Compare commits
2 Commits
v3.6.2
...
bugfix/cli
Author | SHA1 | Date | |
---|---|---|---|
ec1e66dcd3 | |||
69543c23d0 |
8
.github/CODEOWNERS
vendored
@ -1,5 +1,5 @@
|
|||||||
# continuous integration
|
# continuous integration
|
||||||
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
|
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
|
||||||
|
|
||||||
# documentation
|
# documentation
|
||||||
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
|
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
|
||||||
@ -10,7 +10,7 @@
|
|||||||
|
|
||||||
# installation and configuration
|
# installation and configuration
|
||||||
/pyproject.toml @lstein @blessedcoolant @hipsterusername
|
/pyproject.toml @lstein @blessedcoolant @hipsterusername
|
||||||
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
|
/docker/ @lstein @blessedcoolant @hipsterusername
|
||||||
/scripts/ @ebr @lstein @hipsterusername
|
/scripts/ @ebr @lstein @hipsterusername
|
||||||
/installer/ @lstein @ebr @hipsterusername
|
/installer/ @lstein @ebr @hipsterusername
|
||||||
/invokeai/assets @lstein @ebr @hipsterusername
|
/invokeai/assets @lstein @ebr @hipsterusername
|
||||||
@ -26,7 +26,9 @@
|
|||||||
|
|
||||||
# front ends
|
# front ends
|
||||||
/invokeai/frontend/CLI @lstein @hipsterusername
|
/invokeai/frontend/CLI @lstein @hipsterusername
|
||||||
/invokeai/frontend/install @lstein @ebr @hipsterusername
|
/invokeai/frontend/install @lstein @ebr @hipsterusername
|
||||||
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
|
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
|
||||||
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
|
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
|
||||||
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername
|
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername
|
||||||
|
|
||||||
|
|
||||||
|
15
.github/pull_request_template.md
vendored
@ -42,21 +42,6 @@ Please provide steps on how to test changes, any hardware or
|
|||||||
software specifications as well as any other pertinent information.
|
software specifications as well as any other pertinent information.
|
||||||
-->
|
-->
|
||||||
|
|
||||||
## Merge Plan
|
|
||||||
|
|
||||||
<!--
|
|
||||||
A merge plan describes how this PR should be handled after it is approved.
|
|
||||||
|
|
||||||
Example merge plans:
|
|
||||||
- "This PR can be merged when approved"
|
|
||||||
- "This must be squash-merged when approved"
|
|
||||||
- "DO NOT MERGE - I will rebase and tidy commits before merging"
|
|
||||||
- "#dev-chat on discord needs to be advised of this change when it is merged"
|
|
||||||
|
|
||||||
A merge plan is particularly important for large PRs or PRs that touch the
|
|
||||||
database in any way.
|
|
||||||
-->
|
|
||||||
|
|
||||||
## Added/updated tests?
|
## Added/updated tests?
|
||||||
|
|
||||||
- [ ] Yes
|
- [ ] Yes
|
||||||
|
5
.github/workflows/build-container.yml
vendored
@ -40,14 +40,10 @@ jobs:
|
|||||||
- name: Free up more disk space on the runner
|
- name: Free up more disk space on the runner
|
||||||
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
||||||
run: |
|
run: |
|
||||||
echo "----- Free space before cleanup"
|
|
||||||
df -h
|
|
||||||
sudo rm -rf /usr/share/dotnet
|
sudo rm -rf /usr/share/dotnet
|
||||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||||
sudo swapoff /mnt/swapfile
|
sudo swapoff /mnt/swapfile
|
||||||
sudo rm -rf /mnt/swapfile
|
sudo rm -rf /mnt/swapfile
|
||||||
echo "----- Free space after cleanup"
|
|
||||||
df -h
|
|
||||||
|
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@ -95,7 +91,6 @@ jobs:
|
|||||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||||
|
|
||||||
- name: Build container
|
- name: Build container
|
||||||
timeout-minutes: 40
|
|
||||||
id: docker_build
|
id: docker_build
|
||||||
uses: docker/build-push-action@v4
|
uses: docker/build-push-action@v4
|
||||||
with:
|
with:
|
||||||
|
24
.github/workflows/lint-frontend.yml
vendored
@ -22,22 +22,12 @@ jobs:
|
|||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
steps:
|
steps:
|
||||||
- name: Setup Node 18
|
- name: Setup Node 18
|
||||||
uses: actions/setup-node@v4
|
uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
node-version: '18'
|
node-version: '18'
|
||||||
- name: Checkout
|
- uses: actions/checkout@v3
|
||||||
uses: actions/checkout@v4
|
- run: 'yarn install --frozen-lockfile'
|
||||||
- name: Setup pnpm
|
- run: 'yarn run lint:tsc'
|
||||||
uses: pnpm/action-setup@v2
|
