bacdf985f1 doc(model_manager): docstrings 2023-07-31 09:16:32 -07:00
e3519052ae Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate 2023-07-31 08:46:09 -07:00
b0e84c6497 Add python black check to pre-commit 2023-07-31 11:42:08 -04:00
f784e8412c Some cleanup after the merge 2023-07-31 11:23:43 -04:00
1bafbafdd3 Regen schema and rebuild frontend after merging main 2023-07-31 11:02:15 -04:00
f5ac73b091 Merge branch 'main' into feat/onnx 2023-07-31 10:58:40 -04:00
eb642653cb Add Nix Flake for development, which uses Python virtualenv. 2023-07-31 19:14:30 +10:00
2c07f54b6e Merge branch 'main' into fix-optional 2023-07-31 16:31:01 +10:00
0691e0a12a Few modifications to getting started doc 2023-07-31 15:35:20 +10:00
79afcbd07e Merge branch 'main' of https://github.com/invoke-ai/InvokeAI 2023-07-31 14:19:37 +10:00
f4ead5e07f fix keyerror bug that was causing merge script to crash 2023-07-30 19:25:44 -04:00
6d24ca7f52 3.0.1post3 (#4082)
This is a relatively stable release that corrects the urgent windows
install and model manager problems in 3.0.1. It still has two known
bugs:

1. Many inpainting models are not loading correctly.
2. The merge script is failing to start.
2023-07-30 18:03:35 -04:00
2164da8592 blackify 2023-07-30 16:25:06 -04:00
adfd1e52f4 refactor(model_manager): avoid copy/paste logic 2023-07-30 11:53:12 -07:00
0e48c98330 Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate
# Conflicts:
#	invokeai/backend/model_management/model_manager.py
2023-07-30 11:33:13 -07:00
4121c261a0 fix missing models when INVOKEAI_ROOT="." 2023-07-30 13:37:18 -04:00
99823d5039 more fixes to update and install 2023-07-30 11:57:06 -04:00
0abceb0e7b Merge branch 'main' of github.com:invoke-ai/InvokeAI 2023-07-30 11:08:27 -04:00
83d3f2347e fix "unrecognized arguments: --yes" bug on unattended upgrade 2023-07-30 11:07:06 -04:00
73e25d8dbe Update communityNodes.md
- Remove FaceMask and add link FaceTools repository, which includes FaceMask, FaceOff, and FacePlace
- Move Ideal Size up from under the template entry
2023-07-30 10:59:56 -04:00
50e00feceb Add missing Optional on a few nullable fields. 2023-07-30 16:25:12 +02:00
03594c949a blackified 2023-07-30 10:18:39 -04:00
adb85036e6 dependency tweaks to avoid installing/uninstalling pkgs 2023-07-30 10:17:04 -04:00
7d7a9273ed Merge branch 'main' of github.com:invoke-ai/InvokeAI 2023-07-30 09:19:14 -04:00
f17ad227cf fix relative model paths to be against config.models_path, not root (#4061)
## What type of PR is this? (check all applicable)

- [ X] Bug Fix

## Have you discussed this change with the InvokeAI team?
- [X] Yes - bug discovered by jpphoto
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] Not needed

## Description

The user can customize the location of the models directory by setting
configuration variable `models_dir`. However, the model manager and the
TUI installer were all treating model relative paths as relative to the
invokeai root rather than the designated models directory. This has been
fixed by changing path resolution calls from using `config.root_path` to
`config.models_path`

Unfortunately there were many instances that needed replacement, so this
needs a bit of functional testing - try adding models, removing models,
renaming them, converting checkpoints, etc.
2023-07-30 08:51:35 -04:00
f91d01eb38 Merge branch 'main' into bugfix/model-manager-rel-paths 2023-07-30 08:25:37 -04:00
adfcb610b6 Installer tweaks (#4070)
## What type of PR is this? (check all applicable)


- [ X] Optimization

## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [X ] Yes
- [ ] No


## Description

This PR does two things:

1. if the environment variable INVOKEAI_ROOT is defined at install time,
the zipfile installer will default to its value when asking the user
where to install the software
2. If the user has more than 72 models of any type installed, then the
list will be truncated in the TUI and the user given a warning. Anything
larger than this number of models causes the vertical space to overflow.
The only effect of truncation is that the user will not be able to see
and delete the models that were truncated. The message advises the user
to go to the Web Model Manager interface in this event.
2023-07-30 08:25:11 -04:00
cafcd16657 Merge branch 'main' into install/tui-tweaks 2023-07-30 08:19:45 -04:00
2537ff0280 Merge branch 'main' into bugfix/model-manager-rel-paths 2023-07-30 08:17:36 -04:00
0f5f08e494 Merge branch 'bugfix/model-manager-rel-paths' of github.com:invoke-ai/InvokeAI into bugfix/model-manager-rel-paths 2023-07-30 08:17:21 -04:00
e20c4dc1e8 blackified 2023-07-30 08:17:10 -04:00
6dc4ddef1b Fix various bugs in ckpt to diffusers conversion script (#4065)
## What type of PR is this? (check all applicable)


- [X ] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ X] No


## Description

This PR fixes several issues with the 3.0.0 conversion script:

- Handles checkpoint variants that don't put dots between fields in the
long state dict key names
- Handles ema, non-ema, pruned and non-pruned ckpts
- Does not add safety checker to converted checkpoints
- Respects precision of original checkpoint file
2023-07-30 08:16:37 -04:00
26af5ec341 Merge branch 'main' into bugfix/model-manager-rel-paths 2023-07-30 08:08:17 -04:00
10b182f316 Merge branch 'main' into bugfix/convert-script 2023-07-30 08:07:51 -04:00
ac84a9f915 reenable display of autoloaded models 2023-07-30 08:05:05 -04:00
844578ab88 fix lora loading crash 2023-07-30 07:57:10 -04:00
ff1c40747e lint: formatting 2023-07-29 20:02:31 -07:00
dbfd1bcb5e Merge branch 'main' into refactor/model_manager_instantiate 2023-07-29 19:53:21 -07:00
444390617f rebuild front end 2023-07-29 22:00:16 -04:00
6cb40d9d7b bump version for hotfix 3.0.1post1 2023-07-29 21:58:57 -04:00
ca895a9cd0 Unpin pydantic and numpy in pyproject.toml (#4062)
## What type of PR is this? (check all applicable)

- [ X] Bug Fix


## Have you discussed this change with the InvokeAI team?
- [ X] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [X] Not needed

## Description

Windows users have been getting a lot of OSErrors while installing 3.0.1
during the pip dependency installation phase. Generally the errors have
involved just two packages, pydantic and numpy. Looking at the install
logs, I see that both of these packages are first installed under one
version number by a dependency, and then uninstalled and replaced by a
slightly different version specified in invoke's `pyproject.toml`. I
think this is the problem - maybe the earlier package is not completely
closed before it is uninstalled and reinstalled.

This PR relaxes pinning of numpy and pydantic in `pyproject.toml`.
Everything seems to install and run properly. Hopefully it will address
the windows install bug as well.
2023-07-29 21:57:21 -04:00
7d27c7b1a4 Merge branch 'main' into lstein/no-pydantic-in-pyproject 2023-07-29 21:47:16 -04:00
6c82229910 fix recovery recipe 2023-07-29 20:00:06 -04:00
43b1eb8e84 wording changes 2023-07-29 19:49:58 -04:00
b10b07220e blackify code 2023-07-29 19:20:20 -04:00
c2eb50d1cd make installer use initial INVOKEAI_ROOT as default install location 2023-07-29 19:19:42 -04:00
73f3b7f84b remove dangling comment 2023-07-29 17:32:33 -04:00
bb18251fad Merge branch 'bugfix/convert-script' of github.com:invoke-ai/InvokeAI into bugfix/convert-script 2023-07-29 17:31:02 -04:00
348bee8981 blackified 2023-07-29 17:30:54 -04:00
078b33bda2 Merge branch 'main' into bugfix/convert-script 2023-07-29 17:30:40 -04:00
e82eb0b9fc add correct optional annotation to precision arg 2023-07-29 17:30:21 -04:00
ad976e5198 Merge branch 'main' into bugfix/model-manager-rel-paths 2023-07-29 17:27:16 -04:00
0e28961e69 Merge branch 'main' into lstein/no-pydantic-in-pyproject 2023-07-29 17:27:02 -04:00
6ce059f063 blackified again 2023-07-29 17:26:40 -04:00
1de783b1ce fix mistake in indexing flat_ema_key 2023-07-29 17:20:26 -04:00
3f9105be50 make convert script respect setting of use_ema in config file 2023-07-29 17:17:45 -04:00
781322a647 installer respects INVOKEAI_ROOT for default root location 2023-07-29 16:16:44 -04:00
9a1cfadd8b fix: SDXL Metadata not being retrieved (#4057)
## What type of PR is this? (check all applicable)

- [x] Bug Fix

## Have you discussed this change with the InvokeAI team?
- [x] Yes

## Description

- SDXL Metadata was not being retrieved. This PR fixes it.
2023-07-29 15:37:02 -04:00
2a2d988928 convert script handles more ckpt variants 2023-07-29 15:28:39 -04:00
ccceb32a85 lint: formatting 2023-07-29 11:50:04 -07:00
72c519c6ad fix incorrect key construction 2023-07-29 13:51:47 -04:00
af12f67948 Merge branch 'lstein/no-pydantic-in-pyproject' of github.com:invoke-ai/InvokeAI into lstein/no-pydantic-in-pyproject 2023-07-29 13:28:38 -04:00
60f5606c2d downgrade torchmetrics to fix model import problem 2023-07-29 13:28:29 -04:00
24b19166dd further refactoring 2023-07-29 13:13:22 -04:00
0396bce4f9 Merge branch 'main' into lstein/no-pydantic-in-pyproject 2023-07-29 13:06:30 -04:00
71768f5988 restore unpinned versions of pydantic and numpy 2023-07-29 13:04:34 -04:00
0fb7328022 blackify code 2023-07-29 13:00:43 -04:00
99daa97978 more refactoring; fixed place where rel conversion missed 2023-07-29 13:00:07 -04:00
21617e60e1 Merge remote-tracking branch 'origin/main' into refactor/model_manager_instantiate 2023-07-29 08:21:26 -07:00
982a568349 blackify pr 2023-07-29 10:47:55 -04:00
d79d5a4ff7 modest refactoring 2023-07-29 10:45:26 -04:00
9968ff2893 fix relative model paths to be against config.models_path, not root 2023-07-29 10:30:27 -04:00
35dd58e273 chore: move PR template to .github/ dir 2023-07-29 12:59:56 +05:30
6d82a1019a fix: Black linting 2023-07-29 17:34:43 +12:00
6ed1bf7084 Merge branch 'main' into metadata-fix 2023-07-29 17:33:30 +12:00
974175be45 fix: Prompt Node using incorrect output type (#4058)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:

      
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No


## Description


## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-29 17:32:10 +12:00
86b8b69e88 internal(ModelManager): add instantiate method 2023-07-28 22:30:25 -07:00
bc9a5038fd refactor(ModelManager): factor out get_model_path 2023-07-28 22:29:36 -07:00
bee678fdd1 fix: Prompt Node using incorrect output type 2023-07-29 17:12:25 +12:00
c5caf1e8fe fix: SDXL Metadata not being retrieved 2023-07-29 17:03:19 +12:00
b163ae6a4d refactor(ModelManager): factor out get_model_config 2023-07-28 21:30:20 -07:00
dca685ac25 refactor(ModelManager): refactor rescan-on-miss to exists() method 2023-07-28 21:11:00 -07:00
72708eb53c Feat/Nodes: Change Input to Textbox (#3853)
## What type of PR is this? (check all applicable)

- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission


## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [X] No, because:
not yet, making pr to show
      
## Have you updated relevant documentation?
- [ ] Yes
- [ ] No


## Description
Temp Change Node String input to a textbox, to allow easier input of
prompts and larger strings, it works for me but please tell me if I did
it wrong and if the size is ok

## Related Tickets & Documents

<!--
For pull requests that relate or close an issue, please include them
below. 

For example having the text: "closes #1234" would connect the current
pull
request to issue 1234.  And when we merge the pull request, Github will
automatically close the issue.
-->

- Related Issue #
- Closes #

## QA Instructions, Screenshots, Recordings

<!-- 
Please provide steps on how to test changes, any hardware or 
software specifications as well as any other pertinent information. 
-->

## Added/updated tests?

- [ ] Yes
- [ ] No : _please replace this line with details on why tests
      have not been included_

## [optional] Are there any post deployment tasks we need to perform?
2023-07-29 16:10:32 +12:00
aae1670080 fix: Incorrect Prompt Node output type 2023-07-29 16:04:19 +12:00
e70bedba7d refactor(ModelManager): factor out _get_implementation method 2023-07-28 21:03:27 -07:00
1e776d2523 chore: Regen types 2023-07-29 15:59:52 +12:00
8e06e6abbc feat: Update 'style' string input to also display text area 2023-07-29 15:52:59 +12:00
8a0e1b6cfc feat: Create Prompt Input Node 2023-07-29 15:52:37 +12:00
2d9bc79ca4 Merge branch 'main' into nodepromptsize 2023-07-29 12:43:29 +10:00
6886eb094d Make more Simple 2023-07-29 12:40:17 +10:00
6ca0c38ee3 Merge branch 'main' into feat/onnx 2023-07-28 22:06:28 -04:00
d633eb1612 remove pydantic and numpy from pyproject.toml 2023-07-28 21:56:22 -04:00
1bbf2f269d Update installer 2023-07-28 21:02:48 -04:00
d3f6c7f983 Remove onnxruntime 2023-07-28 16:58:06 -04:00
390ce9f249 Fix onnx installer 2023-07-28 16:54:03 -04:00
8935ae0ea3 Fix issues caused by merge 2023-07-28 14:00:32 -04:00
a2aa66f43a Run Python black 2023-07-28 10:00:09 -04:00
da751da3dd Merge branch 'main' into feat/onnx 2023-07-28 09:59:35 -04:00
2b7b3dd4ba Run python black 2023-07-28 09:46:44 -04:00
dc1148106d Just install onnxruntime by default 2023-07-28 09:32:43 -04:00
514722d67a Update definitions to be more accurate 2023-07-28 18:35:05 +10:00
5dbde2116f Merge branch 'invoke-ai:main' into main 2023-07-28 18:34:33 +10:00
1ea9ba84f5 Release session if applying ti or lora 2023-07-27 15:20:38 -04:00
bfdc8c80f3 Testing caching onnx sessions 2023-07-27 14:13:29 -04:00
59716938bf Remove TensorRT support at the current time until we validate it works, remove time step recorder 2023-07-27 11:18:50 -04:00
918a0dedc0 Always install onnx 2023-07-27 11:00:40 -04:00
a491e326c5 This is no longer needed 2023-07-27 10:52:36 -04:00
f7bb4c3f05 Remove more files no longer needed in main 2023-07-27 10:49:43 -04:00
57271ad125 Move onnx to optional dependencies 2023-07-27 10:28:26 -04:00
33245b37ad Removed things no longer needed in main 2023-07-27 10:23:55 -04:00
81d8fb8762 Removed things no longer needed in main 2023-07-27 10:14:55 -04:00
989d3d7f3c Remove onnx changes from canvas img2img, inpaint, and linear image2image 2023-07-27 10:08:45 -04:00
d2a46b4308 Fix dist and schema after merge 2023-07-27 09:55:28 -04:00
eb1ba8d74b Merge branch 'main' into feat/onnx 2023-07-27 09:54:30 -04:00
4ebde013ea Allow deleting onnx models in model manager ui 2023-07-27 09:50:20 -04:00
024f92f9a9 Add onnx models to the model manager UI 2023-07-27 09:37:37 -04:00
562c937a14 Updated new user flow 2023-07-27 21:46:39 +10:00
5300e353d8 updated community nodes doc 2023-07-27 18:58:44 +10:00
d78c97f8a8 Updated getting started guide and links 2023-07-27 18:51:48 +10:00
52f61698e9 added getting started with Invoke guide 2023-07-27 18:29:12 +10:00
4d732e06de Remove onnx models from img2img and unified canvas 2023-07-26 16:30:02 -04:00
f26a423e95 Fix merge issue 2023-07-26 15:32:28 -04:00
861c0fe76b Correct issues caused by merging main 2023-07-26 12:25:46 -04:00
c16da75ac7 Merge branch 'main' into feat/onnx 2023-07-26 10:42:31 -04:00
36455f6cac Merge branch 'main' into nodepromptsize 2023-07-26 18:54:54 +10:00
2d0f932737 Lint Code 2023-07-26 18:35:04 +10:00
de73e4f5b9 Merge branch 'main' into nodepromptsize 2023-07-23 18:28:25 +10:00
0689e36390 Merge branch 'main' into nodepromptsize 2023-07-22 07:20:28 +10:00
78750042f5 Pass in dim overrides 2023-07-21 12:16:24 -04:00
13e7614508 add text so string node uses textarea 2023-07-21 19:36:27 +10:00
4e1786d9ae Remove Resize: none 2023-07-21 13:55:40 +10:00
585520d8d2 Only apply Textaera to Prompt 2023-07-21 13:17:27 +10:00
98b2734240 Merge branch 'main' into nodepromptsize 2023-07-21 08:07:55 +10:00
7b428b5240 Make height smaller and allow width to change with node 2023-07-21 08:03:01 +10:00
ce08aa350c Allow controlnet passthrough for now 2023-07-20 14:14:04 -04:00
ba1a934297 Fix Lora typings 2023-07-20 14:02:23 -04:00
4e90376d11 Allow passing in of precision, use available providers if none provided 2023-07-20 13:15:45 -04:00
f73b45bcb5 Feat: Change Input to Textbox 2023-07-20 19:11:18 +10:00
23f4a4ea1a Fix dist 2023-07-19 18:27:51 -04:00
6aab8f16ce Fix issue from merge 2023-07-19 18:27:15 -04:00
8f61413865 Setup dist folder 2023-07-19 17:49:27 -04:00
43b6a077fb io binding seems to be massively resource intensive compared to session.run 2023-07-19 17:42:28 -04:00
e8299d0abb Comment out erroniously removed del statement, comment out opt tests 2023-07-18 23:23:34 -04:00
a28ab654ef Setup dist folder 2023-07-18 23:18:46 -04:00
8699fd7050 Fix invoke UI graphs for onnx 2023-07-18 23:16:51 -04:00
9e65470ada Setup dist 2023-07-18 23:07:31 -04:00
f4e52fafac Fix as part of merging main in 2023-07-18 23:05:33 -04:00
ee7b36cea5 Merge branch 'main' into onnx-testing 2023-07-18 22:56:41 -04:00
487455ef2e Add model_type to the model state object 2023-07-18 22:40:27 -04:00
e201ad2f51 Switch to io_binding for run, testing different session options 2023-07-18 21:54:54 -04:00
869f418b03 Setup onnx on linear text2image 2023-07-18 14:27:54 -04:00
35d5ef9118 Emit step completions 2023-07-18 12:35:07 -04:00
bcce70fca6 Testing different session opts, added timings for testing 2023-07-17 16:27:33 -04:00
932112b640 testing being super wasteful with data 2023-07-16 00:17:33 -04:00
91112167b1 Fix syntax err 2023-07-15 23:56:48 -04:00
bd7b59910d Testing onnx in new ui updates 2023-07-14 14:24:15 -04:00
524888bf3b Merge branch 'main' into feat/onnx 2023-07-13 14:23:57 -04:00
0327eae509 chore: Regen API 2023-06-23 05:21:06 +12:00
bb85608890 Merge branch 'main' into feat/onnx 2023-06-23 05:18:41 +12:00
6c7668aaca Update onnx model structure, change code according 2023-06-22 20:03:17 +03:00
7759b3f75a Small refactor 2023-06-21 04:24:25 +03:00
4d337f6abc ONNX Model/runtime first implementation 2023-06-21 02:12:21 +03:00
92c86fd0b8 Set model type to const value in openapi schema, add model format enums to model schema(as they not not referenced in case of Literal definition) 2023-06-20 03:44:58 +03:00
46dc751139 Update model format field to use enums 2023-06-20 03:30:09 +03:00
4cefe37723 Rename format to model_format(still named format when work with config) 2023-06-20 03:25:08 +03:00
82b73c50a0 Remove default model logic 2023-06-20 03:13:10 +03:00
7df7a95299 Merge branch 'main' into model-manager-ui-30 2023-06-19 23:26:11 +12:00
85b4b359c2 tweal: UI colors 2023-06-19 23:16:14 +12:00
cfe81b5e00 fix: Adjust the Schedular select width
So the long names do not get cut off.
2023-06-19 23:05:32 +12:00
b0c4451324 Merge branch 'main' into model-manager-ui-30 2023-06-19 23:02:59 +12:00
d4931522d4 Merge branch 'main' into model-manager-ui-30 2023-06-19 22:53:13 +12:00
17e2a35228 fix: merge conflicts 2023-06-18 22:25:48 +12:00
91016d8b29 Merge branch 'main' into model-manager-ui-30 2023-06-18 22:23:18 +12:00
9fda21cf40 Revert "feat: Port Schedulers to Mantine"
This reverts commit e0c105f413.
2023-06-18 22:22:56 +12:00
809ec7163e fix: Remove type from Model type name 2023-06-18 19:41:30 +12:00
7c9a939b47 fix: Unserialization key issue 2023-06-18 19:38:15 +12:00
9634c96020 revert: getModels to receivedModels 2023-06-18 19:35:46 +12:00
e0c105f413 feat: Port Schedulers to Mantine 2023-06-18 19:31:53 +12:00
f0bf32c476 Merge branch 'main' into model-manager-ui-30 2023-06-18 17:37:34 +12:00
28373dbb98 cleanup: Updated model slice names to be more descriptive
Basically updated all slices to be more descriptive in their names. Did so in order to make sure theres good naming scheme available for secondary models.
2023-06-18 17:36:23 +12:00
4133d77772 wip: Move Model Selector to own file 2023-06-18 09:19:13 +12:00
61c426f502 feat: Enable 2.x Model Generation in Linear UI 2023-06-18 08:27:13 +12:00
bf0577c882 fix: 2.1 models breaking generation
Co-Authored-By: StAlKeR7779 <7768370+StAlKeR7779@users.noreply.github.com>
2023-06-18 08:26:25 +12:00
24673fd859 chore: Rebuild API - base_model and type added 2023-06-18 07:50:28 +12:00
dc669d1447 Add name, base_mode, type fields to model info 2023-06-17 22:48:44 +03:00
ce4110b9f4 wip: Add 2.x Models to the Model List 2023-06-18 07:01:44 +12:00
0f3b7d2b3d chore: Rebuild API with new Model API names 2023-06-18 03:00:16 +12:00
16dc78f6c6 Generate config names for openapi 2023-06-17 17:15:36 +03:00
7a66856785 wip: Update Linear UI Txt2Img and Img2Img Graphs
Update the text to imaeg and image to image graphs to work with the new model loader. Currently only supports 1.x models. Will update this soon to make it work with all models.
2023-06-18 01:38:01 +12:00
c8dfa49d86 fix: Update missing name types to new names 2023-06-17 22:04:28 +12:00
76dd749b1e chore: Rebuild API 2023-06-17 21:29:32 +12:00
67d05d2066 chore: Update model config type names 2023-06-17 21:28:43 +12:00
227 changed files with 7561 additions and 4101 deletions