- run: 'yarn run lint:madge'
|
||||||
with:
|
- run: 'yarn run lint:eslint'
|
||||||
version: '8.12.1'
|
- run: 'yarn run lint:prettier'
|
||||||
- name: Install dependencies
|
|
||||||
run: 'pnpm install --prefer-frozen-lockfile'
|
|
||||||
- name: Typescript
|
|
||||||
run: 'pnpm run lint:tsc'
|
|
||||||
- name: Madge
|
|
||||||
run: 'pnpm run lint:madge'
|
|
||||||
- name: ESLint
|
|
||||||
run: 'pnpm run lint:eslint'
|
|
||||||
- name: Prettier
|
|
||||||
run: 'pnpm run lint:prettier'
|
|
||||||
|
20
.github/workflows/pyflakes.yml
vendored
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
- development
|
||||||
|
- 'release-candidate-*'
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
pyflakes:
|
||||||
|
name: runner / pyflakes
|
||||||
|
if: github.event.pull_request.draft == false
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: pyflakes
|
||||||
|
uses: reviewdog/action-pyflakes@v1
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
reporter: github-pr-review
|
50
.github/workflows/pypi-release.yml
vendored
@ -1,15 +1,13 @@
|
|||||||
name: PyPI Release
|
name: PyPI Release
|
||||||
|
|
||||||
on:
|
on:
|
||||||
|
push:
|
||||||
|
paths:
|
||||||
|
- 'invokeai/version/invokeai_version.py'
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
inputs:
|
|
||||||
publish_package:
|
|
||||||
description: 'Publish build on PyPi? [true/false]'
|
|
||||||
required: true
|
|
||||||
default: 'false'
|
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-and-release:
|
release:
|
||||||
if: github.repository == 'invoke-ai/InvokeAI'
|
if: github.repository == 'invoke-ai/InvokeAI'
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
env:
|
env:
|
||||||
@ -17,43 +15,19 @@ jobs:
|
|||||||
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
||||||
TWINE_NON_INTERACTIVE: 1
|
TWINE_NON_INTERACTIVE: 1
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: checkout sources
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
- name: Setup Node 18
|
- name: install deps
|
||||||
uses: actions/setup-node@v4
|
|
||||||
with:
|
|
||||||
node-version: '18'
|
|
||||||
|
|
||||||
- name: Setup pnpm
|
|
||||||
uses: pnpm/action-setup@v2
|
|
||||||
with:
|
|
||||||
version: '8.12.1'
|
|
||||||
|
|
||||||
- name: Install frontend dependencies
|
|
||||||
run: pnpm install --prefer-frozen-lockfile
|
|
||||||
working-directory: invokeai/frontend/web
|
|
||||||
|
|
||||||
- name: Build frontend
|
|
||||||
run: pnpm run build
|
|
||||||
working-directory: invokeai/frontend/web
|
|
||||||
|
|
||||||
- name: Install python dependencies
|
|
||||||
run: pip install --upgrade build twine
|
run: pip install --upgrade build twine
|
||||||
|
|
||||||
- name: Build python package
|
- name: build package
|
||||||
run: python3 -m build
|
run: python3 -m build
|
||||||
|
|
||||||
- name: Upload build as workflow artifact
|
- name: check distribution
|
||||||
uses: actions/upload-artifact@v4
|
|
||||||
with:
|
|
||||||
name: dist
|
|
||||||
path: dist
|
|
||||||
|
|
||||||
- name: Check distribution
|
|
||||||
run: twine check dist/*
|
run: twine check dist/*
|
||||||
|
|
||||||
- name: Check PyPI versions
|
- name: check PyPI versions
|
||||||
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
|
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
|
||||||
run: |
|
run: |
|
||||||
pip install --upgrade requests
|
pip install --upgrade requests
|
||||||
@ -62,6 +36,6 @@ jobs:
|
|||||||
EXISTS=scripts.pypi_helper.local_on_pypi(); \
|
EXISTS=scripts.pypi_helper.local_on_pypi(); \
|
||||||
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
|
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
|
||||||
|
|
||||||
- name: Publish build on PyPi
|
- name: upload package
|
||||||
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
|
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
|
||||||
run: twine upload dist/*
|
run: twine upload dist/*
|
||||||
|
9
.github/workflows/style-checks.yml
vendored
@ -6,7 +6,7 @@ on:
|
|||||||
branches: main
|
branches: main
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
ruff:
|
black:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v3
|
||||||
@ -18,7 +18,8 @@ jobs:
|
|||||||
|
|
||||||
- name: Install dependencies with pip
|
- name: Install dependencies with pip
|
||||||
run: |
|
run: |
|
||||||
pip install ruff
|
pip install black flake8 Flake8-pyproject isort
|
||||||
|
|
||||||
- run: ruff check --output-format=github .
|
- run: isort --check-only .
|
||||||
- run: ruff format --check .
|
- run: black --check .