View File

@ -2,8 +2,6 @@ name: Lint frontend
on:
pull_request:
paths:
- 'invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
@ -11,8 +9,6 @@ on:
push:
branches:
- 'main'
paths:
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:

View File

@ -1,13 +1,14 @@
name: Black # TODO: add isort and flake8 later
name: style checks
# just formatting for now
# TODO: add isort and flake8 later
on:
pull_request: {}
pull_request:
push:
branches: master
tags: "*"
branches: main
jobs:
test:
black:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
@ -19,8 +20,7 @@ jobs:
- name: Install dependencies with pip
run: |
pip install --upgrade pip wheel
pip install .[test]
pip install black
# - run: isort --check-only .
- run: black --check .

View File

@ -1,50 +0,0 @@
name: Test invoke.py pip
# This is a dummy stand-in for the actual tests
# we don't need to run python tests on non-Python changes
# But PRs require passing tests to be mergeable
on:
pull_request:
paths:
- '**'
- '!pyproject.toml'
- '!invokeai/**'
- '!tests/**'
- 'invokeai/frontend/web/**'
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
matrix:
if: github.event.pull_request.draft == false
strategy:
matrix:
python-version:
- '3.10'
pytorch:
- linux-cuda-11_7
- linux-rocm-5_2
- linux-cpu
- macos-default
- windows-cpu
include:
- pytorch: linux-cuda-11_7
os: ubuntu-22.04
- pytorch: linux-rocm-5_2
os: ubuntu-22.04
- pytorch: linux-cpu
os: ubuntu-22.04
- pytorch: macos-default
os: macOS-12
- pytorch: windows-cpu
os: windows-2022
name: ${{ matrix.pytorch }} on ${{ matrix.python-version }}
runs-on: ${{ matrix.os }}
steps:
- name: skip
run: echo "no build required"

View File

@ -3,16 +3,7 @@ on:
push:
branches:
- 'main'
paths:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
pull_request:
paths:
- 'pyproject.toml'
- 'invokeai/**'
- 'tests/**'
- '!invokeai/frontend/web/**'
types:
- 'ready_for_review'
- 'opened'
@ -65,10 +56,23 @@ jobs:
id: checkout-sources
uses: actions/checkout@v3
- name: Check for changed python files
id: changed-files
uses: tj-actions/changed-files@v37
with:
files_yaml: |
python:
- 'pyproject.toml'
- 'invokeai/**'
- '!invokeai/frontend/web/**'
- 'tests/**'
- name: set test prompt to main branch validation
if: steps.changed-files.outputs.python_any_changed == 'true'
run: echo "TEST_PROMPTS=tests/validate_pr_prompt.txt" >> ${{ matrix.github-env }}
- name: setup python
if: steps.changed-files.outputs.python_any_changed == 'true'
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
@ -76,6 +80,7 @@ jobs:
cache-dependency-path: pyproject.toml
- name: install invokeai
if: steps.changed-files.outputs.python_any_changed == 'true'
env:
PIP_EXTRA_INDEX_URL: ${{ matrix.extra-index-url }}
run: >
@ -83,6 +88,7 @@ jobs:
--editable=".[test]"
- name: run pytest
if: steps.changed-files.outputs.python_any_changed == 'true'
id: run-pytest
run: pytest

View File

@ -184,8 +184,9 @@ the command `npm install -g yarn` if needed)
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure
invokeai-configure --root .
```
Don't miss the dot at the end!
7. Launch the web server (do it every time you run InvokeAI):
@ -193,15 +194,9 @@ the command `npm install -g yarn` if needed)
invokeai-web
```
8. Build Node.js assets
8. Point your browser to http://localhost:9090 to bring up the web interface.
```terminal
cd invokeai/frontend/web/
yarn vite build
```
9. Point your browser to http://localhost:9090 to bring up the web interface.
10. Type `banana sushi` in the box on the top left and click `Invoke`.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.

View File

@ -16,7 +16,7 @@ If you don't feel ready to make a code contribution yet, no problem! You can als
There are two paths to making a development contribution:
1. Choosing an open issue to address. Open issues can be found in the [Issues](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen) section of the InvokeAI repository. These are tagged by the issue type (bug, enhancement, etc.) along with the “good first issues” tag denoting if they are suitable for first time contributors.
1. Additional items can be found on our roadmap <******************************link to roadmap>******************************. The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
1. Additional items can be found on our [roadmap](https://github.com/orgs/invoke-ai/projects/7). The roadmap is organized in terms of priority, and contains features of varying size and complexity. If there is an inflight item youd like to help with, reach out to the contributor assigned to the item to see how you can help.
2. Opening a new issue or feature to add. **Please make sure you have searched through existing issues before creating new ones.**
*Regardless of what you choose, please post in the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) channel of the Discord before you start development in order to confirm that the issue or feature is aligned with the current direction of the project. We value our contributors time and effort and want to ensure that no ones time is being misspent.*

View File

@ -4,6 +4,9 @@ title: Overview
Here you can find the documentation for InvokeAI's various features.
## The [Getting Started Guide](../help/gettingStartedWithAI)
A getting started guide for those new to AI image generation.
## The Basics
### * The [Web User Interface](WEB.md)
Guide to the Web interface. Also see the [WebUI Hotkeys Reference Guide](WEBUIHOTKEYS.md)
@ -46,7 +49,7 @@ Personalize models by adding your own style or subjects.
## Other Features
### * [The NSFW Checker](NSFW.md)
### * [The NSFW Checker](WATERMARK+NSFW.md)
Prevent InvokeAI from displaying unwanted racy images.
### * [Controlling Logging](LOGGING.md)

View File

@ -0,0 +1,95 @@
# Getting Started with AI Image Generation
New to image generation with AI? Youre in the right place!
This is a high level walkthrough of some of the concepts and terms youll see as you start using InvokeAI. Please note, this is not an exhaustive guide and may be out of date due to the rapidly changing nature of the space.
## Using InvokeAI
### **Prompt Crafting**
- Prompts are the basis of using InvokeAI, providing the models directions on what to generate. As a general rule of thumb, the more detailed your prompt is, the better your result will be.
*To get started, heres an easy template to use for structuring your prompts:*
- Subject, Style, Quality, Aesthetic
- **Subject:** What your image will be about. E.g. “a futuristic city with trains”, “penguins floating on icebergs”, “friends sharing beers”
- **Style:** The style or medium in which your image will be in. E.g. “photograph”, “pencil sketch”, “oil paints”, or “pop art”, “cubism”, “abstract”
- **Quality:** A particular aspect or trait that you would like to see emphasized in your image. E.g. "award-winning", "featured in {relevant set of high quality works}", "professionally acclaimed". Many people often use "masterpiece".
- **Aesthetics:** The visual impact and design of the artwork. This can be colors, mood, lighting, setting, etc.
- There are two prompt boxes: *Positive Prompt* & *Negative Prompt*.
- A **Positive** Prompt includes words you want the model to reference when creating an image.
- Negative Prompt is for anything you want the model to eliminate when creating an image. It doesnt always interpret things exactly the way you would, but helps control the generation process. Always try to include a few terms - you can typically use lower quality image terms like “blurry” or “distorted” with good success.
- Some examples prompts you can try on your own:
- A detailed oil painting of a tranquil forest at sunset with vibrant+ colors and soft, golden light filtering through the trees
- friends sharing beers in a busy city, realistic colored pencil sketch, twilight, masterpiece, bright, lively
### Generation Workflows
- Invoke offers a number of different workflows for interacting with models to produce images. Each is extremely powerful on its own, but together provide you an unparalleled way of producing high quality creative outputs that align with your vision.
- **Text to Image:** The text to image tab focuses on the key workflow of using a prompt to generate a new image. It includes other features that help control the generation process as well.
- **Image to Image:** With image to image, you provide an image as a reference (called the “initial image”), which provides more guidance around color and structure to the AI as it generates a new image. This is provided alongside the same features as Text to Image.
- **Unified Canvas:** The Unified Canvas is an advanced AI-first image editing tool that is easy to use, but hard to master. Drag an image onto the canvas from your gallery in order to regenerate certain elements, edit content or colors (known as inpainting), or extend the image with an exceptional degree of consistency and clarity (called outpainting).
### Improving Image Quality
- Fine tuning your prompt - the more specific you are, the closer the image will turn out to what is in your head! Adding more details in the Positive Prompt or Negative Prompt can help add / remove pieces of your image to improve it - You can also use advanced techniques like upweighting and downweighting to control the influence of certain words. [Learn more here](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#prompt-syntax-features).
- **Tip: If youre seeing poor results, try adding the things you dont like about the image to your negative prompt may help. E.g. distorted, low quality, unrealistic, etc.**
- Explore different models - Other models can produce different results due to the data theyve been trained on. Each model has specific language and settings it works best with; a models documentation is your friend here. Play around with some and see what works best for you!
- Increasing Steps - The number of steps used controls how much time the model is given to produce an image, and depends on the “Scheduler” used. The schedule controls how each step is processed by the model. More steps tends to mean better results, but will take longer - We recommend at least 30 steps for most
- Tweak and Iterate - Remember, its best to change one thing at a time so you know what is working and what isn't. Sometimes you just need to try a new image, and other times using a new prompt might be the ticket. For testing, consider turning off the “random” Seed - Using the same seed with the same settings will produce the same image, which makes it the perfect way to learn exactly what your changes are doing.
- Explore Advanced Settings - InvokeAI has a full suite of tools available to allow you complete control over your image creation process - Check out our [docs if you want to learn more](https://invoke-ai.github.io/InvokeAI/features/).
## Terms & Concepts
If you're interested in learning more, check out [this presentation](https://docs.google.com/presentation/d/1IO78i8oEXFTZ5peuHHYkVF-Y3e2M6iM5tCnc-YBfcCM/edit?usp=sharing) from one of our maintainers (@lstein).
### Stable Diffusion
Stable Diffusion is deep learning, text-to-image model that is the foundation of the capabilities found in InvokeAI. Since the release of Stable Diffusion, there have been many subsequent models created based on Stable Diffusion that are designed to generate specific types of images.
### Prompts
Prompts provide the models directions on what to generate. As a general rule of thumb, the more detailed your prompt is, the better your result will be.
### Models
Models are the magic that power InvokeAI. These files represent the output of training a machine on understanding massive amounts of images - providing them with the capability to generate new images using just a text description of what youd like to see. (Like Stable Diffusion!)
Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at ****. Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
- *Models that contain “inpainting” in the name are designed for use with the inpainting feature of the Unified Canvas*
### Scheduler
Schedulers guide the process of removing noise (de-noising) from data. They determine:
1. The number of steps to take to remove the noise.
2. Whether the steps are random (stochastic) or predictable (deterministic).
3. The specific method (algorithm) used for de-noising.
Experimenting with different schedulers is recommended as each will produce different outputs!
### Steps
The number of de-noising steps each generation through.
Schedulers can be intricate and there's often a balance to strike between how quickly they can de-noise data and how well they can do it. It's typically advised to experiment with different schedulers to see which one gives the best results. There has been a lot written on the internet about different schedulers, as well as exploring what the right level of "steps" are for each. You can save generation time by reducing the number of steps used, but you'll want to make sure that you are satisfied with the quality of images produced!
### Low-Rank Adaptations / LoRAs
Low-Rank Adaptations (LoRAs) are like a smaller, more focused version of models, intended to focus on training a better understanding of how a specific character, style, or concept looks.
### Textual Inversion Embeddings
Textual Inversion Embeddings, like LoRAs, assist with more easily prompting for certain characters, styles, or concepts. However, embeddings are trained to update the relationship between a specific word (known as the “trigger”) and the intended output.
### ControlNet
ControlNets are neural network models that are able to extract key features from an existing image and use these features to guide the output of the image generation model.
### VAE
Variational auto-encoder (VAE) is a encode/decode model that translates the "latents" image produced during the image generation procees to the large pixel images that we see.

View File

@ -11,6 +11,33 @@ title: Home
```
-->
<!-- CSS styling -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/fontawesome-free@6.2.1/css/fontawesome.min.css">
<style>
.button {
width: 300px;
height: 50px;
background-color: #448AFF;
color: #fff;
font-size: 16px;
border: none;
cursor: pointer;
border-radius: 0.2rem;
}
.button-container {
display: grid;
grid-template-columns: repeat(3, 300px);
gap: 20px;
}
.button:hover {
background-color: #526CFE;
}
</style>
<div align="center" markdown>
@ -70,63 +97,23 @@ image-to-image generator. It provides a streamlined process with various new
features and options to aid the image generation process. It runs on Windows,
Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
**Quick links**: [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas &
Q&A</a>]
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
!!! note
!!! Note
This software is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
## :octicons-package-dependencies-24: Installation
## :octicons-link-24: Quick Links
This software is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](installation/010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](installation/020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](installation/040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
#### [Installation Troubleshooting](installation/010_INSTALL_AUTOMATED.md#troubleshooting)
Installation troubleshooting guide.
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements
### :octicons-cpu-24: System
You wil need one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
We do **not recommend** the following video cards due to issues with their
running in half-precision mode and having insufficient VRAM to render 512x512
images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
### :fontawesome-solid-memory: Memory and Disk
- At least 12 GB Main Memory RAM.
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
<div class="button-container">
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
<a href="features/"> <button class="button">Features</button> </a>
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
<a href="https://discord.gg/ZmtBAhwWhy"> <button class="button"> Join the Discord Server!</button> </a>
</div>
## :octicons-gift-24: InvokeAI Features

View File

@ -394,7 +394,7 @@ rm .\.venv -r -force
python -mvenv .venv
.\.venv\Scripts\activate
pip install invokeai
invokeai-configure --root .
invokeai-configure --yes --root .
```
If you see anything marked as an error during this process please stop

View File

@ -192,8 +192,10 @@ manager, please follow these steps:
your outputs.
```terminal
invokeai-configure
invokeai-configure --root .
```
Don't miss the dot at the end of the command!
The script `invokeai-configure` will interactively guide you through the
process of downloading and installing the weights files needed for InvokeAI.
@ -225,12 +227,6 @@ manager, please follow these steps:
!!! warning "Make sure that the virtual environment is activated, which should create `(.venv)` in front of your prompt!"
=== "CLI"
```bash
invokeai
```
=== "local Webserver"
```bash
@ -243,6 +239,12 @@ manager, please follow these steps:
invokeai --web --host 0.0.0.0
```
=== "CLI"
```bash
invokeai
```
If you choose the run the web interface, point your browser at
http://localhost:9090 in order to load the GUI.

View File

@ -124,7 +124,7 @@ installation. Examples:
invokeai-model-install --list controlnet
# (install the model at the indicated URL)
invokeai-model-install --add http://civitai.com/2860
invokeai-model-install --add https://civitai.com/api/download/models/128713
# (delete the named model)
invokeai-model-install --delete sd-1/main/analog-diffusion
@ -170,4 +170,4 @@ elsewhere on disk and they will be autoimported. You can also create
subfolders and organize them as you wish.
The location of the autoimport directories are controlled by settings
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).
in `invokeai.yaml`. See [Configuration](../features/CONFIGURATION.md).

View File

@ -1,6 +1,4 @@
---
title: Overview
---
# Overview
We offer several ways to install InvokeAI, each one suited to your
experience and preferences. We suggest that everyone start by
@ -15,6 +13,56 @@ See the [troubleshooting
section](010_INSTALL_AUTOMATED.md#troubleshooting) of the automated
install guide for frequently-encountered installation issues.
This fork is supported across Linux, Windows and Macintosh. Linux users can use
either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
driver).
### [Installation Getting Started Guide](installation)
#### **[Automated Installer](010_INSTALL_AUTOMATED.md)**
✅ This is the recommended installation method for first-time users.
#### [Manual Installation](020_INSTALL_MANUAL.md)
This method is recommended for experienced users and developers
#### [Docker Installation](040_INSTALL_DOCKER.md)
This method is recommended for those familiar with running Docker containers
### Other Installation Guides
- [PyPatchMatch](installation/060_INSTALL_PATCHMATCH.md)
- [XFormers](installation/070_INSTALL_XFORMERS.md)
- [CUDA and ROCm Drivers](installation/030_INSTALL_CUDA_AND_ROCM.md)
- [Installing New Models](installation/050_INSTALLING_MODELS.md)
## :fontawesome-solid-computer: Hardware Requirements
### :octicons-cpu-24: System
You wil need one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 4 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 4 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
** SDXL 1.0 Requirements*
To use SDXL, user must have one of the following:
- :simple-nvidia: An NVIDIA-based graphics card with 8 GB or more VRAM memory.
- :simple-amd: An AMD-based graphics card with 16 GB or more VRAM memory (Linux
only)
- :fontawesome-brands-apple: An Apple computer with an M1 chip.
### :fontawesome-solid-memory: Memory and Disk
- At least 12 GB Main Memory RAM.
- At least 18 GB of free disk space for the machine learning model, Python, and
all its dependencies.
We do **not recommend** the following video cards due to issues with their
running in half-precision mode and having insufficient VRAM to render 512x512
images in full-precision mode:
- NVIDIA 10xx series cards such as the 1080ti
- GTX 1650 series cards
- GTX 1660 series cards
## Installation options
1. [Automated Installer](010_INSTALL_AUTOMATED.md)

View File

@ -14,23 +14,28 @@ The nodes linked below have been developed and contributed by members of the Inv
## List of Nodes
### Face Mask
### FaceTools
**Description:** This node autodetects a face in the image using MediaPipe and masks it by making it transparent. Via outpainting you can swap faces with other faces, or invert the mask and swap things around the face with other things. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control. The node also outputs an all-white mask in the same dimensions as the input image. This is needed by the inpaint node (and unified canvas) for outpainting.
**Description:** FaceTools is a collection of nodes created to manipulate faces as you would in Unified Canvas. It includes FaceMask, FaceOff, and FacePlace. FaceMask autodetects a face in the image using MediaPipe and creates a mask from it. FaceOff similarly detects a face, then takes the face off of the image by adding a square bounding box around it and cropping/scaling it. FacePlace puts the bounded face image from FaceOff back onto the original image. Using these nodes with other inpainting node(s), you can put new faces on existing things, put new things around existing faces, and work closer with a face as a bounded image. Additionally, you can supply X and Y offset values to scale/change the shape of the mask for finer control on FaceMask and FaceOff. See GitHub repository below for usage examples.
**Node Link:** https://github.com/ymgenesis/InvokeAI/blob/facemaskmediapipe/invokeai/app/invocations/facemask.py
**Node Link:** https://github.com/ymgenesis/FaceTools/
**Example Node Graph:** https://www.mediafire.com/file/gohn5sb1bfp8use/21-July_2023-FaceMask.json/file
**FaceMask Output Examples**
**Output Examples**
![5cc8abce-53b0-487a-b891-3bf94dcc8960](https://github.com/invoke-ai/InvokeAI/assets/25252829/43f36d24-1429-4ab1-bd06-a4bedfe0955e)
![b920b710-1882-49a0-8d02-82dff2cca907](https://github.com/invoke-ai/InvokeAI/assets/25252829/7660c1ed-bf7d-4d0a-947f-1fc1679557ba)
![71a91805-fda5-481c-b380-264665703133](https://github.com/invoke-ai/InvokeAI/assets/25252829/f8f6a2ee-2b68-4482-87da-b90221d5c3e2)
![2e3168cb-af6a-475d-bfac-c7b7fd67b4c2](https://github.com/ymgenesis/InvokeAI/assets/25252829/a5ad7d44-2ada-4b3c-a56e-a21f8244a1ac)
![2_annotated](https://github.com/ymgenesis/InvokeAI/assets/25252829/53416c8a-a23b-4d76-bb6d-3cfd776e0096)
![2fe2150c-fd08-4e26-8c36-f0610bf441bb](https://github.com/ymgenesis/InvokeAI/assets/25252829/b0f7ecfe-f093-4147-a904-b9f131b41dc9)
![831b6b98-4f0f-4360-93c8-69a9c1338cbe](https://github.com/ymgenesis/InvokeAI/assets/25252829/fc7b0622-e361-4155-8a76-082894d084f0)
<hr>
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
--------------------------------
### Super Cool Node Template
### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI.
@ -40,13 +45,9 @@ The nodes linked below have been developed and contributed by members of the Inv
**Output Examples**
![Invoke AI](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png)
### Ideal Size
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
**Node Link:** https://github.com/JPPhoto/ideal-size-node
![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
## Help
If you run into any issues with a node, please post in the [InvokeAI Discord](https://discord.gg/ZmtBAhwWhy).