|
||||||
|
- run: flake8
|
||||||
|
2
.github/workflows/test-invoke-pip.yml
vendored
@ -58,7 +58,7 @@ jobs:
|
|||||||
|
|
||||||
- name: Check for changed python files
|
- name: Check for changed python files
|
||||||
id: changed-files
|
id: changed-files
|
||||||
uses: tj-actions/changed-files@v41
|
uses: tj-actions/changed-files@v37
|
||||||
with:
|
with:
|
||||||
files_yaml: |
|
files_yaml: |
|
||||||
python:
|
python:
|
||||||
|
3
.gitignore
vendored
@ -16,7 +16,7 @@ __pycache__/
|
|||||||
.Python
|
.Python
|
||||||
build/
|
build/
|
||||||
develop-eggs/
|
develop-eggs/
|
||||||
dist/
|
# dist/
|
||||||
downloads/
|
downloads/
|
||||||
eggs/
|
eggs/
|
||||||
.eggs/
|
.eggs/
|
||||||
@ -187,4 +187,3 @@ installer/install.bat
|
|||||||
installer/install.sh
|
installer/install.sh
|
||||||
installer/update.bat
|
installer/update.bat
|
||||||
installer/update.sh
|
installer/update.sh
|
||||||
installer/InvokeAI-Installer/
|
|
||||||
|
52
Makefile
@ -1,52 +0,0 @@
|
|||||||
# simple Makefile with scripts that are otherwise hard to remember
|
|
||||||
# to use, run from the repo root `make <command>`
|
|
||||||
|
|
||||||
default: help
|
|
||||||
|
|
||||||
help:
|
|
||||||
@echo Developer commands:
|
|
||||||
@echo
|
|
||||||
@echo "ruff Run ruff, fixing any safely-fixable errors and formatting"
|
|
||||||
@echo "ruff-unsafe Run ruff, fixing all fixable errors and formatting"
|
|
||||||
@echo "mypy Run mypy using the config in pyproject.toml to identify type mismatches and other coding errors"
|
|
||||||
@echo "mypy-all Run mypy ignoring the config in pyproject.tom but still ignoring missing imports"
|
|
||||||
@echo "frontend-build Build the frontend in order to run on localhost:9090"
|
|
||||||
@echo "frontend-dev Run the frontend in developer mode on localhost:5173"
|
|
||||||
@echo "installer-zip Build the installer .zip file for the current version"
|
|
||||||
@echo "tag-release Tag the GitHub repository with the current version (use at release time only!)"
|
|
||||||
|
|
||||||
# Runs ruff, fixing any safely-fixable errors and formatting
|
|
||||||
ruff:
|
|
||||||
ruff check . --fix
|
|
||||||
ruff format .
|
|
||||||
|
|
||||||
# Runs ruff, fixing all errors it can fix and formatting
|
|
||||||
ruff-unsafe:
|
|
||||||
ruff check . --fix --unsafe-fixes
|
|
||||||
ruff format .
|
|
||||||
|
|
||||||
# Runs mypy, using the config in pyproject.toml
|
|
||||||
mypy:
|
|
||||||
mypy scripts/invokeai-web.py
|
|
||||||
|
|
||||||
# Runs mypy, ignoring the config in pyproject.toml but still ignoring missing (untyped) imports
|
|
||||||
# (many files are ignored by the config, so this is useful for checking all files)
|
|
||||||
mypy-all:
|
|
||||||
mypy scripts/invokeai-web.py --config-file= --ignore-missing-imports
|
|
||||||
|
|
||||||
# Build the frontend
|
|
||||||
frontend-build:
|
|
||||||
cd invokeai/frontend/web && pnpm build
|
|
||||||
|
|
||||||
# Run the frontend in dev mode
|
|
||||||
frontend-dev:
|
|
||||||
cd invokeai/frontend/web && pnpm dev
|
|
||||||
|
|
||||||
# Installer zip file
|
|
||||||
installer-zip:
|
|
||||||
cd installer && ./create_installer.sh
|
|
||||||
|
|
||||||
# Tag the release
|
|
||||||
tag-release:
|
|
||||||
cd installer && ./tag_release.sh
|
|
||||||
|
|
24
README.md
@ -1,10 +1,10 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
# Invoke - Professional Creative AI Tools for Visual Media
|
# Invoke AI - Generative AI for Professional Creatives
|
||||||
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
|
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
|
||||||
|
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
|
||||||
|
|
||||||
|
|
||||||
[![discord badge]][discord link]
|
[![discord badge]][discord link]
|
||||||
@ -56,9 +56,7 @@ the foundation for multiple commercial products.
|
|||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
|
|
||||||
|

|
||||||

|
|
||||||
|
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
@ -127,8 +125,8 @@ and go to http://localhost:9090.
|
|||||||
|
|
||||||
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
|
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
|
||||||
later versions are not supported.
|
later versions are not supported.
|
||||||
Node.js also needs to be installed along with `pnpm` (can be installed with
|
Node.js also needs to be installed along with yarn (can be installed with
|
||||||
the command `npm install -g pnpm` if needed)
|
the command `npm install -g yarn` if needed)
|
||||||
|
|
||||||
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
|
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
|
||||||
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
|
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
|
||||||
@ -163,7 +161,7 @@ the command `npm install -g pnpm` if needed)
|
|||||||
_For Windows/Linux with an NVIDIA GPU:_
|
_For Windows/Linux with an NVIDIA GPU:_
|
||||||
|
|
||||||
```terminal
|
```terminal
|
||||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
```
|
```
|
||||||
|
|
||||||
_For Linux with an AMD GPU:_
|
_For Linux with an AMD GPU:_
|
||||||
@ -177,7 +175,7 @@ the command `npm install -g pnpm` if needed)
|
|||||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
|
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
```
|
```
|
||||||
|
|
||||||
_For Macintoshes, either Intel or M1/M2/M3:_
|
_For Macintoshes, either Intel or M1/M2:_
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
pip install InvokeAI --use-pep517
|
pip install InvokeAI --use-pep517
|
||||||
@ -272,7 +270,7 @@ upgrade script.** See the next section for a Windows recipe.
|
|||||||
3. Select option [1] to upgrade to the latest release.
|
3. Select option [1] to upgrade to the latest release.
|
||||||
|
|
||||||
4. Once the upgrade is finished you will be returned to the launcher
|
4. Once the upgrade is finished you will be returned to the launcher
|
||||||
menu. Select option [6] "Re-run the configure script to fix a broken
|
menu. Select option [7] "Re-run the configure script to fix a broken
|
||||||
install or to complete a major upgrade".
|
install or to complete a major upgrade".
|
||||||
|
|
||||||
This will run the configure script against the v2.3 directory and
|
This will run the configure script against the v2.3 directory and
|
||||||
@ -397,7 +395,7 @@ Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
|
|||||||
|
|
||||||
### Troubleshooting
|
### Troubleshooting
|
||||||
|
|
||||||
Please check out our **[Troubleshooting Guide](https://invoke-ai.github.io/InvokeAI/installation/010_INSTALL_AUTOMATED/#troubleshooting)** to get solutions for common installation
|
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
|
||||||
problems and other issues. For more help, please join our [Discord][discord link]
|
problems and other issues. For more help, please join our [Discord][discord link]
|
||||||
|
|
||||||
## Contributing
|
## Contributing
|
||||||
|
@ -2,17 +2,14 @@
|
|||||||
## Any environment variables supported by InvokeAI can be specified here,
|
## Any environment variables supported by InvokeAI can be specified here,
|
||||||
## in addition to the examples below.
|
## in addition to the examples below.
|
||||||
|
|
||||||
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
|
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
|
||||||
# Outputs will also be stored here by default.
|
# Outputs will also be stored here by default.
|
||||||
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
|
# This **must** be an absolute path.
|
||||||
#HOST_INVOKEAI_ROOT=../../invokeai-data
|
INVOKEAI_ROOT=
|
||||||
|
|
||||||
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
|
|
||||||
# INVOKEAI_ROOT=~/invokeai
|
|
||||||
|
|
||||||
# Get this value from your HuggingFace account settings page.
|
# Get this value from your HuggingFace account settings page.
|
||||||
# HUGGING_FACE_HUB_TOKEN=
|
# HUGGING_FACE_HUB_TOKEN=
|
||||||
|
|
||||||
## optional variables specific to the docker setup.
|
## optional variables specific to the docker setup.
|
||||||
# GPU_DRIVER=nvidia #| rocm
|
# GPU_DRIVER=cuda
|
||||||
# CONTAINER_UID=1000
|
# CONTAINER_UID=1000
|
@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
|
|||||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||||
|
|
||||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||||
ARG TORCH_VERSION=2.1.0
|
ARG TORCH_VERSION=2.0.1
|
||||||
ARG TORCHVISION_VERSION=0.16
|
ARG TORCHVISION_VERSION=0.15.2
|
||||||
ARG GPU_DRIVER=cuda
|
ARG GPU_DRIVER=cuda
|
||||||
ARG TARGETPLATFORM="linux/amd64"
|
ARG TARGETPLATFORM="linux/amd64"
|
||||||
# unused but available
|
# unused but available
|
||||||
@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
|||||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||||
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
|
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
|
||||||
else \
|
else \
|
||||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
|
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
|
||||||
fi &&\
|
fi &&\
|
||||||
@ -59,16 +59,14 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
|||||||
|
|
||||||
# #### Build the Web UI ------------------------------------
|
# #### Build the Web UI ------------------------------------
|
||||||
|
|
||||||
FROM node:20-slim AS web-builder
|
FROM node:18 AS web-builder
|
||||||
ENV PNPM_HOME="/pnpm"
|
|
||||||
ENV PATH="$PNPM_HOME:$PATH"
|
|
||||||
RUN corepack enable
|
|
||||||
|
|
||||||
WORKDIR /build
|
WORKDIR /build
|
||||||
COPY invokeai/frontend/web/ ./
|
COPY invokeai/frontend/web/ ./
|
||||||
RUN --mount=type=cache,target=/pnpm/store \
|
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||||
pnpm install --frozen-lockfile
|
npm install --include dev
|
||||||
RUN npx vite build
|
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||||
|
yarn vite build
|
||||||
|
|
||||||
|
|
||||||
#### Runtime stage ---------------------------------------
|
#### Runtime stage ---------------------------------------
|
||||||
|
|
||||||
@ -102,8 +100,6 @@ ENV INVOKEAI_SRC=/opt/invokeai
|
|||||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||||
ENV INVOKEAI_ROOT=/invokeai
|
ENV INVOKEAI_ROOT=/invokeai
|
||||||
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
ENV PATH="$VIRTUAL_ENV/bin:$INVOKEAI_SRC:$PATH"
|
||||||
ENV CONTAINER_UID=${CONTAINER_UID:-1000}
|
|
||||||
ENV CONTAINER_GID=${CONTAINER_GID:-1000}
|
|
||||||
|
|
||||||
# --link requires buldkit w/ dockerfile syntax 1.4
|
# --link requires buldkit w/ dockerfile syntax 1.4
|
||||||
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
COPY --link --from=builder ${INVOKEAI_SRC} ${INVOKEAI_SRC}
|
||||||
@ -121,7 +117,7 @@ WORKDIR ${INVOKEAI_SRC}
|
|||||||
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
|
||||||
RUN python3 -c "from patchmatch import patch_match"
|
RUN python3 -c "from patchmatch import patch_match"
|
||||||
|
|
||||||
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R ${CONTAINER_UID}:${CONTAINER_GID} ${INVOKEAI_ROOT}
|
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT}
|
||||||
|
|
||||||
COPY docker/docker-entrypoint.sh ./
|
COPY docker/docker-entrypoint.sh ./
|
||||||
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
|
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]
|
||||||
|
@ -1,14 +1,6 @@
|
|||||||
# InvokeAI Containerized
|
# InvokeAI Containerized
|
||||||
|
|
||||||
All commands should be run within the `docker` directory: `cd docker`
|
All commands are to be run from the `docker` directory: `cd docker`
|
||||||
|
|
||||||
## Quickstart :rocket:
|
|
||||||
|
|
||||||
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
|
|
||||||
|
|
||||||
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
|
|
||||||
|
|
||||||
## Detailed setup
|
|
||||||
|
|
||||||
#### Linux
|
#### Linux
|
||||||
|
|
||||||
@ -26,12 +18,12 @@ For more configuration options (using an AMD GPU, custom root directory location
|
|||||||
|
|
||||||
This is done via Docker Desktop preferences
|
This is done via Docker Desktop preferences
|
||||||
|
|
||||||
### Configure Invoke environment
|
## Quickstart
|
||||||
|
|
||||||
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||||
a. the desired location of the InvokeAI runtime directory, or
|
a. the desired location of the InvokeAI runtime directory, or
|
||||||
b. an existing, v3.0.0 compatible runtime directory.