25
flake.lock generated Normal file
View File

@ -0,0 +1,25 @@
{
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1690630721,
"narHash": "sha256-Y04onHyBQT4Erfr2fc82dbJTfXGYrf4V0ysLUYnPOP8=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "d2b52322f35597c62abf56de91b0236746b2a03d",
"type": "github"
},
"original": {
"id": "nixpkgs",
"type": "indirect"
}
},
"root": {
"inputs": {
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

91
flake.nix Normal file
View File

@ -0,0 +1,91 @@
# Important note: this flake does not attempt to create a fully isolated, 'pure'
# Python environment for InvokeAI. Instead, it depends on local invocations of
# virtualenv/pip to install the required (binary) packages, most importantly the
# prebuilt binary pytorch packages with CUDA support.
# ML Python packages with CUDA support, like pytorch, are notoriously expensive
# to compile so it's purposefuly not what this flake does.
{
description = "An (impure) flake to develop on InvokeAI.";
outputs = { self, nixpkgs }:
let
system = "x86_64-linux";
pkgs = import nixpkgs {
inherit system;
config.allowUnfree = true;
};
python = pkgs.python310;
mkShell = { dir, install }:
let
setupScript = pkgs.writeScript "setup-invokai" ''
# This must be sourced using 'source', not executed.
${python}/bin/python -m venv ${dir}
${dir}/bin/python -m pip install ${install}
# ${dir}/bin/python -c 'import torch; assert(torch.cuda.is_available())'
source ${dir}/bin/activate
'';
in
pkgs.mkShell rec {
buildInputs = with pkgs; [
# Backend: graphics, CUDA.
cudaPackages.cudnn
cudaPackages.cuda_nvrtc
cudatoolkit
pkgconfig
libconfig
cmake
blas
freeglut
glib
gperf
procps
libGL
libGLU
linuxPackages.nvidia_x11
python
(opencv4.override {
enableGtk3 = true;
enableFfmpeg = true;
enableCuda = true;
enableUnfree = true;
})
stdenv.cc
stdenv.cc.cc.lib
xorg.libX11
xorg.libXext
xorg.libXi
xorg.libXmu
xorg.libXrandr
xorg.libXv
zlib
# Pre-commit hooks.
black
# Frontend.
yarn
nodejs
];
LD_LIBRARY_PATH = pkgs.lib.makeLibraryPath buildInputs;
CUDA_PATH = pkgs.cudatoolkit;
EXTRA_LDFLAGS = "-L${pkgs.linuxPackages.nvidia_x11}/lib";
shellHook = ''
if [[ -f "${dir}/bin/activate" ]]; then
source "${dir}/bin/activate"
echo "Using Python: $(which python)"
else
echo "Use 'source ${setupScript}' to set up the environment."
fi
'';
};
in
{
devShells.${system} = rec {
develop = mkShell { dir = "venv"; install = "-e '.[xformers]' --extra-index-url https://download.pytorch.org/whl/cu118"; };
default = develop;
};
};
}

View File

@ -13,7 +13,7 @@ from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Union
SUPPORTED_PYTHON = ">=3.9.0,<3.11"
SUPPORTED_PYTHON = ">=3.9.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
@ -149,7 +149,7 @@ class Installer:
return venv_dir
def install(
self, root: str = "~/invokeai-3", version: str = "latest", yes_to_all=False, find_links: Path = None
self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
) -> None:
"""
Install the InvokeAI application into the given runtime path
@ -168,7 +168,8 @@ class Installer:
messages.welcome()
self.dest = Path(root).expanduser().resolve() if yes_to_all else messages.dest_path(root)
default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
self.dest = default_path if yes_to_all else messages.dest_path(root)
# create the venv for the app
self.venv = self.app_venv()
@ -248,6 +249,9 @@ class InvokeAiInstance:
pip[
"install",
"--require-virtualenv",
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
"urllib3~=1.26.0",
"requests~=2.28.0",
"torch~=2.0.0",
"torchmetrics==0.11.4",
"torchvision>=0.14.1",
@ -451,7 +455,7 @@ def get_torch_source() -> (Union[str, None], str):
device = graphical_accelerator()
url = None
optional_modules = None
optional_modules = "[onnx]"
if OS == "Linux":
if device == "rocm":
url = "https://download.pytorch.org/whl/rocm5.4.2"
@ -460,7 +464,10 @@ def get_torch_source() -> (Union[str, None], str):
if device == "cuda":
url = "https://download.pytorch.org/whl/cu117"
optional_modules = "[xformers]"
optional_modules = "[xformers,onnx-cuda]"
if device == "cuda_and_dml":
url = "https://download.pytorch.org/whl/cu117"
optional_modules = "[xformers,onnx-directml]"
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13

View File

@ -3,6 +3,7 @@ InvokeAI Installer
"""
import argparse
import os
from pathlib import Path
from installer import Installer
@ -15,7 +16,7 @@ if __name__ == "__main__":
dest="root",
type=str,
help="Destination path for installation",
default="~/invokeai",
default=os.environ.get("INVOKEAI_ROOT") or "~/invokeai",
)
parser.add_argument(
"-y",

View File

@ -167,6 +167,10 @@ def graphical_accelerator():
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
"cuda",
)
nvidia_with_dml = (
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
"cuda_and_dml",
)
amd = (
"an [gold1 b]AMD[/] GPU (using ROCm™)",
"rocm",
@ -181,7 +185,7 @@ def graphical_accelerator():
)
if OS == "Windows":
options = [nvidia, cpu]
options = [nvidia, nvidia_with_dml, cpu]
if OS == "Linux":
options = [nvidia, amd, cpu]
elif OS == "Darwin":

View File

@ -41,7 +41,7 @@ IF /I "%choice%" == "1" (
python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%choice%" == "7" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --default_only
python .venv\Scripts\invokeai-configure.exe --yes --skip-sd-weight
) ELSE IF /I "%choice%" == "8" (
echo Developer Console
echo Python command is:

View File

@ -82,7 +82,7 @@ do_choice() {
7)
clear
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only --skip-sd-weights
;;
8)
clear

View File

@ -1,7 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Optional
from logging import Logger
import os
from invokeai.app.services.board_image_record_storage import (
SqliteBoardImageRecordStorage,
)
@ -29,6 +29,7 @@ from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage
from ..services.model_manager_service import ModelManagerService
from ..services.invocation_stats import InvocationStatsService
from .events import FastAPIEventService
@ -54,7 +55,7 @@ logger = InvokeAILogger.getLogger()
class ApiDependencies:
"""Contains and initializes all dependencies for the API"""
invoker: Invoker = None
invoker: Invoker
@staticmethod
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
@ -67,8 +68,9 @@ class ApiDependencies:
output_folder = config.output_path
# TODO: build a file/path manager?
db_location = config.db_path
db_location.parent.mkdir(parents=True, exist_ok=True)
db_path = config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
db_location = str(db_path)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions"
@ -127,6 +129,7 @@ class ApiDependencies:
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
configuration=config,
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger,
)

View File

@ -1,24 +1,30 @@
from fastapi import Body, HTTPException, Path, Query
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from invokeai.app.services.board_record_storage import BoardRecord, BoardChanges
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.models.image_record import ImageDTO
from pydantic import BaseModel, Field
from ..dependencies import ApiDependencies
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
class AddImagesToBoardResult(BaseModel):
board_id: str = Field(description="The id of the board the images were added to")
added_image_names: list[str] = Field(description="The image names that were added to the board")
class RemoveImagesFromBoardResult(BaseModel):
removed_image_names: list[str] = Field(description="The image names that were removed from their board")
@board_images_router.post(
"/",
operation_id="create_board_image",
operation_id="add_image_to_board",
responses={
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
)
async def create_board_image(
async def add_image_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
@ -29,26 +35,78 @@ async def create_board_image(
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add to board")
raise HTTPException(status_code=500, detail="Failed to add image to board")
@board_images_router.delete(
"/",
operation_id="remove_board_image",
operation_id="remove_image_from_board",
responses={
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
)
async def remove_board_image(
board_id: str = Body(description="The id of the board"),
image_name: str = Body(description="The name of the image to remove"),
async def remove_image_from_board(
image_name: str = Body(description="The name of the image to remove", embed=True),
):
"""Deletes a board_image"""
"""Removes an image from its board, if it had one"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(
board_id=board_id, image_name=image_name
)
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to update board")
raise HTTPException(status_code=500, detail="Failed to remove image from board")
@board_images_router.post(
"/batch",
operation_id="add_images_to_board",
responses={
201: {"description": "Images were added to board successfully"},
},
status_code=201,
response_model=AddImagesToBoardResult,
)
async def add_images_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_names: list[str] = Body(description="The names of the images to add", embed=True),
) -> AddImagesToBoardResult:
"""Adds a list of images to a board"""
try:
added_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
)
added_image_names.append(image_name)
except:
pass
return AddImagesToBoardResult(board_id=board_id, added_image_names=added_image_names)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to add images to board")
@board_images_router.post(
"/batch/delete",
operation_id="remove_images_from_board",
responses={
201: {"description": "Images were removed from board successfully"},
},
status_code=201,
response_model=RemoveImagesFromBoardResult,
)
async def remove_images_from_board(
image_names: list[str] = Body(description="The names of the images to remove", embed=True),
) -> RemoveImagesFromBoardResult:
"""Removes a list of images from their board, if they had one"""
try:
removed_image_names: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_image_names.append(image_name)
except:
pass
return RemoveImagesFromBoardResult(removed_image_names=removed_image_names)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to remove images from board")

View File

@ -5,6 +5,7 @@ from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadF
from fastapi.responses import FileResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.models.image import ImageCategory, ResourceOrigin
@ -25,7 +26,7 @@ IMAGE_MAX_AGE = 31536000
@images_router.post(
"/",
"/upload",
operation_id="upload_image",
responses={
201: {"description": "The image was uploaded successfully"},
@ -77,7 +78,7 @@ async def upload_image(
raise HTTPException(status_code=500, detail="Failed to create image")
@images_router.delete("/{image_name}", operation_id="delete_image")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
@ -103,7 +104,7 @@ async def clear_intermediates() -> int:
@images_router.patch(
"/{image_name}",
"/i/{image_name}",
operation_id="update_image",
response_model=ImageDTO,
)
@ -120,7 +121,7 @@ async def update_image(
@images_router.get(
"/{image_name}",
"/i/{image_name}",
operation_id="get_image_dto",
response_model=ImageDTO,
)
@ -136,7 +137,7 @@ async def get_image_dto(
@images_router.get(
"/{image_name}/metadata",
"/i/{image_name}/metadata",
operation_id="get_image_metadata",
response_model=ImageMetadata,
)
@ -152,7 +153,7 @@ async def get_image_metadata(
@images_router.get(
"/{image_name}/full",
"/i/{image_name}/full",
operation_id="get_image_full",
response_class=Response,
responses={
@ -187,7 +188,7 @@ async def get_image_full(
@images_router.get(
"/{image_name}/thumbnail",
"/i/{image_name}/thumbnail",
operation_id="get_image_thumbnail",
response_class=Response,
responses={
@ -216,7 +217,7 @@ async def get_image_thumbnail(
@images_router.get(
"/{image_name}/urls",
"/i/{image_name}/urls",
operation_id="get_image_urls",
response_model=ImageUrlsDTO,
)
@ -265,3 +266,24 @@ async def list_image_dtos(
)
return image_dtos
class DeleteImagesFromListResult(BaseModel):
deleted_images: list[str]
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesFromListResult)
async def delete_images_from_list(
image_names: list[str] = Body(description="The list of names of images to delete", embed=True),
) -> DeleteImagesFromListResult:
try:
deleted_images: list[str] = []
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
except:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to delete images")

View File

@ -37,6 +37,7 @@ from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.urls import LocalUrlService
from invokeai.app.services.invocation_stats import InvocationStatsService
from .services.default_graphs import default_text_to_image_graph_id, create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
@ -311,6 +312,7 @@ def invoke_cli():
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger,
configuration=config,
)

View File

@ -1,6 +1,14 @@
from typing import Literal, Optional, Union, List, Annotated
from pydantic import BaseModel, Field
import re
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from .model import ClipField
from ...backend.util.devices import torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.model_management import BaseModelType, ModelType, SubModelType, ModelPatcher
import torch
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
@ -101,12 +109,15 @@ class CompelInvocation(BaseInvocation):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@ -165,7 +176,7 @@ class CompelInvocation(BaseInvocation):
class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
def run_clip_raw(self, context, clip_field, prompt, get_pooled, lora_prefix):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
@ -189,12 +200,15 @@ class SDXLPromptInvocationBase:
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@ -202,8 +216,8 @@ class SDXLPromptInvocationBase:
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
with ModelPatcher.apply_lora(
text_encoder_info.context.model, _lora_loader(), lora_prefix
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
@ -239,7 +253,7 @@ class SDXLPromptInvocationBase:
return c, c_pooled, None
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
def run_clip_compel(self, context, clip_field, prompt, get_pooled, lora_prefix):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
context=context,
@ -263,12 +277,15 @@ class SDXLPromptInvocationBase:
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model,
)
)
except ModelNotFoundException:
# print(e)
@ -276,8 +293,8 @@ class SDXLPromptInvocationBase:
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
with ModelPatcher.apply_lora_text_encoder(
text_encoder_info.context.model, _lora_loader()
with ModelPatcher.apply_lora(
text_encoder_info.context.model, _lora_loader(), lora_prefix
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer,
ti_manager,
@ -349,11 +366,11 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip, self.prompt, False)
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip, self.prompt, False, "lora_te1_")
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True, "lora_te2_")
else:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "lora_te2_")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@ -407,7 +424,8 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True, "<NONE>")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@ -459,11 +477,11 @@ class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip, self.prompt, False)
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip, self.prompt, False, "lora_te1_")
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True, "lora_te2_")
else:
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True, "lora_te2_")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
@ -517,7 +535,8 @@ class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
# TODO: if there will appear lora for refiner - write proper prefix
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True, "<NONE>")
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)

View File

@ -3,6 +3,7 @@
from typing import Literal, Optional
import numpy
import cv2
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import Field
from pathlib import Path
@ -650,3 +651,143 @@ class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
width=image_dto.width,
height=image_dto.height,
)
class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image."""
# fmt: off
type: Literal["img_hue_adjust"] = "img_hue_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
hue: int = Field(default=0, description="The degrees by which to rotate the hue, 0-360")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert image to HSV color space
hsv_image = numpy.array(pil_image.convert("HSV"))
# Convert hue from 0..360 to 0..256
hue = int(256 * ((self.hue % 360) / 360))
# Increment each hue and wrap around at 255
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
class ImageLuminosityAdjustmentInvocation(BaseInvocation):
"""Adjusts the Luminosity (Value) of an image."""
# fmt: off
type: Literal["img_luminosity_adjust"] = "img_luminosity_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
luminosity: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Adjust the luminosity (value)
hsv_image[:, :, 2] = numpy.clip(hsv_image[:, :, 2] * self.luminosity, 0, 255)
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)
class ImageSaturationAdjustmentInvocation(BaseInvocation):
"""Adjusts the Saturation of an image."""
# fmt: off
type: Literal["img_saturation_adjust"] = "img_saturation_adjust"
# Inputs
image: ImageField = Field(default=None, description="The image to adjust")
saturation: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
pil_image = context.services.images.get_pil_image(self.image.image_name)
# Convert PIL image to OpenCV format (numpy array), note color channel
# ordering is changed from RGB to BGR
image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1]
# Convert image to HSV color space
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Adjust the saturation
hsv_image[:, :, 1] = numpy.clip(hsv_image[:, :, 1] * self.saturation, 0, 255)
# Convert image back to BGR color space
image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR)
# Convert back to PIL format and to original color mode
pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA")
image_dto = context.services.images.create(
image=pil_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id,
)
return ImageOutput(
image=ImageField(
image_name=image_dto.image_name,
),
width=image_dto.width,
height=image_dto.height,
)

View File

@ -14,7 +14,7 @@ from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData,
@ -24,6 +24,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.model_management import ModelPatcher
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext

View File

@ -1,6 +1,6 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from pydantic import Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@ -10,16 +10,17 @@ from invokeai.app.invocations.baseinvocation import (
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class LoRAMetadataField(BaseModel):
class LoRAMetadataField(BaseModelExcludeNull):
"""LoRA metadata for an image generated in InvokeAI."""
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
class CoreMetadata(BaseModel):
class CoreMetadata(BaseModelExcludeNull):
"""Core generation metadata for an image generated in InvokeAI."""
generation_mode: str = Field(
@ -70,7 +71,7 @@ class CoreMetadata(BaseModel):
refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModel):
class ImageMetadata(BaseModelExcludeNull):
"""An image's generation metadata"""
metadata: Optional[dict] = Field(

View File

@ -53,6 +53,7 @@ class MainModelField(BaseModel):
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class LoRAModelField(BaseModel):
@ -261,6 +262,103 @@ class LoraLoaderInvocation(BaseInvocation):
return output
class SDXLLoraLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
clip2: Optional[ClipField] = Field(default=None, description="Tokenizer2 and text_encoder2 submodels")
# fmt: on
class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder."""
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
weight: float = Field(default=0.75, description="With what weight to apply lora")
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
clip2: Optional[ClipField] = Field(description="Clip2 model for applying lora")
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Lora Loader",
"tags": ["lora", "loader"],
"type_hints": {"lora": "lora_model"},
},
}
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
if self.lora is None:
raise Exception("No LoRA provided")
base_model = self.lora.base_model
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unknown lora name: {lora_name}!")
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip')
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip2')
output = SDXLLoraLoaderOutput()
if self.unet is not None:
output.unet = copy.deepcopy(self.unet)
output.unet.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip is not None:
output.clip = copy.deepcopy(self.clip)
output.clip.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
if self.clip2 is not None:
output.clip2 = copy.deepcopy(self.clip2)
output.clip2.loras.append(
LoraInfo(
base_model=base_model,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None,
weight=self.weight,
)
)
return output
class VAEModelField(BaseModel):
"""Vae model field"""