|
b. an existing, v3.0.0 compatible runtime directory.
|
||||||
1. Execute `run.sh`
|
1. `docker compose up`
|
||||||
|
|
||||||
The image will be built automatically if needed.
|
The image will be built automatically if needed.
|
||||||
|
|
||||||
@ -45,21 +37,19 @@ The runtime directory (holding models and outputs) will be created in the locati
|
|||||||
|
|
||||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||||
|
|
||||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
|
|
||||||
|
|
||||||
## Customize
|
## Customize
|
||||||
|
|
||||||
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
|
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
|
||||||
|
|
||||||
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
|
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
|
||||||
|
|
||||||
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
|
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||||
HUGGINGFACE_TOKEN=the_actual_token
|
HUGGINGFACE_TOKEN=the_actual_token
|
||||||
CONTAINER_UID=1000
|
CONTAINER_UID=1000
|
||||||
GPU_DRIVER=nvidia
|
GPU_DRIVER=cuda
|
||||||
```
|
```
|
||||||
|
|
||||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||||
|
11
docker/build.sh
Executable file
@ -0,0 +1,11 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
build_args=""
|
||||||
|
|
||||||
|
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
|
||||||
|
|
||||||
|
echo "docker compose build args:"
|
||||||
|
echo $build_args
|
||||||
|
|
||||||
|
docker compose build $build_args
|
@ -2,8 +2,19 @@
|
|||||||
|
|
||||||
version: '3.8'
|
version: '3.8'
|
||||||
|
|
||||||
x-invokeai: &invokeai
|
services:
|
||||||
|
invokeai:
|
||||||
image: "local/invokeai:latest"
|
image: "local/invokeai:latest"
|
||||||
|
# edit below to run on a container runtime other than nvidia-container-runtime.
|
||||||
|
# not yet tested with rocm/AMD GPUs
|
||||||
|
# Comment out the "deploy" section to run on CPU only
|
||||||
|
deploy:
|
||||||
|
resources:
|
||||||
|
reservations:
|
||||||
|
devices:
|
||||||
|
- driver: nvidia
|
||||||
|
count: 1
|
||||||
|
capabilities: [gpu]
|
||||||
build:
|
build:
|
||||||
context: ..
|
context: ..
|
||||||
dockerfile: docker/Dockerfile
|
dockerfile: docker/Dockerfile
|
||||||
@ -21,9 +32,7 @@ x-invokeai: &invokeai
|
|||||||
ports:
|
ports:
|
||||||
- "${INVOKEAI_PORT:-9090}:9090"
|
- "${INVOKEAI_PORT:-9090}:9090"
|
||||||
volumes:
|
volumes:
|
||||||
- type: bind
|
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
|
||||||
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
|
|
||||||
target: ${INVOKEAI_ROOT:-/invokeai}
|
|
||||||
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
|
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
|
||||||
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
|
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
|
||||||
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
|
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
|
||||||
@ -37,27 +46,3 @@ x-invokeai: &invokeai
|
|||||||
# - |
|
# - |
|
||||||
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
|
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
|
||||||
# invokeai-nodes-web --host 0.0.0.0
|
# invokeai-nodes-web --host 0.0.0.0
|
||||||
|
|
||||||
services:
|
|
||||||
invokeai-nvidia:
|
|
||||||
<<: *invokeai
|
|
||||||
deploy:
|
|
||||||
resources:
|
|
||||||
reservations:
|
|
||||||
devices:
|
|
||||||
- driver: nvidia
|
|
||||||
count: 1
|
|
||||||
capabilities: [gpu]
|
|
||||||
|
|
||||||
invokeai-cpu:
|
|
||||||
<<: *invokeai
|
|
||||||
profiles:
|
|
||||||
- cpu
|
|
||||||
|
|
||||||
invokeai-rocm:
|
|
||||||
<<: *invokeai
|
|
||||||
devices:
|
|
||||||
- /dev/kfd:/dev/kfd
|
|
||||||
- /dev/dri:/dev/dri
|
|
||||||
profiles:
|
|
||||||
- rocm
|
|
||||||
|
@ -1,32 +1,11 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
set -e -o pipefail
|
set -e
|
||||||
|
|
||||||
run() {
|
# This script is provided for backwards compatibility with the old docker setup.
|
||||||
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
|
# it doesn't do much aside from wrapping the usual docker compose CLI.
|
||||||
cd "$scriptdir" || exit 1
|
|
||||||
|
|
||||||
local build_args=""
|
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||||
local profile=""
|
cd "$SCRIPTDIR" || exit 1
|
||||||
|
|
||||||
touch .env
|
docker compose up --build -d
|
||||||
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
|
docker compose logs -f
|
||||||
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
|
|
||||||
|
|
||||||
[[ -z "$profile" ]] && profile="nvidia"
|
|
||||||
|
|
||||||
local service_name="invokeai-$profile"
|
|
||||||
|
|
||||||
if [[ ! -z "$build_args" ]]; then
|
|
||||||
printf "%s\n" "docker compose build args:"
|
|
||||||
printf "%s\n" "$build_args"
|
|
||||||
fi
|
|
||||||
|
|
||||||
docker compose build $build_args
|
|
||||||
unset build_args
|
|
||||||
|
|
||||||
printf "%s\n" "starting service $service_name"
|
|
||||||
docker compose --profile "$profile" up -d "$service_name"
|
|
||||||
docker compose logs -f
|
|
||||||
}
|
|
||||||
|
|
||||||
run
|
|
||||||
|
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 297 KiB |
Before Width: | Height: | Size: 4.9 MiB After Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 1.1 MiB After Width: | Height: | Size: 169 KiB |
Before Width: | Height: | Size: 131 KiB After Width: | Height: | Size: 194 KiB |
Before Width: | Height: | Size: 122 KiB After Width: | Height: | Size: 209 KiB |
Before Width: | Height: | Size: 95 KiB After Width: | Height: | Size: 114 KiB |
Before Width: | Height: | Size: 123 KiB After Width: | Height: | Size: 187 KiB |
Before Width: | Height: | Size: 107 KiB After Width: | Height: | Size: 112 KiB |
Before Width: | Height: | Size: 61 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 119 KiB After Width: | Height: | Size: 167 KiB |
BIN
docs/assets/nodes/groupsrandseed.png
Normal file
After Width: | Height: | Size: 70 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 129 KiB |
@ -1,277 +0,0 @@
|
|||||||
# The InvokeAI Download Queue
|
|
||||||
|
|
||||||
The DownloadQueueService provides a multithreaded parallel download
|
|
||||||
queue for arbitrary URLs, with queue prioritization, event handling,
|
|
||||||
and restart capabilities.
|
|
||||||
|
|
||||||
## Simple Example
|
|
||||||
|
|
||||||
```
|
|
||||||
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
|
|
||||||
|
|
||||||
download_queue = DownloadQueueService()
|
|
||||||
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
|
|
||||||
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
|
|
||||||
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
|
|
||||||
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
|
|
||||||
]:
|
|
||||||
|
|
||||||
# urls start downloading as soon as download() is called
|
|
||||||
download_queue.download(source=url,
|
|
||||||
dest='/tmp/downloads',
|
|
||||||
on_progress=TqdmProgress().update
|
|
||||||
)
|
|
||||||
|
|
||||||
download_queue.join() # wait for all downloads to finish
|
|
||||||
for job in download_queue.list_jobs():
|
|
||||||
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
|
|
||||||
```
|
|
||||||
|
|
||||||
Output:
|
|
||||||
|
|
||||||
```
|
|
||||||
{
|
|
||||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
|
|
||||||
"dest": "/tmp/downloads",
|
|
||||||
"id": 0,
|
|
||||||
"priority": 10,
|
|
||||||
"status": "completed",
|
|
||||||
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
|
|
||||||
"job_started": "2023-12-04T05:34:41.742174",
|
|
||||||
"job_ended": "2023-12-04T05:34:42.592035",
|
|
||||||
"bytes": 666734,
|
|
||||||
"total_bytes": 666734
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
|
|
||||||
"dest": "/tmp/downloads",
|
|
||||||
"id": 1,
|
|
||||||
"priority": 10,
|
|
||||||
"status": "completed",
|
|
||||||
"download_path": "/tmp/downloads/birdhouse.png",
|
|
||||||
"job_started": "2023-12-04T05:34:41.741975",
|
|
||||||
"job_ended": "2023-12-04T05:34:42.652841",
|
|
||||||
"bytes": 774949,
|
|
||||||
"total_bytes": 774949
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
|
|
||||||
"dest": "/tmp/downloads",
|
|
||||||
"id": 2,
|
|
||||||
"priority": 10,
|
|
||||||
"status": "error",
|
|
||||||
"job_started": "2023-12-04T05:34:41.742079",
|
|
||||||
"job_ended": "2023-12-04T05:34:42.147625",
|
|
||||||
"bytes": 0,
|
|
||||||
"total_bytes": 0,
|
|
||||||
"error_type": "HTTPError(Not Found)",
|
|
||||||
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
|
|
||||||
"dest": "/tmp/downloads",
|
|
||||||
"id": 3,
|
|
||||||
"priority": 10,
|
|
||||||
"status": "completed",
|
|
||||||
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
|
|
||||||
"job_started": "2023-12-04T05:34:42.147645",
|
|
||||||
"job_ended": "2023-12-04T05:34:43.735990",
|
|
||||||
"bytes": 719020768,
|
|
||||||
"total_bytes": 719020768
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## The API
|
|
||||||
|
|
||||||
The default download queue is `DownloadQueueService`, an
|
|
||||||
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
|
|
||||||
background download requests and provides facilities for interrogating
|
|
||||||
and cancelling the requests. Access to a current or past download task
|
|
||||||
is mediated via `DownloadJob` objects which report the current status
|
|
||||||
of a job request
|
|
||||||
|
|
||||||
### The Queue Object
|
|
||||||
|
|
||||||
A default download queue is located in
|
|
||||||
`ApiDependencies.invoker.services.download_queue`. However, you can
|
|
||||||
create additional instances if you need to isolate your queue from the
|
|
||||||
main one.
|
|
||||||
|
|
||||||
```
|
|
||||||
queue = DownloadQueueService(event_bus=events)
|
|
||||||
```
|
|
||||||
|
|
||||||
`DownloadQueueService()` takes three optional arguments:
|
|
||||||
|
|
||||||
| **Argument** | **Type** | **Default** | **Description** |
|
|
||||||
|----------------|-----------------|---------------|-----------------|
|
|
||||||
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
|
|
||||||
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
|
|
||||||
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
|
|
||||||
|
|
||||||
`max_parallel_dl` specifies how many download jobs are allowed to run
|
|
||||||
simultaneously. Each will run in a different thread of execution.
|
|
||||||
|
|
||||||
`event_bus` is an EventServiceBase, typically the one created at
|
|
||||||
InvokeAI startup. If present, download events are periodically emitted
|
|
||||||
on this bus to allow clients to follow download progress.
|
|
||||||
|
|
||||||
`requests_session` is a url library requests Session object. It is
|
|
||||||
used for testing.
|
|
||||||
|
|
||||||
### The Job object
|
|
||||||
|
|
||||||
The queue operates on a series of download job objects. These objects
|
|
||||||
specify the source and destination of the download, and keep track of
|
|
||||||
the progress of the download.
|
|
||||||
|
|
||||||
The only job type currently implemented is `DownloadJob`, a pydantic object with the
|
|
||||||
following fields:
|
|
||||||
|
|
||||||
| **Field** | **Type** | **Default** | **Description** |
|
|
||||||
|----------------|-----------------|---------------|-----------------|
|
|
||||||
| _Fields passed in at job creation time_ |
|
|
||||||
| `source` | AnyHttpUrl | | Where to download from |
|
|
||||||
| `dest` | Path | | Where to download to |
|
|
||||||
| `access_token` | str | | [optional] string containing authentication token for access |
|
|
||||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
|
||||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
|
||||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
|
||||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
|
||||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
|
||||||
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
|
|
||||||
| |
|
|
||||||
| _Fields updated over the course of the download task_
|
|
||||||
| `status` | DownloadJobStatus| | Status code |
|
|
||||||
| `download_path` | Path | | Path to the location of the downloaded file |
|
|
||||||
| `job_started` | float | | Timestamp for when the job started running |
|
|
||||||
| `job_ended` | float | | Timestamp for when the job completed or errored out |
|
|
||||||
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
|
|
||||||
| `bytes` | int | 0 | Bytes downloaded so far |
|
|
||||||
| `total_bytes` | int | 0 | Total size of the file at the remote site |
|
|
||||||
| `error_type` | str | | String version of the exception that caused an error during download |
|
|
||||||
| `error` | str | | String version of the traceback associated with an error |
|
|
||||||
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
|
|
||||||
|
|
||||||
When you create a job, you can assign it a `priority`. If multiple
|
|
||||||
jobs are queued, the job with the lowest priority runs first.
|
|
||||||
|
|
||||||
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
|
|
||||||
The `dest` is a path on the local filesystem that specifies the
|
|
||||||
destination for the downloaded object. Its semantics are
|
|
||||||
described below.
|
|
||||||
|
|
||||||
When the job is submitted, it is assigned a numeric `id`. The id can
|
|
||||||
then be used to fetch the job object from the queue.
|
|
||||||
|
|
||||||
The `status` field is updated by the queue to indicate where the job
|
|
||||||
is in its lifecycle. Values are defined in the string enum
|
|
||||||
`DownloadJobStatus`, a symbol available from
|
|
||||||
`invokeai.app.services.download_manager`. Possible values are:
|
|
||||||
|
|
||||||
| **Value** | **String Value** | ** Description ** |
|
|
||||||
|--------------|---------------------|-------------------|
|
|
||||||
| `WAITING` | waiting | Job is on the queue but not yet running|
|
|
||||||
| `RUNNING` | running | The download is started |
|
|
||||||
| `COMPLETED` | completed | Job has finished its work without an error |
|
|
||||||
| `ERROR` | error | Job encountered an error and will not run again|
|
|
||||||
|
|
||||||
`job_started` and `job_ended` indicate when the job
|
|
||||||
was started (using a python timestamp) and when it completed.
|
|
||||||
|
|
||||||
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
|
|
||||||
Exception that caused the error will be placed in the `error_type`
|
|
||||||
field and the traceback that led to the error will be in `error`.
|
|
||||||
|
|
||||||
A cancelled job will have status `DownloadJobStatus.ERROR` and an
|
|
||||||
`error_type` field of "DownloadJobCancelledException". In addition,
|
|
||||||
the job's `cancelled` property will be set to True.
|
|
||||||
|
|
||||||
### Callbacks
|
|
||||||
|
|
||||||
Download jobs can be associated with a series of callbacks, each with
|
|
||||||
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
|
|
||||||
using optional arguments `on_start`, `on_progress`, `on_complete` and
|
|
||||||
`on_error`. When the corresponding event occurs, the callback wil be
|
|
||||||
invoked and passed the job. The callback will be run in a `try:`
|
|
||||||
context in the same thread as the download job. Any exceptions that
|
|
||||||
occur during execution of the callback will be caught and converted
|
|
||||||
into a log error message, thereby allowing the download to continue.