View File

@ -0,0 +1,573 @@
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
from contextlib import ExitStack
from typing import List, Literal, Optional, Union
import re
import inspect
from pydantic import BaseModel, Field, validator
import torch
import numpy as np
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from ...backend.model_management import ONNXModelPatcher
from ...backend.util import choose_torch_device
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.backend import BaseModelType, ModelType, SubModelType
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.stable_diffusion import PipelineIntermediateState
from tqdm import tqdm
from .model import ClipField
from .latent import LatentsField, LatentsOutput, build_latents_output, get_scheduler, SAMPLER_NAME_VALUES
from .compel import CompelOutput
ORT_TO_NP_TYPE = {
"tensor(bool)": np.bool_,
"tensor(int8)": np.int8,
"tensor(uint8)": np.uint8,
"tensor(int16)": np.int16,
"tensor(uint16)": np.uint16,
"tensor(int32)": np.int32,
"tensor(uint32)": np.uint32,
"tensor(int64)": np.int64,
"tensor(uint64)": np.uint64,
"tensor(float16)": np.float16,
"tensor(float)": np.float32,
"tensor(double)": np.float64,
}
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
class ONNXPromptInvocation(BaseInvocation):
type: Literal["prompt_onnx"] = "prompt_onnx"
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(),
)
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder, ExitStack() as stack:
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
for lora in self.clip.loras
]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
(
name,
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model,
)
)
except Exception:
# print(e)
# import traceback
# print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found')
if loras or ti_list:
text_encoder.release_session()
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras), ONNXModelPatcher.apply_ti(
orig_tokenizer, text_encoder, ti_list
) as (tokenizer, ti_manager):
text_encoder.create_session()
# copy from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L153
text_inputs = tokenizer(
self.prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
"""
untruncated_ids = tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
"""
prompt_embeds = text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.save(conditioning_name, (prompt_embeds, None))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
# Text to image
class ONNXTextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l_onnx"] = "t2l_onnx"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
precision: PRECISION_VALUES = Field(default = "tensor(float16)", description="The precision to use when generating latents")
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number",
},
},
}
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
def invoke(self, context: InvocationContext) -> LatentsOutput:
c, _ = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
if isinstance(c, torch.Tensor):
c = c.cpu().numpy()
if isinstance(uc, torch.Tensor):
uc = uc.cpu().numpy()
device = torch.device(choose_torch_device())
prompt_embeds = np.concatenate([uc, c])
latents = context.services.latents.get(self.noise.latents_name)
if isinstance(latents, torch.Tensor):
latents = latents.cpu().numpy()
# TODO: better execution device handling
latents = latents.astype(ORT_TO_NP_TYPE[self.precision])
# get the initial random noise unless the user supplied it
do_classifier_free_guidance = True
# latents_dtype = prompt_embeds.dtype
# latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8)
# if latents.shape != latents_shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
def torch2numpy(latent: torch.Tensor):
return latent.cpu().numpy()
def numpy2torch(latent, device):
return torch.from_numpy(latent).to(device)
def dispatch_progress(
self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
scheduler.set_timesteps(self.steps)
latents = latents * np.float64(scheduler.init_noise_sigma)
extra_step_kwargs = dict()
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
extra_step_kwargs.update(
eta=0.0,
)
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict())
with unet_info as unet, ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [
(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
for lora in self.unet.loras
]
if loras:
unet.release_session()
with ONNXModelPatcher.apply_lora_unet(unet, loras):
# TODO:
_, _, h, w = latents.shape
unet.create_session(h, w)
timestep_dtype = next(
(input.type for input in unet.session.get_inputs() if input.name == "timestep"), "tensor(float16)"
)
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
for i in tqdm(range(len(scheduler.timesteps))):
t = scheduler.timesteps[i]
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(numpy2torch(latent_model_input, device), t)
latent_model_input = latent_model_input.cpu().numpy()
# predict the noise residual
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
noise_pred = noise_pred[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = scheduler.step(
numpy2torch(noise_pred, device), t, numpy2torch(latents, device), **extra_step_kwargs
)
latents = torch2numpy(scheduler_output.prev_sample)
state = PipelineIntermediateState(
run_id="test", step=i, timestep=timestep, latents=scheduler_output.prev_sample
)
dispatch_progress(self, context=context, source_node_id=source_node_id, intermediate_state=state)
# call the callback, if provided
# if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=torch.from_numpy(latents))
# Latent to image
class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i_onnx"] = "l2i_onnx"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
)
# tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with vae_info as vae:
vae.create_session()
# copied from
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L427
latents = 1 / 0.18215 * latents
# image = self.vae_decoder(latent_sample=latents)[0]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate([vae(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])])
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
image = VaeImageProcessor.numpy_to_pil(image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ONNXModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
# fmt: off
type: Literal["model_loader_output_onnx"] = "model_loader_output_onnx"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae_decoder: VaeField = Field(default=None, description="Vae submodel")
vae_encoder: VaeField = Field(default=None, description="Vae submodel")
# fmt: on
class ONNXSD1ModelLoaderInvocation(BaseInvocation):
"""Loading submodels of selected model."""
type: Literal["sd1_model_loader_onnx"] = "sd1_model_loader_onnx"
model_name: str = Field(default="", description="Model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["model", "loader"], "type_hints": {"model_name": "model"}}, # TODO: rename to model_name?
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
model_name = "stable-diffusion-v1-5"
base_model = BaseModelType.StableDiffusion1
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
):
raise Exception(f"Unkown model name: {model_name}!")
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.TextEncoder,
),
loras=[],
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=ModelType.ONNX,
submodel=SubModelType.VaeEncoder,
),
),
)
class OnnxModelField(BaseModel):
"""Onnx model field"""
model_name: str = Field(description="Name of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
class OnnxModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels."""
type: Literal["onnx_model_loader"] = "onnx_model_loader"
model: OnnxModelField = Field(description="The model to load")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Onnx Model Loader",
"tags": ["model", "loader"],
"type_hints": {"model": "model"},
},
}
def invoke(self, context: InvocationContext) -> ONNXModelLoaderOutput:
base_model = self.model.base_model
model_name = self.model.model_name
model_type = ModelType.ONNX
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=model_name,
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ONNXModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet,
),
scheduler=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler,
),
loras=[],
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer,
),
text_encoder=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder,
),
loras=[],
skipped_layers=0,
),
vae_decoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeDecoder,
),
),
vae_encoder=VaeField(
vae=ModelInfo(
model_name=model_name,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.VaeEncoder,
),
),
)

View File

@ -4,6 +4,8 @@ from typing import Literal
from pydantic import Field
from invokeai.app.invocations.prompt import PromptOutput
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .math import FloatOutput, IntOutput
@ -64,3 +66,18 @@ class ParamStringInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringOutput:
return StringOutput(text=self.text)
class ParamPromptInvocation(BaseInvocation):
"""A prompt input parameter"""
type: Literal["param_prompt"] = "param_prompt"
prompt: str = Field(default="", description="The prompt value")
class Config(InvocationConfig):
schema_extra = {
"ui": {"tags": ["param", "prompt"], "title": "Prompt"},
}
def invoke(self, context: InvocationContext) -> PromptOutput:
return PromptOutput(prompt=self.prompt)

View File

@ -5,7 +5,7 @@ from typing import List, Literal, Optional, Union
from pydantic import Field, validator
from ...backend.model_management import ModelType, SubModelType
from ...backend.model_management import ModelType, SubModelType, ModelPatcher
from invokeai.app.util.step_callback import stable_diffusion_xl_step_callback
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
@ -293,10 +293,20 @@ class SDXLTextToLatentsInvocation(BaseInvocation):
num_inference_steps = self.steps
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(**self.unet.unet.dict(), context=context)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
scheduler.set_timesteps(num_inference_steps, device=unet.device)
timesteps = scheduler.timesteps
@ -543,9 +553,19 @@ class SDXLLatentsToLatentsInvocation(BaseInvocation):
context=context,
)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet:
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()), unet_info as unet:
# apply denoising_start
num_inference_steps = self.steps
scheduler.set_timesteps(num_inference_steps, device=unet.device)

View File

@ -25,7 +25,6 @@ class BoardImageRecordStorageBase(ABC):
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
@ -154,7 +153,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
@ -162,9 +160,9 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self._cursor.execute(
"""--sql
DELETE FROM board_images
WHERE board_id = ? AND image_name = ?;
WHERE image_name = ?;
""",
(board_id, image_name),
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:

View File

@ -31,7 +31,6 @@ class BoardImagesServiceABC(ABC):
@abstractmethod
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Removes an image from a board."""
@ -93,10 +92,9 @@ class BoardImagesService(BoardImagesServiceABC):
def remove_image_from_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(board_id, image_name)
self._services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,

View File

@ -171,7 +171,6 @@ from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
INIT_FILE = Path("invokeai.yaml")
MODEL_CORE = Path("models/core")
DB_FILE = Path("invokeai.db")
LEGACY_INIT_FILE = Path("invokeai.init")
@ -356,8 +355,8 @@ class InvokeAISettings(BaseSettings):
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
else:
root = Path("~/invokeai").expanduser().resolve()
@ -403,7 +402,7 @@ class InvokeAIAppConfig(InvokeAISettings):
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
@ -415,6 +414,7 @@ class InvokeAIAppConfig(InvokeAISettings):
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert')
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
@ -472,9 +472,11 @@ class InvokeAIAppConfig(InvokeAISettings):
Path to the runtime root directory
"""
if self.root:
return Path(self.root).expanduser().absolute()
root = Path(self.root).expanduser().absolute()
else:
return self.find_root()
root = self.find_root().expanduser().absolute()
self.root = root # insulate ourselves from relative paths that may change
return root
@property
def root_dir(self) -> Path:

View File

@ -289,9 +289,10 @@ class ImageService(ImageServiceABC):
def get_metadata(self, image_name: str) -> Optional[ImageMetadata]:
try:
image_record = self._services.image_records.get(image_name)
metadata = self._services.image_records.get_metadata(image_name)
if not image_record.session_id:
return ImageMetadata()
return ImageMetadata(metadata=metadata)
session_raw = self._services.graph_execution_manager.get_raw(image_record.session_id)
graph = None
@ -303,7 +304,6 @@ class ImageService(ImageServiceABC):
self._services.logger.warn(f"Failed to parse session graph: {e}")
graph = None
metadata = self._services.image_records.get_metadata(image_name)
return ImageMetadata(graph=graph, metadata=metadata)
except ImageRecordNotFoundException:
self._services.logger.error("Image record not found")

View File

@ -32,6 +32,7 @@ class InvocationServices:
logger: "Logger"
model_manager: "ModelManagerServiceBase"
processor: "InvocationProcessorABC"
performance_statistics: "InvocationStatsServiceBase"
queue: "InvocationQueueABC"
def __init__(
@ -47,6 +48,7 @@ class InvocationServices:
logger: "Logger",
model_manager: "ModelManagerServiceBase",
processor: "InvocationProcessorABC",
performance_statistics: "InvocationStatsServiceBase",
queue: "InvocationQueueABC",
):
self.board_images = board_images
@ -61,4 +63,5 @@ class InvocationServices:
self.logger = logger
self.model_manager = model_manager
self.processor = processor
self.performance_statistics = performance_statistics
self.queue = queue

View File

@ -0,0 +1,223 @@
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
"""Utility to collect execution time and GPU usage stats on invocations in flight"""
"""
Usage:
statistics = InvocationStatsService(graph_execution_manager)
with statistics.collect_stats(invocation, graph_execution_state.id):
... execute graphs...
statistics.log_stats()
Typical output:
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
writes to the system log is stored in InvocationServices.performance_statistics.
"""
import time
from abc import ABC, abstractmethod
from contextlib import AbstractContextManager
from dataclasses import dataclass, field
from typing import Dict
import torch
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from .graph import GraphExecutionState
from .item_storage import ItemStorageABC
class InvocationStatsServiceBase(ABC):
"Abstract base class for recording node memory/time performance statistics"
@abstractmethod
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
"""
Initialize the InvocationStatsService and reset counters to zero
:param graph_execution_manager: Graph execution manager for this session
"""
pass
@abstractmethod
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> AbstractContextManager:
"""
Return a context object that will capture the statistics on the execution
of invocaation. Use with: to place around the part of the code that executes the invocation.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
pass
@abstractmethod
def reset_stats(self, graph_execution_state_id: str):
"""
Reset all statistics for the indicated graph
:param graph_execution_state_id
"""
pass
@abstractmethod
def reset_all_stats(self):
"""Zero all statistics"""
pass
@abstractmethod
def update_invocation_stats(
self,
graph_id: str,
invocation_type: str,
time_used: float,
vram_used: float,
):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Time used by node's exection (sec)
:param vram_used: Maximum VRAM used during exection (GB)
"""
pass
@abstractmethod
def log_stats(self):
"""
Write out the accumulated statistics to the log or somewhere else.
"""
pass
@dataclass
class NodeStats:
"""Class for tracking execution stats of an invocation node"""
calls: int = 0
time_used: float = 0.0 # seconds
max_vram: float = 0.0 # GB
@dataclass
class NodeLog:
"""Class for tracking node usage"""
# {node_type => NodeStats}
nodes: Dict[str, NodeStats] = field(default_factory=dict)
class InvocationStatsService(InvocationStatsServiceBase):
"""Accumulate performance information about a running graph. Collects time spent in each node,
as well as the maximum and current VRAM utilisation for CUDA systems"""
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
self.graph_execution_manager = graph_execution_manager
# {graph_id => NodeLog}
self._stats: Dict[str, NodeLog] = {}
class StatsContext:
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
self.invocation = invocation
self.collector = collector
self.graph_id = graph_id
self.start_time = 0
def __enter__(self):
self.start_time = time.time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
def __exit__(self, *args):
self.collector.update_invocation_stats(
self.graph_id,
self.invocation.type,
time.time() - self.start_time,
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
)
def collect_stats(
self,
invocation: BaseInvocation,
graph_execution_state_id: str,
) -> StatsContext:
"""
Return a context object that will capture the statistics.
:param invocation: BaseInvocation object from the current graph.
:param graph_execution_state: GraphExecutionState object from the current session.
"""
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
self._stats[graph_execution_state_id] = NodeLog()
return self.StatsContext(invocation, graph_execution_state_id, self)
def reset_all_stats(self):
"""Zero all statistics"""
self._stats = {}
def reset_stats(self, graph_execution_id: str):
"""Zero the statistics for the indicated graph."""
try:
self._stats.pop(graph_execution_id)
except KeyError:
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
"""
Add timing information on execution of a node. Usually
used internally.
:param graph_id: ID of the graph that is currently executing
:param invocation_type: String literal type of the node
:param time_used: Floating point seconds used by node's exection
"""
if not self._stats[graph_id].nodes.get(invocation_type):
self._stats[graph_id].nodes[invocation_type] = NodeStats()
stats = self._stats[graph_id].nodes[invocation_type]
stats.calls += 1
stats.time_used += time_used
stats.max_vram = max(stats.max_vram, vram_used)
def log_stats(self):
"""
Send the statistics to the system logger at the info level.
Stats will only be printed if when the execution of the graph
is complete.
"""
completed = set()
for graph_id, node_log in self._stats.items():
current_graph_state = self.graph_execution_manager.get(graph_id)
if not current_graph_state.is_complete():
continue
total_time = 0
logger.info(f"Graph stats: {graph_id}")
logger.info("Node Calls Seconds VRAM Used")
for node_type, stats in self._stats[graph_id].nodes.items():
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
total_time += stats.time_used
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
if torch.cuda.is_available():
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
completed.add(graph_id)
for graph_id in completed:
del self._stats[graph_id]

View File

@ -3,9 +3,10 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from pydantic import Field
from typing import Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from typing import Literal, Optional, Union, Callable, List, Tuple, TYPE_CHECKING
from types import ModuleType
from invokeai.backend.model_management import (
@ -193,7 +194,7 @@ class ModelManagerServiceBase(ABC):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
@ -292,7 +293,7 @@ class ModelManagerService(ModelManagerServiceBase):
def __init__(
self,
config: InvokeAIAppConfig,
logger: ModuleType,
logger: Logger,
):
"""
Initialize with the path to the models.yaml config file.
@ -396,7 +397,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type,
)
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> Union[dict, None]:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
@ -416,7 +417,7 @@ class ModelManagerService(ModelManagerServiceBase):
"""
return self.mgr.list_models(base_model, model_type)
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> Union[dict, None]:
"""
Return information about the model using the same format as list_models()
"""
@ -429,7 +430,7 @@ class ModelManagerService(ModelManagerServiceBase):
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
) -> None:
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
@ -478,7 +479,7 @@ class ModelManagerService(ModelManagerServiceBase):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
@ -573,9 +574,9 @@ class ModelManagerService(ModelManagerServiceBase):
default=None, description="Base model shared by all models to be merged"
),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
alpha: float = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
force: bool = False,
merge_dest_directory: Optional[Path] = Field(
default=None, description="Optional directory location for merged model"
),
@ -633,8 +634,8 @@ class ModelManagerService(ModelManagerServiceBase):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
new_name: Optional[str] = None,
new_base: Optional[BaseModelType] = None,
):
"""
Rename the indicated model. Can provide a new name and/or a new base.

View File

@ -0,0 +1,8 @@
from pydantic import Field
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class BoardImage(BaseModelExcludeNull):
board_id: str = Field(description="The id of the board")
image_name: str = Field(description="The name of the image")

View File

@ -1,10 +1,11 @@
from typing import Optional, Union
from datetime import datetime
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from pydantic import Field
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class BoardRecord(BaseModel):
class BoardRecord(BaseModelExcludeNull):
"""Deserialized board record."""
board_id: str = Field(description="The unique ID of the board.")

View File

@ -1,13 +1,14 @@
import datetime
from typing import Optional, Union
from pydantic import BaseModel, Extra, Field, StrictBool, StrictStr
from pydantic import Extra, Field, StrictBool, StrictStr
from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
class ImageRecord(BaseModel):
class ImageRecord(BaseModelExcludeNull):
"""Deserialized image record without metadata."""
image_name: str = Field(description="The unique name of the image.")
@ -40,7 +41,7 @@ class ImageRecord(BaseModel):
"""The node ID that generated this image, if it is a generated image."""
class ImageRecordChanges(BaseModel, extra=Extra.forbid):
class ImageRecordChanges(BaseModelExcludeNull, extra=Extra.forbid):
"""A set of changes to apply to an image record.
Only limited changes are valid:
@ -60,7 +61,7 @@ class ImageRecordChanges(BaseModel, extra=Extra.forbid):
"""The image's new `is_intermediate` flag."""
class ImageUrlsDTO(BaseModel):
class ImageUrlsDTO(BaseModelExcludeNull):
"""The URLs for an image and its thumbnail."""
image_name: str = Field(description="The unique name of the image.")
@ -76,11 +77,15 @@ class ImageDTO(ImageRecord, ImageUrlsDTO):
board_id: Optional[str] = Field(description="The id of the board the image belongs to, if one exists.")
"""The id of the board the image belongs to, if one exists."""
pass
def image_record_to_dto(
image_record: ImageRecord, image_url: str, thumbnail_url: str, board_id: Optional[str]
image_record: ImageRecord,
image_url: str,
thumbnail_url: str,
board_id: Optional[str],
) -> ImageDTO:
"""Converts an image record to an image DTO."""
return ImageDTO(

View File

@ -1,14 +1,15 @@
import time
import traceback
from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem
from .invoker import InvocationProcessorABC, Invoker
from ..models.exceptions import CanceledException
from threading import BoundedSemaphore, Event, Thread
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import InvocationContext
from ..models.exceptions import CanceledException
from .invocation_queue import InvocationQueueItem
from .invocation_stats import InvocationStatsServiceBase
from .invoker import InvocationProcessorABC, Invoker
class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread
@ -35,6 +36,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event):
try:
self.__threadLimit.acquire()
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
while not stop_event.is_set():
try:
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
@ -83,35 +86,38 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Invoke
try:
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
with statistics.collect_stats(invocation, graph_execution_state.id):
outputs = invocation.invoke(
InvocationContext(
services=self.__invoker.services,
graph_execution_state_id=graph_execution_state.id,
)
)
)
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled(graph_execution_state.id):
continue
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save outputs and history
graph_execution_state.complete(invocation.id, outputs)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Save the state changes
self.__invoker.services.graph_execution_manager.set(graph_execution_state)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
# Send complete event
self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id,
node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(),
)
statistics.log_stats()
except KeyboardInterrupt:
pass
except CanceledException:
statistics.reset_stats(graph_execution_state.id)
pass
except Exception as e:
@ -133,7 +139,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
error_type=e.__class__.__name__,
error=error,
)
statistics.reset_stats(graph_execution_state.id)
pass
# Check queue to see if this is canceled, and skip if so

View File

@ -20,6 +20,6 @@ class LocalUrlService(UrlServiceBase):
# These paths are determined by the routes in invokeai/app/api/routers/images.py
if thumbnail:
return f"{self._base_url}/images/{image_basename}/thumbnail"
return f"{self._base_url}/images/i/{image_basename}/thumbnail"
return f"{self._base_url}/images/{image_basename}/full"
return f"{self._base_url}/images/i/{image_basename}/full"

View File

@ -18,5 +18,5 @@ SEED_MAX = np.iinfo(np.uint32).max
def get_random_seed():
rng = np.random.default_rng(seed=0)
rng = np.random.default_rng(seed=None)
return int(rng.integers(0, SEED_MAX))

View File

@ -0,0 +1,23 @@
from typing import Any
from pydantic import BaseModel
"""
We want to exclude null values from objects that make their way to the client.
Unfortunately there is no built-in way to do this in pydantic, so we need to override the default
dict method to do this.
From https://github.com/tiangolo/fastapi/discussions/8882#discussioncomment-5154541
"""
class BaseModelExcludeNull(BaseModel):
def dict(self, *args, **kwargs) -> dict[str, Any]:
"""
Override the default dict method to exclude None values in the response
"""
kwargs.pop("exclude_none", None)
return super().dict(*args, exclude_none=True, **kwargs)
pass

View File

@ -12,16 +12,17 @@ def check_invokeai_root(config: InvokeAIAppConfig):
assert config.model_conf_path.exists(), f"{config.model_conf_path} not found"
assert config.db_path.parent.exists(), f"{config.db_path.parent} not found"
assert config.models_path.exists(), f"{config.models_path} not found"
for model in [
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
"clip-vit-large-patch14",
"sd-vae-ft-mse",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
]:
path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
if not config.ignore_missing_core_models:
for model in [
"CLIP-ViT-bigG-14-laion2B-39B-b160k",
"bert-base-uncased",
"clip-vit-large-patch14",
"sd-vae-ft-mse",
"stable-diffusion-2-clip",
"stable-diffusion-safety-checker",
]:
path = config.models_path / f"core/convert/{model}"
assert path.exists(), f"{path} is missing"
except Exception as e:
print()
print(f"An exception has occurred: {str(e)}")
@ -32,5 +33,10 @@ def check_invokeai_root(config: InvokeAIAppConfig):
print(
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
)
print(
'** (To skip this check completely, add "--ignore_missing_core_models" to your CLI args. Not installing '
"these core models will prevent the loading of some or all .safetensors and .ckpt files. However, you can "
"always come back and install these core models in the future.)"
)
input("Press any key to continue...")
sys.exit(0)

View File

@ -181,7 +181,7 @@ def download_with_progress_bar(model_url: str, model_dest: str, label: str = "th
def download_conversion_models():
target_dir = config.root_path / "models/core/convert"
target_dir = config.models_path / "core/convert"
kwargs = dict() # for future use
try:
logger.info("Downloading core tokenizers and text encoders")

View File

@ -7,11 +7,13 @@ import warnings
from dataclasses import dataclass, field
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set
from typing import Optional, List, Dict, Callable, Union, Set
import requests
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
import onnx
import torch
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
from tqdm import tqdm
@ -22,6 +24,7 @@ from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
from invokeai.backend.util import download_with_resume
from invokeai.backend.util.devices import torch_dtype, choose_torch_device
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
@ -86,8 +89,8 @@ class ModelLoadInfo:
name: str
model_type: ModelType
base_type: BaseModelType
path: Path = None
repo_id: str = None
path: Optional[Path] = None
repo_id: Optional[str] = None
description: str = ""
installed: bool = False
recommended: bool = False
@ -98,9 +101,9 @@ class ModelInstall(object):
def __init__(
self,
config: InvokeAIAppConfig,
prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
model_manager: ModelManager = None,
access_token: str = None,
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
model_manager: Optional[ModelManager] = None,
access_token: Optional[str] = None,
):
self.config = config
self.mgr = model_manager or ModelManager(config.model_conf_path)
@ -128,7 +131,9 @@ class ModelInstall(object):
model_dict[key] = ModelLoadInfo(**value)
# supplement with entries in models.yaml
installed_models = self.mgr.list_models()
installed_models = [x for x in self.mgr.list_models()]
# suppresses autoloaded models
# installed_models = [x for x in self.mgr.list_models() if not self._is_autoloaded(x)]
for md in installed_models:
base = md["base_model"]
@ -147,6 +152,17 @@ class ModelInstall(object):
)
return {x: model_dict[x] for x in sorted(model_dict.keys(), key=lambda y: model_dict[y].name.lower())}
def _is_autoloaded(self, model_info: dict) -> bool:
path = model_info.get("path")
if not path:
return False
for autodir in ["autoimport_dir", "lora_dir", "embedding_dir", "controlnet_dir"]:
if autodir_path := getattr(self.config, autodir):
autodir_path = self.config.root_path / autodir_path
if Path(path).is_relative_to(autodir_path):
return True
return False
def list_models(self, model_type):
installed = self.mgr.list_models(model_type=model_type)
print(f"Installed models of type `{model_type}`:")
@ -273,6 +289,7 @@ class ModelInstall(object):
logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
dest.parent.mkdir(parents=True, exist_ok=True)
models_path = shutil.move(location, dest)
# staged version will be garbage-collected at this time
@ -290,6 +307,8 @@ class ModelInstall(object):
staging = Path(staging)
if "model_index.json" in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline
elif "unet/model.onnx" in files:
location = self._download_hf_model(repo_id, files, staging)
else:
for suffix in ["safetensors", "bin"]:
if f"pytorch_lora_weights.{suffix}" in files:
@ -346,7 +365,7 @@ class ModelInstall(object):
if key in self.datasets:
description = self.datasets[key].get("description") or description
rel_path = self.relative_to_root(path)
rel_path = self.relative_to_root(path, self.config.models_path)
attributes = dict(
path=str(rel_path),
@ -354,7 +373,7 @@ class ModelInstall(object):
model_format=info.format,
)
legacy_conf = None
if info.model_type == ModelType.Main:
if info.model_type == ModelType.Main or info.model_type == ModelType.ONNX:
attributes.update(
dict(
variant=info.variant_type,
@ -386,8 +405,8 @@ class ModelInstall(object):
attributes.update(dict(config=str(legacy_conf)))
return attributes
def relative_to_root(self, path: Path) -> Path:
root = self.config.root_path
def relative_to_root(self, path: Path, root: Optional[Path] = None) -> Path:
root = root or self.config.root_path
if path.is_relative_to(root):
return path.relative_to(root)
else:
@ -399,15 +418,25 @@ class ModelInstall(object):
does a save_pretrained() to the indicated staging area.
"""
_, name = repo_id.split("/")
revisions = ["fp16", "main"] if self.config.precision == "float16" else ["main"]
precision = torch_dtype(choose_torch_device())
variants = ["fp16", None] if precision == torch.float16 else [None, "fp16"]
model = None
for revision in revisions:
for variant in variants:
try:
model = DiffusionPipeline.from_pretrained(repo_id, revision=revision, safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass
model = DiffusionPipeline.from_pretrained(
repo_id,
variant=variant,
torch_dtype=precision,
safety_checker=None,
)
except Exception as e: # most errors are due to fp16 not being present. Fix this to catch other errors
if "fp16" not in str(e):
print(e)
if model:
break
if not model:
logger.error(f"Diffusers model {repo_id} could not be downloaded. Skipping.")
return None
@ -419,8 +448,13 @@ class ModelInstall(object):
location = staging / name
paths = list()
for filename in files:
filePath = Path(filename)
p = hf_download_with_resume(
repo_id, model_dir=location, model_name=filename, access_token=self.access_token
repo_id,
model_dir=location / filePath.parent,
model_name=filePath.name,
access_token=self.access_token,
subfolder=filePath.parent,
)
if p:
paths.append(p)
@ -468,11 +502,12 @@ def hf_download_with_resume(
model_name: str,
model_dest: Path = None,
access_token: str = None,
subfolder: str = None,
) -> Path:
model_dest = model_dest or Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
url = hf_hub_url(repo_id, model_name, subfolder=subfolder)
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"

View File

@ -3,6 +3,7 @@ Initialization file for invokeai.backend.model_management
"""
from .model_manager import ModelManager, ModelInfo, AddModelResult, SchedulerPredictionType
from .model_cache import ModelCache
from .lora import ModelPatcher, ONNXModelPatcher
from .models import (
BaseModelType,
ModelType,
@ -12,3 +13,4 @@ from .models import (
DuplicateModelException,
)
from .model_merge import ModelMerger, MergeInterpolationMethod
from .lora import ModelPatcher

View File

@ -63,7 +63,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.app.services.config import InvokeAIAppConfig, MODEL_CORE
from invokeai.app.services.config import InvokeAIAppConfig
from picklescan.scanner import scan_file_path
from .models import BaseModelType, ModelVariantType
@ -81,7 +81,7 @@ if is_accelerate_available():
from accelerate.utils import set_module_tensor_to_device
logger = InvokeAILogger.getLogger(__name__)
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().root_path / MODEL_CORE / "convert"
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
def shave_segments(path, n_shave_prefix_segments=1):
@ -1070,7 +1070,7 @@ def convert_controlnet_checkpoint(
extract_ema,
use_linear_projection=None,
cross_attention_dim=None,
precision: torch.dtype = torch.float32,
precision: Optional[torch.dtype] = None,
):
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
ctrlnet_config["upcast_attention"] = upcast_attention
@ -1111,7 +1111,6 @@ def convert_controlnet_checkpoint(
return controlnet.to(precision)
# TO DO - PASS PRECISION
def download_from_original_stable_diffusion_ckpt(
checkpoint_path: str,
model_version: BaseModelType,
@ -1121,7 +1120,7 @@ def download_from_original_stable_diffusion_ckpt(
prediction_type: str = None,
model_type: str = None,
extract_ema: bool = False,
precision: torch.dtype = torch.float32,
precision: Optional[torch.dtype] = None,
scheduler_type: str = "pndm",
num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None,
@ -1194,6 +1193,8 @@ def download_from_original_stable_diffusion_ckpt(
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if
needed.
precision (`torch.dtype`, *optional*, defauts to `None`):
If not provided the precision will be set to the precision of the original file.
return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
"""
@ -1252,6 +1253,10 @@ def download_from_original_stable_diffusion_ckpt(
logger.debug(f"model_type = {model_type}; original_config_file = {original_config_file}")
precision_probing_key = "model.diffusion_model.input_blocks.0.0.bias"
logger.debug(f"original checkpoint precision == {checkpoint[precision_probing_key].dtype}")
precision = precision or checkpoint[precision_probing_key].dtype
if original_config_file is None:
key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias"
@ -1279,9 +1284,12 @@ def download_from_original_stable_diffusion_ckpt(
original_config_file = BytesIO(requests.get(config_url).content)
original_config = OmegaConf.load(original_config_file)
if original_config["model"]["params"].get("use_ema") is not None:
extract_ema = original_config["model"]["params"]["use_ema"]
if (
model_version == BaseModelType.StableDiffusion2
and original_config["model"]["params"]["parameterization"] == "v"
and original_config["model"]["params"].get("parameterization") == "v"
):
prediction_type = "v_prediction"
upcast_attention = True
@ -1447,7 +1455,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet:
pipe = pipeline_class(
vae=vae.to(precision),
text_encoder=text_model,
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
unet=unet.to(precision),
scheduler=scheduler,
@ -1459,7 +1467,7 @@ def download_from_original_stable_diffusion_ckpt(
else:
pipe = pipeline_class(
vae=vae.to(precision),
text_encoder=text_model,
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
unet=unet.to(precision),
scheduler=scheduler,
@ -1484,8 +1492,8 @@ def download_from_original_stable_diffusion_ckpt(
image_noising_scheduler=image_noising_scheduler,
# regular denoising components
tokenizer=tokenizer,
text_encoder=text_model,
unet=unet,
text_encoder=text_model.to(precision),
unet=unet.to(precision),
scheduler=scheduler,
# vae
vae=vae,
@ -1560,7 +1568,7 @@ def download_from_original_stable_diffusion_ckpt(
if controlnet:
pipe = pipeline_class(
vae=vae.to(precision),
text_encoder=text_model,
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
unet=unet.to(precision),
controlnet=controlnet,
@ -1571,7 +1579,7 @@ def download_from_original_stable_diffusion_ckpt(
else:
pipe = pipeline_class(
vae=vae.to(precision),
text_encoder=text_model,
text_encoder=text_model.to(precision),
tokenizer=tokenizer,
unet=unet.to(precision),
scheduler=scheduler,
@ -1594,9 +1602,9 @@ def download_from_original_stable_diffusion_ckpt(
pipe = StableDiffusionXLPipeline(
vae=vae.to(precision),
text_encoder=text_encoder,
text_encoder=text_encoder.to(precision),
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
text_encoder_2=text_encoder_2.to(precision),
tokenizer_2=tokenizer_2,
unet=unet.to(precision),
scheduler=scheduler,
@ -1639,7 +1647,7 @@ def download_controlnet_from_original_ckpt(
original_config_file: str,
image_size: int = 512,
extract_ema: bool = False,
precision: torch.dtype = torch.float32,
precision: Optional[torch.dtype] = None,
num_in_channels: Optional[int] = None,
upcast_attention: Optional[bool] = None,
device: str = None,
@ -1680,6 +1688,12 @@ def download_controlnet_from_original_ckpt(
while "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
# use original precision
precision_probing_key = "input_blocks.0.0.bias"
ckpt_precision = checkpoint[precision_probing_key].dtype
logger.debug(f"original controlnet precision = {ckpt_precision}")
precision = precision or ckpt_precision
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
@ -1699,7 +1713,7 @@ def download_controlnet_from_original_ckpt(
cross_attention_dim=cross_attention_dim,
)
return controlnet
return controlnet.to(precision)
def convert_ldm_vae_to_diffusers(checkpoint, vae_config: DictConfig, image_size: int) -> AutoencoderKL:

View File

@ -6,427 +6,20 @@ from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from onnx import numpy_helper
from onnxruntime import OrtValue
import numpy as np
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
from safetensors.torch import load_file
from transformers import CLIPTextModel, CLIPTokenizer
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return (
op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
)
* multiplier
* scale
)
def get_weight(self):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoRAModel: # (torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> LoRAModel:
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
else:
# TODO: diff/ia3/... format
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key}")
return
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
"""
loras = [
(lora_model1, 0.7),
@ -505,6 +98,26 @@ class ModelPatcher:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
yield
@classmethod
@contextmanager
def apply_lora(
@ -551,7 +164,7 @@ class ModelPatcher:
cls,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
ti_list: List[Any],
ti_list: List[Tuple[str, Any]],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
init_tokens_count = None
new_tokens_added = None
@ -561,27 +174,27 @@ class ModelPatcher:
ti_manager = TextualInversionManager(ti_tokenizer)
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
def _get_trigger(ti, index):
trigger = ti.name
def _get_trigger(ti_name, index):
trigger = ti_name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for ti_name, ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
model_embeddings = text_encoder.get_input_embeddings()
for ti in ti_list:
for ti_name, ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i]
trigger = _get_trigger(ti, i)
trigger = _get_trigger(ti_name, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
@ -626,7 +239,6 @@ class ModelPatcher:
class TextualInversionModel:
name: str
embedding: torch.Tensor # [n, 768]|[n, 1280]
@classmethod
@ -640,7 +252,6 @@ class TextualInversionModel:
file_path = Path(file_path)
result = cls() # TODO:
result.name = file_path.stem # TODO:
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
@ -698,3 +309,186 @@ class TextualInversionManager(BaseTextualInversionManager):
new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids
class ONNXModelPatcher:
from .models.base import IAIOnnxRuntimeModel, OnnxRuntimeModel
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
# based on
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
@classmethod
@contextmanager
def apply_lora(
cls,
model: IAIOnnxRuntimeModel,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
from .models.base import IAIOnnxRuntimeModel
if not isinstance(model, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_weights = dict()
try:
blended_loras = dict()
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
layer.to(dtype=torch.float32)
layer_key = layer_key.replace(prefix, "")
layer_weight = layer.get_weight().detach().cpu().numpy() * lora_weight
if layer_key is blended_loras:
blended_loras[layer_key] += layer_weight
else:
blended_loras[layer_key] = layer_weight
node_names = dict()
for node in model.nodes.values():
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
for layer_key, lora_weight in blended_loras.items():
conv_key = layer_key + "_Conv"
gemm_key = layer_key + "_Gemm"
matmul_key = layer_key + "_MatMul"
if conv_key in node_names or gemm_key in node_names:
if conv_key in node_names:
conv_node = model.nodes[node_names[conv_key]]
else:
conv_node = model.nodes[node_names[gemm_key]]
weight_name = [n for n in conv_node.input if ".weight" in n][0]
orig_weight = model.tensors[weight_name]
if orig_weight.shape[-2:] == (1, 1):
if lora_weight.shape[-2:] == (1, 1):
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
else:
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
new_weight = np.expand_dims(new_weight, (2, 3))
else:
if orig_weight.shape != lora_weight.shape:
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
else:
new_weight = orig_weight + lora_weight
orig_weights[weight_name] = orig_weight
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
elif matmul_key in node_names:
weight_node = model.nodes[node_names[matmul_key]]
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
orig_weight = model.tensors[matmul_name]
new_weight = orig_weight + lora_weight.transpose()
orig_weights[matmul_name] = orig_weight
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
else:
# warn? err?
pass
yield
finally:
# restore original weights
for name, orig_weight in orig_weights.items():
model.tensors[name] = orig_weight
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: IAIOnnxRuntimeModel,
ti_list: List[Tuple[str, Any]],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
from .models.base import IAIOnnxRuntimeModel
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_embeddings = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
def _get_trigger(ti_name, index):
trigger = ti_name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti_name, ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
# modify text_encoder
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
embeddings = np.concatenate(
(np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))),
axis=0,
)
for ti_name, ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i].detach().numpy()
trigger = _get_trigger(ti_name, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if embeddings[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {embeddings[token_id].shape[0]}."
)
embeddings[token_id] = embedding
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(
orig_embeddings.dtype
)
yield ti_tokenizer, ti_manager
finally:
# restore
if orig_embeddings is not None:
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings

View File

@ -28,8 +28,6 @@ import torch
import logging
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import get_invokeai_config
from .lora import LoRAModel, TextualInversionModel
from .models import BaseModelType, ModelType, SubModelType, ModelBase
# Maximum size of the cache, in gigs
@ -187,7 +185,9 @@ class ModelCache(object):
# TODO: lock for no copies on simultaneous calls?
cache_entry = self._cached_models.get(key, None)
if cache_entry is None:
self.logger.info(f"Loading model {model_path}, type {base_model}:{model_type}:{submodel}")
self.logger.info(
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
)
# this will remove older cached models until
# there is sufficient room to load the requested model
@ -358,7 +358,8 @@ class ModelCache(object):
# 2 refs:
# 1 from cache_entry
# 1 from getrefcount function
if not cache_entry.locked and refs <= 2:
# 1 from onnx runtime object
if not cache_entry.locked and refs <= 3 if "onnx" in model_key else 2:
self.logger.debug(
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)

View File

@ -228,19 +228,19 @@ the root is the InvokeAI ROOTDIR.
"""
from __future__ import annotations
import os
import hashlib
import os
import textwrap
import yaml
import types
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, List, Tuple, Union, Dict, Set, Callable, types
from shutil import rmtree, move
from typing import Optional, List, Literal, Tuple, Union, Dict, Set, Callable
import torch
import yaml
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from pydantic import BaseModel, Field
import invokeai.backend.util.logging as logger
@ -259,6 +259,7 @@ from .models import (
ModelNotFoundException,
InvalidModelException,
DuplicateModelException,
ModelBase,
)
# We are only starting to number the config file with release 3.
@ -276,7 +277,7 @@ class ModelInfo:
hash: str
location: Union[Path, str]
precision: torch.dtype
_cache: ModelCache = None
_cache: Optional[ModelCache] = None
def __enter__(self):
return self.context.__enter__()
@ -361,7 +362,7 @@ class ModelManager(object):
if model_key.startswith("_"):
continue
model_name, base_model, model_type = self.parse_key(model_key)
model_class = MODEL_CLASSES[base_model][model_type]
model_class = self._get_implementation(base_model, model_type)
# alias for config file
model_config["model_format"] = model_config.pop("format")
self.models[model_key] = model_class.create_config(**model_config)
@ -381,18 +382,24 @@ class ModelManager(object):
# causing otherwise unreferenced models to be removed from memory
self._read_models()
def model_exists(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
def model_exists(self, model_name: str, base_model: BaseModelType, model_type: ModelType, *, rescan=False) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
Given a model name, returns True if it is a valid identifier.
:param model_name: symbolic name of the model in models.yaml
:param model_type: ModelType enum indicating the type of model to return
:param base_model: BaseModelType enum indicating the base model used by this model
:param rescan: if True, scan_models_directory
"""
model_key = self.create_key(model_name, base_model, model_type)
return model_key in self.models
exists = model_key in self.models
# if model not found try to find it (maybe file just pasted)
if rescan and not exists:
self.scan_models_directory(base_model=base_model, model_type=model_type)
exists = self.model_exists(model_name, base_model, model_type, rescan=False)
return exists
@classmethod
def create_key(
@ -423,7 +430,7 @@ class ModelManager(object):
return (model_name, base_model, model_type)
def _get_model_cache_path(self, model_path):
return self.app_config.models_path / ".cache" / hashlib.md5(str(model_path).encode()).hexdigest()
return self.resolve_model_path(Path(".cache") / hashlib.md5(str(model_path).encode()).hexdigest())
@classmethod
def initialize_model_config(cls, config_path: Path):
@ -443,39 +450,32 @@ class ModelManager(object):
:param model_name: symbolic name of the model in models.yaml
:param model_type: ModelType enum indicating the type of model to return
:param base_model: BaseModelType enum indicating the base model used by this model
:param submode_typel: an ModelType enum indicating the portion of
:param submodel_type: an ModelType enum indicating the portion of
the model to retrieve (e.g. ModelType.Vae)
"""
model_class = MODEL_CLASSES[base_model][model_type]
model_key = self.create_key(model_name, base_model, model_type)
# if model not found try to find it (maybe file just pasted)
if model_key not in self.models:
self.scan_models_directory(base_model=base_model, model_type=model_type)
if model_key not in self.models:
raise ModelNotFoundException(f"Model not found - {model_key}")
if not self.model_exists(model_name, base_model, model_type, rescan=True):
raise ModelNotFoundException(f"Model not found - {model_key}")
model_config = self.models[model_key]
model_path = self.app_config.root_path / model_config.path
model_config = self._get_model_config(base_model, model_name, model_type)
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
if is_submodel_override:
model_type = submodel_type
submodel_type = None
model_class = self._get_implementation(base_model, model_type)
if not model_path.exists():
if model_class.save_to_config:
self.models[model_key].error = ModelError.NotFound
raise Exception(f'Files for model "{model_key}" not found')
raise Exception(f'Files for model "{model_key}" not found at {model_path}')
else:
self.models.pop(model_key, None)
raise ModelNotFoundException(f"Model not found - {model_key}")
# vae/movq override
# TODO:
if submodel_type is not None and hasattr(model_config, submodel_type):
override_path = getattr(model_config, submodel_type)
if override_path:
model_path = self.app_config.root_path / override_path
model_type = submodel_type
submodel_type = None
model_class = MODEL_CLASSES[base_model][model_type]
raise ModelNotFoundException(f'Files for model "{model_key}" not found at {model_path}')
# TODO: path
# TODO: is it accurate to use path as id
@ -513,12 +513,61 @@ class ModelManager(object):
_cache=self.cache,
)
def _get_model_path(
self, model_config: ModelConfigBase, submodel_type: Optional[SubModelType] = None
) -> (Path, bool):
"""Extract a model's filesystem path from its config.
:return: The fully qualified Path of the module (or submodule).
"""
model_path = model_config.path
is_submodel_override = False
# Does the config explicitly override the submodel?
if submodel_type is not None and hasattr(model_config, submodel_type):
submodel_path = getattr(model_config, submodel_type)
if submodel_path is not None:
model_path = getattr(model_config, submodel_type)
is_submodel_override = True
model_path = self.resolve_model_path(model_path)
return model_path, is_submodel_override
def _get_model_config(self, base_model: BaseModelType, model_name: str, model_type: ModelType) -> ModelConfigBase:
"""Get a model's config object."""
model_key = self.create_key(model_name, base_model, model_type)
try:
model_config = self.models[model_key]
except KeyError:
raise ModelNotFoundException(f"Model not found - {model_key}")
return model_config
def _get_implementation(self, base_model: BaseModelType, model_type: ModelType) -> type[ModelBase]:
"""Get the concrete implementation class for a specific model type."""
model_class = MODEL_CLASSES[base_model][model_type]
return model_class
def _instantiate(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
submodel_type: Optional[SubModelType] = None,
) -> ModelBase:
"""Make a new instance of this model, without loading it."""
model_config = self._get_model_config(base_model, model_name, model_type)
model_path, is_submodel_override = self._get_model_path(model_config, submodel_type)
# FIXME: do non-overriden submodels get the right class?
constructor = self._get_implementation(base_model, model_type)
instance = constructor(model_path, base_model, model_type)
return instance
def model_info(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> dict:
) -> Union[dict, None]:
"""
Given a model name returns the OmegaConf (dict-like) object describing it.
"""
@ -540,13 +589,15 @@ class ModelManager(object):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
) -> dict:
) -> Union[dict, None]:
"""
Returns a dict describing one installed model, using
the combined format of the list_models() method.
"""
models = self.list_models(base_model, model_type, model_name)
return models[0] if models else None
if len(models) > 0:
return models[0]
return None
def list_models(
self,
@ -560,7 +611,7 @@ class ModelManager(object):
model_keys = (
[self.create_key(model_name, base_model, model_type)]
if model_name
if model_name and base_model and model_type
else sorted(self.models, key=str.casefold)
)
models = []
@ -586,7 +637,7 @@ class ModelManager(object):
# expose paths as absolute to help web UI
if path := model_dict.get("path"):
model_dict["path"] = str(self.app_config.root_path / path)
model_dict["path"] = str(self.resolve_model_path(path))
models.append(model_dict)
return models
@ -596,7 +647,7 @@ class ModelManager(object):
Print a table of models and their descriptions. This needs to be redone
"""
# TODO: redo
for model_type, model_dict in self.list_models().items():
for model_dict in self.list_models():
for model_name, model_info in model_dict.items():
line = f'{model_info["name"]:25s} {model_info["type"]:10s} {model_info["description"]}'
print(line)
@ -623,7 +674,7 @@ class ModelManager(object):
self.cache.uncache_model(cache_id)
# if model inside invoke models folder - delete files
model_path = self.app_config.root_path / model_cfg.path
model_path = self.resolve_model_path(model_cfg.path)
cache_path = self._get_model_cache_path(model_path)
if cache_path.exists():
rmtree(str(cache_path))
@ -654,12 +705,11 @@ class ModelManager(object):
The returned dict has the same format as the dict returned by
model_info().
"""
# relativize paths as they go in - this makes it easier to move the root directory around
# relativize paths as they go in - this makes it easier to move the models directory around
if path := model_attributes.get("path"):
if Path(path).is_relative_to(self.app_config.root_path):
model_attributes["path"] = str(Path(path).relative_to(self.app_config.root_path))
model_attributes["path"] = str(self.relative_model_path(Path(path)))
model_class = MODEL_CLASSES[base_model][model_type]
model_class = self._get_implementation(base_model, model_type)
model_config = model_class.create_config(**model_attributes)
model_key = self.create_key(model_name, base_model, model_type)
@ -671,7 +721,7 @@ class ModelManager(object):
# TODO: if path changed and old_model.path inside models folder should we delete this too?
# remove conversion cache as config changed
old_model_path = self.app_config.root_path / old_model.path
old_model_path = self.resolve_model_path(old_model.path)
old_model_cache = self._get_model_cache_path(old_model_path)
if old_model_cache.exists():
if old_model_cache.is_dir():
@ -700,8 +750,8 @@ class ModelManager(object):
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
new_name: Optional[str] = None,
new_base: Optional[BaseModelType] = None,
):
"""
Rename or rebase a model.
@ -715,7 +765,7 @@ class ModelManager(object):
if not model_cfg:
raise ModelNotFoundException(f"Unknown model: {model_key}")
old_path = self.app_config.root_path / model_cfg.path
old_path = self.resolve_model_path(model_cfg.path)
new_name = new_name or model_name
new_base = new_base or base_model
new_key = self.create_key(new_name, new_base, model_type)
@ -724,15 +774,15 @@ class ModelManager(object):
# if this is a model file/directory that we manage ourselves, we need to move it
if old_path.is_relative_to(self.app_config.models_path):
new_path = (
self.app_config.root_path
/ "models"
/ BaseModelType(new_base).value
/ ModelType(model_type).value
/ new_name
new_path = self.resolve_model_path(
Path(
BaseModelType(new_base).value,
ModelType(model_type).value,
new_name,
)
)
move(old_path, new_path)
model_cfg.path = str(new_path.relative_to(self.app_config.root_path))
model_cfg.path = str(new_path.relative_to(self.app_config.models_path))
# clean up caches
old_model_cache = self._get_model_cache_path(old_path)
@ -754,7 +804,7 @@ class ModelManager(object):
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main, ModelType.Vae],
model_type: Literal[ModelType.Main, ModelType.Vae],
dest_directory: Optional[Path] = None,
) -> AddModelResult:
"""
@ -768,6 +818,10 @@ class ModelManager(object):
This will raise a ValueError unless the model is a checkpoint.
"""
info = self.model_info(model_name, base_model, model_type)
if info is None:
raise FileNotFoundError(f"model not found: {model_name}")
if info["model_format"] != "checkpoint":
raise ValueError(f"not a checkpoint format model: {model_name}")
@ -781,8 +835,8 @@ class ModelManager(object):
model_type,
**submodel,
)
checkpoint_path = self.app_config.root_path / info["path"]
old_diffusers_path = self.app_config.models_path / model.location
checkpoint_path = self.resolve_model_path(info["path"])
old_diffusers_path = self.resolve_model_path(model.location)
new_diffusers_path = (
dest_directory or self.app_config.models_path / base_model.value / model_type.value
) / model_name
@ -795,7 +849,7 @@ class ModelManager(object):
info["path"] = (
str(new_diffusers_path)
if dest_directory
else str(new_diffusers_path.relative_to(self.app_config.root_path))
else str(new_diffusers_path.relative_to(self.app_config.models_path))
)
info.pop("config")
@ -810,6 +864,15 @@ class ModelManager(object):
return result
def resolve_model_path(self, path: Union[Path, str]) -> Path:
"""return relative paths based on configured models_path"""
return self.app_config.models_path / path
def relative_model_path(self, model_path: Path) -> Path:
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
return model_path
def search_models(self, search_folder):
self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
@ -828,7 +891,7 @@ class ModelManager(object):
return search_folder, found_models
def commit(self, conf_file: Path = None) -> None:
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
"""
@ -837,7 +900,7 @@ class ModelManager(object):
for model_key, model_config in self.models.items():
model_name, base_model, model_type = self.parse_key(model_key)
model_class = MODEL_CLASSES[base_model][model_type]
model_class = self._get_implementation(base_model, model_type)
if model_class.save_to_config:
# TODO: or exclude_unset better fits here?
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"})
@ -883,12 +946,19 @@ class ModelManager(object):
new_models_found = False
self.logger.info(f"Scanning {self.app_config.models_path} for new models")
with Chdir(self.app_config.root_path):
with Chdir(self.app_config.models_path):
for model_key, model_config in list(self.models.items()):
model_name, cur_base_model, cur_model_type = self.parse_key(model_key)
model_path = self.app_config.root_path.absolute() / model_config.path
# Patch for relative path bug in older models.yaml - paths should not
# be starting with a hard-coded 'models'. This will also fix up
# models.yaml when committed.
if model_config.path.startswith("models"):
model_config.path = str(Path(*Path(model_config.path).parts[1:]))
model_path = self.resolve_model_path(model_config.path).absolute()
if not model_path.exists():
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
model_class = self._get_implementation(cur_base_model, cur_model_type)
if model_class.save_to_config:
model_config.error = ModelError.NotFound
self.models.pop(model_key, None)
@ -904,8 +974,8 @@ class ModelManager(object):
for cur_model_type in ModelType:
if model_type is not None and cur_model_type != model_type:
continue
model_class = MODEL_CLASSES[cur_base_model][cur_model_type]
models_dir = self.app_config.models_path / cur_base_model.value / cur_model_type.value
model_class = self._get_implementation(cur_base_model, cur_model_type)
models_dir = self.resolve_model_path(Path(cur_base_model.value, cur_model_type.value))
if not models_dir.exists():
continue # TODO: or create all folders?
@ -919,9 +989,7 @@ class ModelManager(object):
if model_key in self.models:
raise DuplicateModelException(f"Model with key {model_key} added twice")
if model_path.is_relative_to(self.app_config.root_path):
model_path = model_path.relative_to(self.app_config.root_path)
model_path = self.relative_model_path(model_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True
@ -932,12 +1000,11 @@ class ModelManager(object):
except NotImplementedError as e:
self.logger.warning(e)
imported_models = self.autoimport()
imported_models = self.scan_autoimport_directory()
if (new_models_found or imported_models) and self.config_path:
self.commit()
def autoimport(self) -> Dict[str, AddModelResult]:
def scan_autoimport_directory(self) -> Dict[str, AddModelResult]:
"""
Scan the autoimport directory (if defined) and import new models, delete defunct models.
"""
@ -971,7 +1038,7 @@ class ModelManager(object):
# LS: hacky
# Patch in the SD VAE from core so that it is available for use by the UI
try:
self.heuristic_import({config.root_path / "models/core/convert/sd-vae-ft-mse"})
self.heuristic_import({str(self.resolve_model_path("core/convert/sd-vae-ft-mse"))})
except:
pass
@ -980,7 +1047,7 @@ class ModelManager(object):
model_manager=self,
prediction_type_helper=ask_user_for_prediction_type,
)
known_paths = {config.root_path / x["path"] for x in self.list_models()}
known_paths = {self.resolve_model_path(x["path"]) for x in self.list_models()}
directories = {
config.root_path / x
for x in [
@ -999,7 +1066,7 @@ class ModelManager(object):
def heuristic_import(
self,
items_to_import: Set[str],
prediction_type_helper: Callable[[Path], SchedulerPredictionType] = None,
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
) -> Dict[str, AddModelResult]:
"""Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.

View File

@ -33,7 +33,7 @@ class ModelMerger(object):
self,
model_paths: List[Path],
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
**kwargs,
) -> DiffusionPipeline:
@ -73,7 +73,7 @@ class ModelMerger(object):
base_model: Union[BaseModelType, str],
merged_model_name: str,
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
merge_dest_directory: Optional[Path] = None,
**kwargs,
@ -122,7 +122,7 @@ class ModelMerger(object):
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
merged_pipe.save_pretrained(dump_path, safe_serialization=True)
attributes = dict(
path=str(dump_path),
description=f"Merge of models {', '.join(model_names)}",

View File

@ -27,7 +27,7 @@ class ModelProbeInfo(object):
variant_type: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
format: Literal["diffusers", "checkpoint", "lycoris"]
format: Literal["diffusers", "checkpoint", "lycoris", "olive", "onnx"]
image_size: int
@ -41,6 +41,7 @@ class ModelProbe(object):
PROBES = {
"diffusers": {},
"checkpoint": {},
"onnx": {},
}
CLASS2TYPE = {
@ -53,7 +54,9 @@ class ModelProbe(object):
}
@classmethod
def register_probe(cls, format: Literal["diffusers", "checkpoint"], model_type: ModelType, probe_class: ProbeBase):
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: ProbeBase
):
cls.PROBES[format][model_type] = probe_class
@classmethod
@ -95,6 +98,7 @@ class ModelProbe(object):
if format_type == "diffusers"
else cls.get_model_type_from_checkpoint(model_path, model)
)
format_type = "onnx" if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
return None
@ -168,6 +172,8 @@ class ModelProbe(object):
if model:
class_name = model.__class__.__name__
else:
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "learned_embeds.bin").exists():
return ModelType.TextualInversion
@ -309,21 +315,38 @@ class LoRACheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
# SD-2 models are very hard to probe. These probes are brittle and likely to fail in the future
# There are also some "SD-2 LoRAs" that have identical keys and shapes to SD-1 and will be
# misclassified as SD-1
key = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
if key in checkpoint and checkpoint[key].shape[0] == 320:
return BaseModelType.StableDiffusion2
key = "lora_unet_output_blocks_5_1_transformer_blocks_1_ff_net_2.lora_up.weight"
if key in checkpoint:
return BaseModelType.StableDiffusionXL
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
key3 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
lora_token_vector_length = (
checkpoint[key1].shape[1]
if key1 in checkpoint
else checkpoint[key2].shape[0]
else checkpoint[key2].shape[1]
if key2 in checkpoint
else 768
else checkpoint[key3].shape[0]
if key3 in checkpoint
else None
)
if lora_token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif lora_token_vector_length == 1024:
return BaseModelType.StableDiffusion2
else:
return None
raise InvalidModelException(f"Unknown LoRA type")
class TextualInversionCheckpointProbe(CheckpointProbeBase):
@ -460,6 +483,17 @@ class TextualInversionFolderProbe(FolderProbeBase):
return TextualInversionCheckpointProbe(None, checkpoint=checkpoint).get_base_type()
class ONNXFolderProbe(FolderProbeBase):
def get_format(self) -> str:
return "onnx"
def get_base_type(self) -> BaseModelType:
return BaseModelType.StableDiffusion1
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.folder_path / "config.json"
@ -497,3 +531,4 @@ ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)

View File

@ -23,8 +23,11 @@ from .lora import LoRAModel
from .controlnet import ControlNetModel # TODO:
from .textual_inversion import TextualInversionModel
from .stable_diffusion_onnx import ONNXStableDiffusion1Model, ONNXStableDiffusion2Model
MODEL_CLASSES = {
BaseModelType.StableDiffusion1: {
ModelType.ONNX: ONNXStableDiffusion1Model,
ModelType.Main: StableDiffusion1Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@ -32,6 +35,7 @@ MODEL_CLASSES = {
ModelType.TextualInversion: TextualInversionModel,
},
BaseModelType.StableDiffusion2: {
ModelType.ONNX: ONNXStableDiffusion2Model,
ModelType.Main: StableDiffusion2Model,
ModelType.Vae: VaeModel,
ModelType.Lora: LoRAModel,
@ -45,6 +49,7 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
BaseModelType.StableDiffusionXLRefiner: {
ModelType.Main: StableDiffusionXLModel,
@ -53,6 +58,7 @@ MODEL_CLASSES = {
ModelType.Lora: LoRAModel,
ModelType.ControlNet: ControlNetModel,
ModelType.TextualInversion: TextualInversionModel,
ModelType.ONNX: ONNXStableDiffusion2Model,
},
# BaseModelType.Kandinsky2_1: {
# ModelType.Main: Kandinsky2_1Model,

View File

@ -8,13 +8,23 @@ from abc import ABCMeta, abstractmethod
from pathlib import Path
from picklescan.scanner import scan_file_path
import torch
import numpy as np
import safetensors.torch
from diffusers import DiffusionPipeline, ConfigMixin
from pathlib import Path
from diffusers import DiffusionPipeline, ConfigMixin, OnnxRuntimeModel
from contextlib import suppress
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Type, Literal, TypeVar, Generic, Callable, Any, Union
import onnx
from onnx import numpy_helper
from onnxruntime import (
InferenceSession,
SessionOptions,
get_available_providers,
)
class DuplicateModelException(Exception):
pass
@ -37,6 +47,7 @@ class BaseModelType(str, Enum):
class ModelType(str, Enum):
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
@ -51,6 +62,8 @@ class SubModelType(str, Enum):
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
# MoVQ = "movq"
@ -279,8 +292,9 @@ class DiffusersModel(ModelBase):
)
break
except Exception as e:
# print("====ERR LOAD====")
# print(f"{variant}: {e}")
if not str(e).startswith("Error no file"):
print("====ERR LOAD====")
print(f"{variant}: {e}")
pass
else:
raise Exception(f"Failed to load {self.base_model}:{self.model_type}:{child_type} model")
@ -362,6 +376,8 @@ def calc_model_size_by_data(model) -> int:
return _calc_pipeline_by_data(model)
elif isinstance(model, torch.nn.Module):
return _calc_model_by_data(model)
elif isinstance(model, IAIOnnxRuntimeModel):
return _calc_onnx_model_by_data(model)
else:
return 0
@ -382,6 +398,12 @@ def _calc_model_by_data(model) -> int:
return mem
def _calc_onnx_model_by_data(model) -> int:
tensor_size = model.tensors.size() * 2 # The session doubles this
mem = tensor_size # in bytes
return mem
def _fast_safetensors_reader(path: str):
checkpoint = dict()
device = torch.device("meta")
@ -449,3 +471,208 @@ class SilenceWarnings(object):
transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity)
warnings.simplefilter("default")
ONNX_WEIGHTS_NAME = "model.onnx"
class IAIOnnxRuntimeModel:
class _tensor_access:
def __init__(self, model):
self.model = model
self.indexes = dict()
for idx, obj in enumerate(self.model.proto.graph.initializer):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
value = self.model.proto.graph.initializer[self.indexes[key]]
return numpy_helper.to_array(value)
def __setitem__(self, key: str, value: np.ndarray):
new_node = numpy_helper.from_array(value)
# set_external_data(new_node, location="in-memory-location")
new_node.name = key
# new_node.ClearField("raw_data")
del self.model.proto.graph.initializer[self.indexes[key]]
self.model.proto.graph.initializer.insert(self.indexes[key], new_node)
# self.model.data[key] = OrtValue.ortvalue_from_numpy(value)
# __delitem__
def __contains__(self, key: str):
return self.indexes[key] in self.model.proto.graph.initializer
def items(self):
raise NotImplementedError("tensor.items")
# return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.indexes.keys()
def values(self):
raise NotImplementedError("tensor.values")
# return [obj for obj in self.raw_proto]
def size(self):
bytesSum = 0
for node in self.model.proto.graph.initializer:
bytesSum += sys.getsizeof(node.raw_data)
return bytesSum
class _access_helper:
def __init__(self, raw_proto):
self.indexes = dict()
self.raw_proto = raw_proto
for idx, obj in enumerate(raw_proto):
self.indexes[obj.name] = idx
def __getitem__(self, key: str):
return self.raw_proto[self.indexes[key]]
def __setitem__(self, key: str, value):
index = self.indexes[key]
del self.raw_proto[index]
self.raw_proto.insert(index, value)
# __delitem__
def __contains__(self, key: str):
return key in self.indexes
def items(self):
return [(obj.name, obj) for obj in self.raw_proto]
def keys(self):
return self.indexes.keys()
def values(self):
return [obj for obj in self.raw_proto]
def __init__(self, model_path: str, provider: Optional[str]):
self.path = model_path
self.session = None
self.provider = provider
"""
self.data_path = self.path + "_data"
if not os.path.exists(self.data_path):
print(f"Moving model tensors to separate file: {self.data_path}")
tmp_proto = onnx.load(model_path, load_external_data=True)
onnx.save_model(tmp_proto, self.path, save_as_external_data=True, all_tensors_to_one_file=True, location=os.path.basename(self.data_path), size_threshold=1024, convert_attribute=False)
del tmp_proto
gc.collect()
self.proto = onnx.load(model_path, load_external_data=False)
"""
self.proto = onnx.load(model_path, load_external_data=True)
# self.data = dict()
# for tensor in self.proto.graph.initializer:
# name = tensor.name
# if tensor.HasField("raw_data"):
# npt = numpy_helper.to_array(tensor)
# orv = OrtValue.ortvalue_from_numpy(npt)
# # self.data[name] = orv
# # set_external_data(tensor, location="in-memory-location")
# tensor.name = name
# # tensor.ClearField("raw_data")
self.nodes = self._access_helper(self.proto.graph.node)
# self.initializers = self._access_helper(self.proto.graph.initializer)
# print(self.proto.graph.input)
# print(self.proto.graph.initializer)
self.tensors = self._tensor_access(self)
# TODO: integrate with model manager/cache
def create_session(self, height=None, width=None):
if self.session is None or self.session_width != width or self.session_height != height:
# onnx.save(self.proto, "tmp.onnx")
# onnx.save_model(self.proto, "tmp.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="tmp.onnx_data", size_threshold=1024, convert_attribute=False)
# TODO: something to be able to get weight when they already moved outside of model proto
# (trimmed_model, external_data) = buffer_external_data_tensors(self.proto)
sess = SessionOptions()
# self._external_data.update(**external_data)
# sess.add_external_initializers(list(self.data.keys()), list(self.data.values()))
# sess.enable_profiling = True
# sess.intra_op_num_threads = 1
# sess.inter_op_num_threads = 1
# sess.execution_mode = ExecutionMode.ORT_SEQUENTIAL
# sess.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
# sess.enable_cpu_mem_arena = True
# sess.enable_mem_pattern = True
# sess.add_session_config_entry("session.intra_op.use_xnnpack_threadpool", "1") ########### It's the key code
self.session_height = height
self.session_width = width
if height and width:
sess.add_free_dimension_override_by_name("unet_sample_batch", 2)
sess.add_free_dimension_override_by_name("unet_sample_channels", 4)
sess.add_free_dimension_override_by_name("unet_hidden_batch", 2)
sess.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
sess.add_free_dimension_override_by_name("unet_sample_height", self.session_height)
sess.add_free_dimension_override_by_name("unet_sample_width", self.session_width)
sess.add_free_dimension_override_by_name("unet_time_batch", 1)
providers = []
if self.provider:
providers.append(self.provider)
else:
providers = get_available_providers()
if "TensorrtExecutionProvider" in providers:
providers.remove("TensorrtExecutionProvider")
try:
self.session = InferenceSession(self.proto.SerializeToString(), providers=providers, sess_options=sess)
except Exception as e:
raise e
# self.session = InferenceSession("tmp.onnx", providers=[self.provider], sess_options=self.sess_options)
# self.io_binding = self.session.io_binding()
def release_session(self):
self.session = None
import gc
gc.collect()
return
def __call__(self, **kwargs):
if self.session is None:
raise Exception("You should call create_session before running model")
inputs = {k: np.array(v) for k, v in kwargs.items()}
output_names = self.session.get_outputs()
# for k in inputs:
# self.io_binding.bind_cpu_input(k, inputs[k])
# for name in output_names:
# self.io_binding.bind_output(name.name)
# self.session.run_with_iobinding(self.io_binding, None)
# return self.io_binding.copy_outputs_to_cpu()
return self.session.run(None, inputs)
# compatability with diffusers load code
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
subfolder: Union[str, Path] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
sess_options: Optional["SessionOptions"] = None,
**kwargs,
):
file_name = file_name or ONNX_WEIGHTS_NAME
if os.path.isdir(model_id):
model_path = model_id
if subfolder is not None:
model_path = os.path.join(model_path, subfolder)
model_path = os.path.join(model_path, file_name)
else:
model_path = model_id
# load model from local directory
if not os.path.isfile(model_path):
raise Exception(f"Model not found: {model_path}")
# TODO: session options
return cls(model_path, provider=provider)

View File

@ -17,6 +17,7 @@ from .base import (
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
import invokeai.backend.util.logging as logger
class ControlNetModelFormat(str, Enum):
@ -66,7 +67,7 @@ class ControlNetModel(ModelBase):
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in controlnet model")
raise Exception("There are no child models in controlnet model")
model = None
for variant in ["fp16", None]:
@ -124,9 +125,7 @@ class ControlNetModel(ModelBase):
return model_path
@classmethod
def _convert_controlnet_ckpt_and_cache(
cls,
model_path: str,
output_path: str,
base_model: BaseModelType,
@ -141,6 +140,7 @@ def _convert_controlnet_ckpt_and_cache(
weights = app_config.root_path / model_path
output_path = Path(output_path)
logger.info(f"Converting {weights} to diffusers format")
# return cached version if it exists
if output_path.exists():
return output_path

View File

@ -1,7 +1,9 @@
import os
import torch
from enum import Enum
from typing import Optional, Union, Literal
from typing import Optional, Dict, Union, Literal, Any
from pathlib import Path
from safetensors.torch import load_file
from .base import (
ModelBase,
ModelConfigBase,
@ -13,9 +15,6 @@ from .base import (
ModelNotFoundException,
)
# TODO: naming
from ..lora import LoRAModel as LoRAModelRaw
class LoRAModelFormat(str, Enum):
LyCORIS = "lycoris"
@ -50,6 +49,7 @@ class LoRAModel(ModelBase):
model = LoRAModelRaw.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
base_model=self.base_model,
)
self.model_size = model.calc_size()
@ -87,3 +87,582 @@ class LoRAModel(ModelBase):
raise NotImplementedError("Diffusers lora not supported")
else:
return model_path
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
return (
op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
)
* multiplier
* scale
)
def get_weight(self):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# weight: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
def get_weight(self):
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
class LoRAModelRaw: # (torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_compvis_keys(cls, state_dict):
new_state_dict = dict()
for full_key, value in state_dict.items():
if full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
continue # clip same
if not full_key.startswith("lora_unet_"):
raise NotImplementedError(f"Unknown prefix for sdxl lora key - {full_key}")
src_key = full_key.replace("lora_unet_", "")
try:
dst_key = None
while "_" in src_key:
if src_key in SDXL_UNET_COMPVIS_MAP:
dst_key = SDXL_UNET_COMPVIS_MAP[src_key]
break
src_key = "_".join(src_key.split("_")[:-1])
if dst_key is None:
raise Exception(f"Unknown sdxl lora key - {full_key}")
new_key = full_key.replace(src_key, dst_key)
except:
print(SDXL_UNET_COMPVIS_MAP)
raise
new_state_dict[new_key] = value
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_compvis_keys(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
elif "diff" in values:
layer = FullLayer(layer_key, values)
else:
# TODO: ia3/... format
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map():
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_COMPVIS_MAP = {
f"{sd}".rstrip(".").replace(".", "_"): f"{hf}".rstrip(".").replace(".", "_")
for sd, hf in make_sdxl_unet_conversion_map()
}

View File

@ -4,6 +4,7 @@ from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionPipeline
from .base import (
ModelConfigBase,
BaseModelType,
@ -123,6 +124,7 @@ class StableDiffusion1Model(DiffusersModel):
return _convert_ckpt_and_cache(
version=BaseModelType.StableDiffusion1,
model_config=config,
load_safety_checker=False,
output_path=output_path,
)
else:
@ -259,9 +261,11 @@ def _convert_ckpt_and_cache(
"""
app_config = InvokeAIAppConfig.get_config()
weights = app_config.root_path / model_config.path
weights = app_config.models_path / model_config.path
config_file = app_config.root_path / model_config.config
output_path = Path(output_path)
variant = model_config.variant
pipeline_class = StableDiffusionInpaintPipeline if variant == "inpaint" else StableDiffusionPipeline
# return cached version if it exists
if output_path.exists():
@ -288,6 +292,7 @@ def _convert_ckpt_and_cache(
original_config_file=config_file,
extract_ema=True,
scan_needed=True,
pipeline_class=pipeline_class,
from_safetensors=weights.suffix == ".safetensors",
precision=torch_dtype(choose_torch_device()),
**kwargs,

View File

@ -0,0 +1,157 @@
import os
import json
from enum import Enum
from pydantic import Field
from pathlib import Path
from typing import Literal, Optional, Union
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
DiffusersModel,
SchedulerPredictionType,
SilenceWarnings,
read_checkpoint_meta,
classproperty,
OnnxRuntimeModel,
IAIOnnxRuntimeModel,
)
from invokeai.app.services.config import InvokeAIAppConfig
class StableDiffusionOnnxModelFormat(str, Enum):
Olive = "olive"
Onnx = "onnx"
class ONNXStableDiffusion1Model(DiffusersModel):
class Config(ModelConfigBase):
model_format: Literal[StableDiffusionOnnxModelFormat.Onnx]
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion1
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion1,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 1.* model format")
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
# TODO: Detect onnx vs olive
return StableDiffusionOnnxModelFormat.Onnx
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path
class ONNXStableDiffusion2Model(DiffusersModel):
# TODO: check that configs overwriten properly
class Config(ModelConfigBase):
model_format: Literal[StableDiffusionOnnxModelFormat.Onnx]
variant: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model == BaseModelType.StableDiffusion2
assert model_type == ModelType.ONNX
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusion2,
model_type=ModelType.ONNX,
)
for child_name, child_type in self.child_types.items():
if child_type is OnnxRuntimeModel:
self.child_types[child_name] = IAIOnnxRuntimeModel
# TODO: check that no optimum models provided
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
in_channels = 4 # TODO:
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if variant == ModelVariantType.Normal:
prediction_type = SchedulerPredictionType.VPrediction
upcast_attention = True
else:
prediction_type = SchedulerPredictionType.Epsilon
upcast_attention = False
return cls.create_config(
path=path,
model_format=model_format,
variant=variant,
prediction_type=prediction_type,
upcast_attention=upcast_attention,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
# TODO: Detect onnx vs olive
return StableDiffusionOnnxModelFormat.Onnx
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path

View File

@ -1,9 +1,14 @@
import os
import torch
import safetensors
from enum import Enum
from pathlib import Path
from typing import Optional, Union, Literal
from typing import Optional
import safetensors
import torch
from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf
from invokeai.app.services.config import InvokeAIAppConfig
from .base import (
ModelBase,
ModelConfigBase,
@ -18,9 +23,6 @@ from .base import (
InvalidModelException,
ModelNotFoundException,
)
from invokeai.app.services.config import InvokeAIAppConfig
from diffusers.utils import is_safetensors_available
from omegaconf import OmegaConf
class VaeModelFormat(str, Enum):
@ -80,7 +82,7 @@ class VaeModel(ModelBase):
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
raise ModelNotFoundException(f"Does not exist as local file: {path}")
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "config.json")):

View File

@ -78,10 +78,9 @@ class InvokeAIDiffuserComponent:
self.cross_attention_control_context = None
self.sequential_guidance = config.sequential_guidance
@classmethod
@contextmanager
def custom_attention_context(
cls,
self,
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
extra_conditioning_info: Optional[ExtraConditioningInfo],
step_count: int,
@ -91,18 +90,19 @@ class InvokeAIDiffuserComponent:
old_attn_processors = unet.attn_processors
# Load lora conditions into the model
if extra_conditioning_info.wants_cross_attention_control:
cross_attention_control_context = Context(
self.cross_attention_control_context = Context(
arguments=extra_conditioning_info.cross_attention_control_args,
step_count=step_count,
)
setup_cross_attention_control_attention_processors(
unet,
cross_attention_control_context,
self.cross_attention_control_context,
)
try:
yield None
finally:
self.cross_attention_control_context = None
if old_attn_processors is not None:
unet.set_attn_processor(old_attn_processors)
# TODO resuscitate attention map saving

View File

@ -1,6 +1,8 @@
from __future__ import annotations
from contextlib import nullcontext
from packaging import version
import platform
import torch
from torch import autocast
@ -30,7 +32,7 @@ def choose_precision(device: torch.device) -> str:
device_name = torch.cuda.get_device_name(device)
if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name):
return "float16"
elif device.type == "mps":
elif device.type == "mps" and version.parse(platform.mac_ver()[0]) < version.parse("14.0.0"):
return "float16"
return "float32"

View File

@ -112,7 +112,7 @@ def main():
extras = get_extras()
print(f":crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]")
print(f":crossed_fingers: Upgrading to [yellow]{tag or release or branch}[/yellow]")
if release:
cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_SRC}/{release}.zip" --use-pep517 --upgrade'
elif tag:

View File

@ -58,6 +58,9 @@ logger = InvokeAILogger.getLogger()
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
NOPRINT_TRANS_TABLE = {i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()}
# maximum number of installed models we can display before overflowing vertically
MAX_OTHER_MODELS = 72
def make_printable(s: str) -> str:
"""Replace non-printable characters in a string"""
@ -102,7 +105,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
SingleSelectColumns,
values=[
"STARTER MODELS",
"MORE MODELS",
"MAIN MODELS",
"CONTROLNETS",
"LORA/LYCORIS",
"TEXTUAL INVERSION",
@ -153,7 +156,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
BufferBox,
name="Log Messages",
editable=False,
max_height=8,
max_height=15,
)
self.nextrely += 1
@ -253,6 +256,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
model_labels = [self.model_labels[x] for x in model_list]
show_recommended = len(self.installed_models) == 0
truncated = False
if len(model_list) > 0:
max_width = max([len(x) for x in model_labels])
columns = window_width // (max_width + 8) # 8 characters for "[x] " and padding
@ -271,6 +275,10 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
)
)
if len(model_labels) > MAX_OTHER_MODELS:
model_labels = model_labels[0:MAX_OTHER_MODELS]
truncated = True
widgets.update(
models_selected=self.add_widget_intelligent(
MultiSelectColumns,
@ -289,6 +297,16 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
models=model_list,
)
if truncated:
widgets.update(
warning_message=self.add_widget_intelligent(
npyscreen.FixedText,
value=f"Too many models to display (max={MAX_OTHER_MODELS}). Some are not displayed.",
editable=False,
color="CAUTION",
)
)
self.nextrely += 1
widgets.update(
download_ids=self.add_widget_intelligent(
@ -313,7 +331,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
widgets = self.add_model_widgets(
model_type=model_type,
window_width=window_width,
install_prompt=f"Additional {model_type.value.title()} models already installed.",
install_prompt=f"Installed {model_type.value.title()} models. Unchecked models in the InvokeAI root directory will be deleted. Enter URLs, paths or repo_ids to import.",
**kwargs,
)
@ -399,7 +417,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.ok_button.hidden = True
self.display()
# for communication with the subprocess
# TO DO: Spawn a worker thread, not a subprocess
parent_conn, child_conn = Pipe()
p = Process(
target=process_and_execute,
@ -414,7 +432,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
self.subprocess_connection = parent_conn
self.subprocess = p
app.install_selections = InstallSelections()
# process_and_execute(app.opt, app.install_selections)
def on_back(self):
self.parentApp.switchFormPrevious()
@ -489,8 +506,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
# rebuild the form, saving and restoring some of the fields that need to be preserved.
saved_messages = self.monitor.entry_widget.values
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# autoscan = self.pipeline_models['autoscan_on_startup'].value
app.main_form = app.addForm(
"MAIN",
@ -544,12 +559,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
if downloads := section.get("download_ids"):
selections.install_models.extend(downloads.value.split())
# load directory and whether to scan on startup
# if self.parentApp.autoload_pending:
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# self.parentApp.autoload_pending = False
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self, opt):
@ -639,6 +648,11 @@ def process_and_execute(
selections: InstallSelections,
conn_out: Connection = None,
):
# need to reinitialize config in subprocess
config = InvokeAIAppConfig.get_config()
args = ["--root", opt.root] if opt.root else []
config.parse_args(args)
# set up so that stderr is sent to conn_out
if conn_out:
translator = StderrToMessage(conn_out)
@ -656,38 +670,11 @@ def process_and_execute(
conn_out.close()
def do_listings(opt) -> bool:
"""List installed models of various sorts, and return
True if any were requested."""
model_manager = ModelManager(config.model_conf_path)
if opt.list_models == "diffusers":
print("Diffuser models:")
model_manager.print_models()
elif opt.list_models == "controlnets":
print("Installed Controlnet Models:")
cnm = model_manager.list_controlnet_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
elif opt.list_models == "loras":
print("Installed LoRA/LyCORIS Models:")
cnm = model_manager.list_lora_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
elif opt.list_models == "tis":
print("Installed Textual Inversion Embeddings:")
cnm = model_manager.list_ti_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]), prefix=" "))
else:
return False
return True
# --------------------------------------------------------
def select_and_download_models(opt: Namespace):
precision = "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device()))
config.precision = precision
helper = lambda x: ask_user_for_prediction_type(x)
# if do_listings(opt):
# pass
installer = ModelInstall(config, prediction_type_helper=helper)
if opt.list_models:
installer.list_models(opt.list_models)
@ -706,8 +693,6 @@ def select_and_download_models(opt: Namespace):
# needed to support the probe() method running under a subprocess
torch.multiprocessing.set_start_method("spawn")
# the third argument is needed in the Windows 11 environment in
# order to launch and resize a console window running this program
set_min_terminal_size(MIN_COLS, MIN_LINES)
installApp = AddModelApplication(opt)
try:

View File

@ -320,7 +320,7 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
def get_model_names(self, base_model: BaseModelType = None) -> List[str]:
model_names = [
info["name"]
info["model_name"]
for info in self.model_manager.list_models(model_type=ModelType.Main, base_model=base_model)
if info["model_format"] == "diffusers"
]

View File

@ -21,7 +21,7 @@ export const packageConfig: UserConfig = {
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react'],
output: {
globals: {
react: 'React',

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -12,7 +12,7 @@
margin: 0;
}
</style>
<script type="module" crossorigin src="./assets/index-bad7ff83.js"></script>
<script type="module" crossorigin src="./assets/index-de589048.js"></script>
</head>
<body dir="ltr">

View File

@ -124,7 +124,8 @@
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"images": "Images",
"assets": "Assets"
"assets": "Assets",
"autoAssignBoardOnClick": "Auto-Assign Board on Click"
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@ -342,6 +343,8 @@
"diffusersModels": "Diffusers",
"loraModels": "LoRAs",
"safetensorModels": "SafeTensors",
"onnxModels": "Onnx",
"oliveModels": "Olives",
"modelAdded": "Model Added",
"modelUpdated": "Model Updated",
"modelUpdateFailed": "Model Update Failed",

View File

@ -23,7 +23,7 @@
"dev": "concurrently \"vite dev\" \"yarn run theme:watch\"",
"dev:host": "concurrently \"vite dev --host\" \"yarn run theme:watch\"",
"build": "yarn run lint && vite build",
"typegen": "npx ts-node scripts/typegen.ts",
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
"lint:madge": "madge --circular src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
@ -116,6 +116,7 @@
},
"peerDependencies": {
"@chakra-ui/cli": "^2.4.0",
"@chakra-ui/react": "^2.8.0",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"

View File

@ -124,7 +124,8 @@
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"images": "Images",
"assets": "Assets"
"assets": "Assets",
"autoAssignBoardOnClick": "Auto-Assign Board on Click"
},
"hotkeys": {
"keyboardShortcuts": "Keyboard Shortcuts",
@ -342,6 +343,8 @@
"diffusersModels": "Diffusers",
"loraModels": "LoRAs",
"safetensorModels": "SafeTensors",
"onnxModels": "Onnx",
"oliveModels": "Olives",
"modelAdded": "Model Added",
"modelUpdated": "Model Updated",
"modelUpdateFailed": "Model Update Failed",

View File

@ -4,8 +4,9 @@ import { appStarted } from 'app/store/middleware/listenerMiddleware/listeners/ap
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { PartialAppConfig } from 'app/types/invokeai';
import ImageUploader from 'common/components/ImageUploader';
import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardModal';
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import GalleryDrawer from 'features/gallery/components/GalleryPanel';
import DeleteImageModal from 'features/imageDeletion/components/DeleteImageModal';
import SiteHeader from 'features/system/components/SiteHeader';
import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors';
@ -16,7 +17,6 @@ import ParametersDrawer from 'features/ui/components/ParametersDrawer';
import i18n from 'i18n';
import { size } from 'lodash-es';
import { ReactNode, memo, useEffect } from 'react';
import UpdateImageBoardModal from '../../features/gallery/components/Boards/UpdateImageBoardModal';
import GlobalHotkeys from './GlobalHotkeys';
import Toaster from './Toaster';
@ -84,7 +84,7 @@ const App = ({ config = DEFAULT_CONFIG, headerComponent }: Props) => {
</Portal>
</Grid>
<DeleteImageModal />
<UpdateImageBoardModal />
<ChangeBoardModal />
<Toaster />
<GlobalHotkeys />
</>

View File

@ -58,7 +58,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
);
}
if (props.dragData.payloadType === 'IMAGE_NAMES') {
if (props.dragData.payloadType === 'IMAGE_DTOS') {
return (
<Flex
sx={{
@ -71,7 +71,7 @@ const DragPreview = (props: OverlayDragImageProps) => {
...STYLES,
}}
>
<Heading>{props.dragData.payload.image_names.length}</Heading>
<Heading>{props.dragData.payload.imageDTOs.length}</Heading>
<Heading size="sm">Images</Heading>
</Flex>
);

View File

@ -18,27 +18,32 @@ import {
DragStartEvent,
TypesafeDraggableData,
} from './typesafeDnd';
import { logger } from 'app/logging/logger';
type ImageDndContextProps = PropsWithChildren;
const ImageDndContext = (props: ImageDndContextProps) => {
const [activeDragData, setActiveDragData] =
useState<TypesafeDraggableData | null>(null);
const log = logger('images');
const dispatch = useAppDispatch();
const handleDragStart = useCallback((event: DragStartEvent) => {
console.log('dragStart', event.active.data.current);
const activeData = event.active.data.current;
if (!activeData) {
return;
}
setActiveDragData(activeData);
}, []);
const handleDragStart = useCallback(
(event: DragStartEvent) => {
log.trace({ dragData: event.active.data.current }, 'Drag started');
const activeData = event.active.data.current;
if (!activeData) {
return;
}
setActiveDragData(activeData);
},
[log]
);
const handleDragEnd = useCallback(
(event: DragEndEvent) => {
console.log('dragEnd', event.active.data.current);
log.trace({ dragData: event.active.data.current }, 'Drag ended');
const overData = event.over?.data.current;
if (!activeDragData || !overData) {
return;
@ -46,7 +51,7 @@ const ImageDndContext = (props: ImageDndContextProps) => {
dispatch(dndDropped({ overData, activeData: activeDragData }));
setActiveDragData(null);
},
[activeDragData, dispatch]
[activeDragData, dispatch, log]
);
const mouseSensor = useSensor(MouseSensor, {

View File

@ -11,7 +11,6 @@ import {
useDraggable as useOriginalDraggable,
useDroppable as useOriginalDroppable,
} from '@dnd-kit/core';
import { BoardId } from 'features/gallery/store/types';
import { ImageDTO } from 'services/api/types';
type BaseDropData = {
@ -54,9 +53,13 @@ export type AddToBatchDropData = BaseDropData & {
actionType: 'ADD_TO_BATCH';
};
export type MoveBoardDropData = BaseDropData & {
actionType: 'MOVE_BOARD';
context: { boardId: BoardId };
export type AddToBoardDropData = BaseDropData & {
actionType: 'ADD_TO_BOARD';
context: { boardId: string };
};
export type RemoveFromBoardDropData = BaseDropData & {
actionType: 'REMOVE_FROM_BOARD';
};
export type TypesafeDroppableData =
@ -67,7 +70,8 @@ export type TypesafeDroppableData =
| NodesImageDropData
| AddToBatchDropData
| NodesMultiImageDropData
| MoveBoardDropData;
| AddToBoardDropData
| RemoveFromBoardDropData;
type BaseDragData = {
id: string;
@ -78,14 +82,12 @@ export type ImageDraggableData = BaseDragData & {
payload: { imageDTO: ImageDTO };
};
export type ImageNamesDraggableData = BaseDragData & {
payloadType: 'IMAGE_NAMES';
payload: { image_names: string[] };
export type ImageDTOsDraggableData = BaseDragData & {
payloadType: 'IMAGE_DTOS';
payload: { imageDTOs: ImageDTO[] };
};
export type TypesafeDraggableData =
| ImageDraggableData
| ImageNamesDraggableData;
export type TypesafeDraggableData = ImageDraggableData | ImageDTOsDraggableData;
interface UseDroppableTypesafeArguments
extends Omit<UseDroppableArguments, 'data'> {
@ -156,14 +158,39 @@ export const isValidDrop = (
case 'SET_NODES_IMAGE':
return payloadType === 'IMAGE_DTO';
case 'SET_MULTI_NODES_IMAGE':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
return payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
case 'ADD_TO_BATCH':
return payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
case 'MOVE_BOARD': {
return payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
case 'ADD_TO_BOARD': {
// If the board is the same, don't allow the drop
// Check the payload types
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_NAMES';
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
if (!isPayloadValid) {
return false;
}
// Check if the image's board is the board we are dragging onto
if (payloadType === 'IMAGE_DTO') {
const { imageDTO } = active.data.current.payload;
const currentBoard = imageDTO.board_id ?? 'none';
const destinationBoard = overData.context.boardId;
return currentBoard !== destinationBoard;
}
if (payloadType === 'IMAGE_DTOS') {
// TODO (multi-select)
return true;
}
return false;
}
case 'REMOVE_FROM_BOARD': {
// If the board is the same, don't allow the drop
// Check the payload types
const isPayloadValid = payloadType === 'IMAGE_DTO' || 'IMAGE_DTOS';
if (!isPayloadValid) {
return false;
}
@ -172,20 +199,16 @@ export const isValidDrop = (
if (payloadType === 'IMAGE_DTO') {
const { imageDTO } = active.data.current.payload;
const currentBoard = imageDTO.board_id;
const destinationBoard = overData.context.boardId;
const isSameBoard = currentBoard === destinationBoard;
const isDestinationValid = !currentBoard ? destinationBoard : true;
return !isSameBoard && isDestinationValid;
return currentBoard !== 'none';
}
if (payloadType === 'IMAGE_NAMES') {
if (payloadType === 'IMAGE_DTOS') {
// TODO (multi-select)
return false;
return true;
}
return true;
return false;
}
default:
return false;

View File

@ -1,3 +1,6 @@
import { Middleware } from '@reduxjs/toolkit';
import { store } from 'app/store/store';
import { PartialAppConfig } from 'app/types/invokeai';
import React, {
lazy,
memo,
@ -6,18 +9,12 @@ import React, {
useEffect,
} from 'react';
import { Provider } from 'react-redux';
import { store } from 'app/store/store';
import Loading from '../../common/components/Loading/Loading';
import { addMiddleware, resetMiddlewares } from 'redux-dynamic-middlewares';
import { PartialAppConfig } from 'app/types/invokeai';
import '../../i18n';
import { $authToken, $baseUrl, $projectId } from 'services/api/client';
import { socketMiddleware } from 'services/events/middleware';
import { Middleware } from '@reduxjs/toolkit';
import Loading from '../../common/components/Loading/Loading';
import '../../i18n';
import ImageDndContext from './ImageDnd/ImageDndContext';
import { AddImageToBoardContextProvider } from '../contexts/AddImageToBoardContext';
import { $authToken, $baseUrl } from 'services/api/client';
const App = lazy(() => import('./App'));
const ThemeLocaleProvider = lazy(() => import('./ThemeLocaleProvider'));
@ -28,6 +25,7 @@ interface Props extends PropsWithChildren {
config?: PartialAppConfig;
headerComponent?: ReactNode;
middleware?: Middleware[];
projectId?: string;
}
const InvokeAIUI = ({
@ -36,6 +34,7 @@ const InvokeAIUI = ({
config,
headerComponent,
middleware,
projectId,
}: Props) => {
useEffect(() => {
// configure API client token
@ -48,6 +47,11 @@ const InvokeAIUI = ({
$baseUrl.set(apiUrl);
}
// configure API client project header
if (projectId) {
$projectId.set(projectId);
}
// reset dynamically added middlewares
resetMiddlewares();
@ -67,8 +71,9 @@ const InvokeAIUI = ({
// Reset the API client token and base url on unmount
$baseUrl.set(undefined);
$authToken.set(undefined);
$projectId.set(undefined);
};
}, [apiUrl, token, middleware]);
}, [apiUrl, token, middleware, projectId]);
return (
<React.StrictMode>
@ -76,9 +81,7 @@ const InvokeAIUI = ({
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<ImageDndContext>
<AddImageToBoardContextProvider>
<App config={config} headerComponent={headerComponent} />
</AddImageToBoardContextProvider>
<App config={config} headerComponent={headerComponent} />
</ImageDndContext>
</ThemeLocaleProvider>
</React.Suspense>

View File

@ -1,91 +0,0 @@
import { useDisclosure } from '@chakra-ui/react';
import { PropsWithChildren, createContext, useCallback, useState } from 'react';
import { ImageDTO } from 'services/api/types';
import { imagesApi } from 'services/api/endpoints/images';
import { useAppDispatch } from '../store/storeHooks';
export type ImageUsage = {
isInitialImage: boolean;
isCanvasImage: boolean;
isNodesImage: boolean;
isControlNetImage: boolean;
};
type AddImageToBoardContextValue = {
/**
* Whether the move image dialog is open.
*/
isOpen: boolean;
/**
* Closes the move image dialog.
*/
onClose: () => void;
/**
* The image pending movement
*/
image?: ImageDTO;
onClickAddToBoard: (image: ImageDTO) => void;
handleAddToBoard: (boardId: string) => void;
};
export const AddImageToBoardContext =
createContext<AddImageToBoardContextValue>({
isOpen: false,
onClose: () => undefined,
onClickAddToBoard: () => undefined,
handleAddToBoard: () => undefined,
});
type Props = PropsWithChildren;
export const AddImageToBoardContextProvider = (props: Props) => {
const [imageToMove, setImageToMove] = useState<ImageDTO>();
const { isOpen, onOpen, onClose } = useDisclosure();
const dispatch = useAppDispatch();
// Clean up after deleting or dismissing the modal
const closeAndClearImageToDelete = useCallback(() => {
setImageToMove(undefined);
onClose();
}, [onClose]);
const onClickAddToBoard = useCallback(
(image?: ImageDTO) => {
if (!image) {
return;
}
setImageToMove(image);
onOpen();
},
[setImageToMove, onOpen]
);
const handleAddToBoard = useCallback(
(boardId: string) => {
if (imageToMove) {
dispatch(
imagesApi.endpoints.addImageToBoard.initiate({
imageDTO: imageToMove,
board_id: boardId,
})
);
closeAndClearImageToDelete();
}
},
[dispatch, closeAndClearImageToDelete, imageToMove]
);
return (
<AddImageToBoardContext.Provider
value={{
isOpen,
image: imageToMove,
onClose: closeAndClearImageToDelete,
onClickAddToBoard,
handleAddToBoard,
}}
>
{props.children}
</AddImageToBoardContext.Provider>
);
};

View File

@ -1,8 +0,0 @@
import { createContext } from 'react';
type VoidFunc = () => void;
type ImageUploaderTriggerContextType = VoidFunc | null;
export const ImageUploaderTriggerContext =
createContext<ImageUploaderTriggerContextType>(null);

View File

@ -23,6 +23,6 @@ const serializationDenylist: {
};
export const serialize: SerializeFunction = (data, key) => {
const result = omit(data, serializationDenylist[key]);
const result = omit(data, serializationDenylist[key] ?? []);
return JSON.stringify(result);
};

View File

@ -27,7 +27,8 @@ import {
addImageDeletedFulfilledListener,
addImageDeletedPendingListener,
addImageDeletedRejectedListener,
addRequestedImageDeletionListener,
addRequestedSingleImageDeletionListener,
addRequestedMultipleImageDeletionListener,
} from './listeners/imageDeleted';
import { addImageDroppedListener } from './listeners/imageDropped';
import {
@ -111,7 +112,8 @@ addImageUploadedRejectedListener();
addInitialImageSelectedListener();
// Image deleted
addRequestedImageDeletionListener();
addRequestedSingleImageDeletionListener();
addRequestedMultipleImageDeletionListener();
addImageDeletedPendingListener();
addImageDeletedFulfilledListener();
addImageDeletedRejectedListener();

View File

@ -1,12 +1,10 @@
import { createAction } from '@reduxjs/toolkit';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import {
ImageCache,
getListImagesUrl,
imagesApi,
} from 'services/api/endpoints/images';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { getListImagesUrl, imagesAdapter } from 'services/api/util';
import { ImageCache } from 'services/api/types';
export const appStarted = createAction('app/appStarted');
@ -34,7 +32,8 @@ export const addFirstListImagesListener = () => {
if (data.ids.length > 0) {
// Select the first image
dispatch(imageSelected(data.ids[0] as string));
const firstImage = imagesAdapter.getSelectors().selectAll(data)[0];
dispatch(imageSelected(firstImage ?? null));
}
},
});

View File

@ -18,7 +18,9 @@ export const addAppConfigReceivedListener = () => {
const infillMethod = getState().generation.infillMethod;
if (!infill_methods.includes(infillMethod)) {
dispatch(setInfillMethod(infill_methods[0]));
// if there is no infill method, set it to the first one
// if there is no first one... god help us
dispatch(setInfillMethod(infill_methods[0] as string));
}
if (!nsfw_methods.includes('nsfw_checker')) {

View File

@ -1,14 +1,14 @@
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { getImageUsage } from 'features/imageDeletion/store/imageDeletionSelectors';
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { boardsApi } from '../../../../../services/api/endpoints/boards';
export const addDeleteBoardAndImagesFulfilledListener = () => {
startAppListening({
matcher: boardsApi.endpoints.deleteBoardAndImages.matchFulfilled,
matcher: imagesApi.endpoints.deleteBoardAndImages.matchFulfilled,
effect: async (action, { dispatch, getState }) => {
const { deleted_images } = action.payload;

View File

@ -10,6 +10,7 @@ import {
} from 'features/gallery/store/types';
import { imagesApi } from 'services/api/endpoints/images';
import { startAppListening } from '..';
import { imagesSelectors } from 'services/api/util';
export const addBoardIdSelectedListener = () => {
startAppListening({
@ -52,8 +53,9 @@ export const addBoardIdSelectedListener = () => {
queryArgs
)(getState());
if (boardImagesData?.ids.length) {
dispatch(imageSelected((boardImagesData.ids[0] as string) ?? null));
if (boardImagesData) {
const firstImage = imagesSelectors.selectAll(boardImagesData)[0];
dispatch(imageSelected(firstImage ?? null));
} else {
// board has no images - deselect
dispatch(imageSelected(null));

View File

@ -26,6 +26,8 @@ export const addCanvasSavedToGalleryListener = () => {
return;
}
const { autoAddBoardId } = state.gallery;
dispatch(
imagesApi.endpoints.uploadImage.initiate({
file: new File([blob], 'savedCanvas.png', {
@ -33,7 +35,7 @@ export const addCanvasSavedToGalleryListener = () => {
}),
image_category: 'general',
is_intermediate: false,
board_id: state.gallery.autoAddBoardId,
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
crop_visible: true,
postUploadAction: {
type: 'TOAST',

View File

@ -31,15 +31,20 @@ const predicate: AnyListenerPredicate<RootState> = (
// do not process if the user just disabled auto-config
if (
prevState.controlNet.controlNets[action.payload.controlNetId]
.shouldAutoConfig === true
?.shouldAutoConfig === true
) {
return false;
}
}
const { controlImage, processorType, shouldAutoConfig } =
state.controlNet.controlNets[action.payload.controlNetId];
const cn = state.controlNet.controlNets[action.payload.controlNetId];
if (!cn) {
// something is wrong, the controlNet should exist
return false;
}
const { controlImage, processorType, shouldAutoConfig } = cn;
if (controlNetModelChanged.match(action) && !shouldAutoConfig) {
// do not process if the action is a model change but the processor settings are dirty
return false;

View File

@ -17,7 +17,7 @@ export const addControlNetImageProcessedListener = () => {
const { controlNetId } = action.payload;
const controlNet = getState().controlNet.controlNets[controlNetId];
if (!controlNet.controlImage) {
if (!controlNet?.controlImage) {
log.error('Unable to process ControlNet image');
return;
}

View File

@ -1,57 +1,72 @@
import { logger } from 'app/logging/logger';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlNetReset } from 'features/controlNet/store/controlNetSlice';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
import { selectListImagesBaseQueryArgs } from 'features/gallery/store/gallerySelectors';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { imageDeletionConfirmed } from 'features/imageDeletion/store/actions';
import { isModalOpenChanged } from 'features/imageDeletion/store/imageDeletionSlice';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp } from 'lodash-es';
import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images';
import { imagesAdapter } from 'services/api/util';
import { startAppListening } from '..';
/**
* Called when the user requests an image deletion
*/
export const addRequestedImageDeletionListener = () => {
export const addRequestedSingleImageDeletionListener = () => {
startAppListening({
actionCreator: imageDeletionConfirmed,
effect: async (action, { dispatch, getState, condition }) => {
const { imageDTO, imageUsage } = action.payload;
const { imageDTOs, imagesUsage } = action.payload;
if (imageDTOs.length !== 1 || imagesUsage.length !== 1) {
// handle multiples in separate listener
return;
}
const imageDTO = imageDTOs[0];
const imageUsage = imagesUsage[0];
if (!imageDTO || !imageUsage) {
// satisfy noUncheckedIndexedAccess
return;
}
dispatch(isModalOpenChanged(false));
const { image_name } = imageDTO;
const state = getState();
const lastSelectedImage =
state.gallery.selection[state.gallery.selection.length - 1];
state.gallery.selection[state.gallery.selection.length - 1]?.image_name;
if (imageDTO && imageDTO?.image_name === lastSelectedImage) {
const { image_name } = imageDTO;
if (lastSelectedImage === image_name) {
const baseQueryArgs = selectListImagesBaseQueryArgs(state);
const { data } =
imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
const ids = data?.ids ?? [];
const cachedImageDTOs = data
? imagesAdapter.getSelectors().selectAll(data)
: [];
const deletedImageIndex = ids.findIndex(
(result) => result.toString() === image_name
const deletedImageIndex = cachedImageDTOs.findIndex(
(i) => i.image_name === image_name
);
const filteredIds = ids.filter((id) => id.toString() !== image_name);
const filteredImageDTOs = cachedImageDTOs.filter(
(i) => i.image_name !== image_name
);
const newSelectedImageIndex = clamp(
deletedImageIndex,
0,
filteredIds.length - 1
filteredImageDTOs.length - 1
);
const newSelectedImageId = filteredIds[newSelectedImageIndex];
const newSelectedImageDTO = filteredImageDTOs[newSelectedImageIndex];
if (newSelectedImageId) {
dispatch(imageSelected(newSelectedImageId as string));
if (newSelectedImageDTO) {
dispatch(imageSelected(newSelectedImageDTO));
} else {
dispatch(imageSelected(null));
}
@ -97,6 +112,66 @@ export const addRequestedImageDeletionListener = () => {
});
};
/**
* Called when the user requests an image deletion
*/
export const addRequestedMultipleImageDeletionListener = () => {
startAppListening({
actionCreator: imageDeletionConfirmed,
effect: async (action, { dispatch, getState }) => {
const { imageDTOs, imagesUsage } = action.payload;
if (imageDTOs.length < 1 || imagesUsage.length < 1) {
// handle singles in separate listener
return;
}
try {
// Delete from server
await dispatch(
imagesApi.endpoints.deleteImages.initiate({ imageDTOs })
).unwrap();
const state = getState();
const baseQueryArgs = selectListImagesBaseQueryArgs(state);
const { data } =
imagesApi.endpoints.listImages.select(baseQueryArgs)(state);
const newSelectedImageDTO = data
? imagesAdapter.getSelectors().selectAll(data)[0]
: undefined;
if (newSelectedImageDTO) {
dispatch(imageSelected(newSelectedImageDTO));
} else {
dispatch(imageSelected(null));
}
dispatch(isModalOpenChanged(false));
// We need to reset the features where the image is in use - none of these work if their image(s) don't exist
if (imagesUsage.some((i) => i.isCanvasImage)) {
dispatch(resetCanvas());
}
if (imagesUsage.some((i) => i.isControlNetImage)) {
dispatch(controlNetReset());
}
if (imagesUsage.some((i) => i.isInitialImage)) {
dispatch(clearInitialImage());
}
if (imagesUsage.some((i) => i.isNodesImage)) {
dispatch(nodeEditorReset());
}
} catch {
// no-op
}
},
});
};
/**
* Called when the actual delete request is sent to the server
*/

Some files were not shown because too many files have changed in this diff Show More