|
|
||||||
|
|
||||||
#### `TqdmProgress`
|
|
||||||
|
|
||||||
The `invokeai.app.services.download.download_default` module defines a
|
|
||||||
class named `TqdmProgress` which can be used as an `on_progress`
|
|
||||||
handler to display a completion bar in the console. Use as follows:
|
|
||||||
|
|
||||||
```
|
|
||||||
from invokeai.app.services.download import TqdmProgress
|
|
||||||
|
|
||||||
download_queue.download(source='http://some.server.somewhere/some_file',
|
|
||||||
dest='/tmp/downloads',
|
|
||||||
on_progress=TqdmProgress().update
|
|
||||||
)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Events
|
|
||||||
|
|
||||||
If the queue was initialized with the InvokeAI event bus (the case
|
|
||||||
when using `ApiDependencies.invoker.services.download_queue`), then
|
|
||||||
download events will also be issued on the bus. The events are:
|
|
||||||
|
|
||||||
* `download_started` -- This is issued when a job is taken off the
|
|
||||||
queue and a request is made to the remote server for the URL headers, but before any data
|
|
||||||
has been downloaded. The event payload will contain the keys `source`
|
|
||||||
and `download_path`. The latter contains the path that the URL will be
|
|
||||||
downloaded to.
|
|
||||||
|
|
||||||
* `download_progress -- This is issued periodically as the download
|
|
||||||
runs. The payload contains the keys `source`, `download_path`,
|
|
||||||
`current_bytes` and `total_bytes`. The latter two fields can be
|
|
||||||
used to display the percent complete.
|
|
||||||
|
|
||||||
* `download_complete` -- This is issued when the download completes
|
|
||||||
successfully. The payload contains the keys `source`, `download_path`
|
|
||||||
and `total_bytes`.
|
|
||||||
|
|
||||||
* `download_error` -- This is issued when the download stops because
|
|
||||||
of an error condition. The payload contains the fields `error_type`
|
|
||||||
and `error`. The former is the text representation of the exception,
|
|
||||||
and the latter is a traceback showing where the error occurred.
|
|
||||||
|
|
||||||
### Job control
|
|
||||||
|
|
||||||
To create a job call the queue's `download()` method. You can list all
|
|
||||||
jobs using `list_jobs()`, fetch a single job by its with
|
|
||||||
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
|
|
||||||
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
|
|
||||||
with `join()`.
|
|
||||||
|
|
||||||
#### job = queue.download(source, dest, priority, access_token)
|
|
||||||
|
|
||||||
Create a new download job and put it on the queue, returning the
|
|
||||||
DownloadJob object.
|
|
||||||
|
|
||||||
#### jobs = queue.list_jobs()
|
|
||||||
|
|
||||||
Return a list of all active and inactive `DownloadJob`s.
|
|
||||||
|
|
||||||
#### job = queue.id_to_job(id)
|
|
||||||
|
|
||||||
Return the job corresponding to given ID.
|
|
||||||
|
|
||||||
Return a list of all active and inactive `DownloadJob`s.
|
|
||||||
|
|
||||||
#### queue.prune_jobs()
|
|
||||||
|
|
||||||
Remove inactive (complete or errored) jobs from the listing returned
|
|
||||||
by `list_jobs()`.
|
|
||||||
|
|
||||||
#### queue.join()
|
|
||||||
|
|
||||||
Block until all pending jobs have run to completion or errored out.
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
|||||||
# Nodes
|
# Invocations
|
||||||
|
|
||||||
Features in InvokeAI are added in the form of modular nodes systems called
|
Features in InvokeAI are added in the form of modular node-like systems called
|
||||||
**Invocations**.
|
**Invocations**.
|
||||||
|
|
||||||
An Invocation is simply a single operation that takes in some inputs and gives
|
An Invocation is simply a single operation that takes in some inputs and gives
|
||||||
@ -9,34 +9,13 @@ complex functionality.
|
|||||||
|
|
||||||
## Invocations Directory
|
## Invocations Directory
|
||||||
|
|
||||||
InvokeAI Nodes can be found in the `invokeai/app/invocations` directory. These can be used as examples to create your own nodes.
|
InvokeAI Invocations can be found in the `invokeai/app/invocations` directory.
|
||||||
|
|
||||||
New nodes should be added to a subfolder in `nodes` direction found at the root level of the InvokeAI installation location. Nodes added to this folder will be able to be used upon application startup.
|
You can add your new functionality to one of the existing Invocations in this
|
||||||
|
directory or create a new file in this directory as per your needs.
|
||||||
Example `nodes` subfolder structure:
|
|
||||||
```py
|
|
||||||
├── __init__.py # Invoke-managed custom node loader
|
|
||||||
│
|
|
||||||
├── cool_node
|
|
||||||
│ ├── __init__.py # see example below
|
|
||||||
│ └── cool_node.py
|
|
||||||
│
|
|
||||||
└── my_node_pack
|
|
||||||
├── __init__.py # see example below
|
|
||||||
├── tasty_node.py
|
|
||||||
├── bodacious_node.py
|
|
||||||
├── utils.py
|
|
||||||
└── extra_nodes
|
|
||||||
└── fancy_node.py
|
|
||||||
```
|
|
||||||
|
|
||||||
Each node folder must have an `__init__.py` file that imports its nodes. Only nodes imported in the `__init__.py` file are loaded.
|
|
||||||
See the README in the nodes folder for more examples:
|
|
||||||
|
|
||||||
```py
|
|
||||||
from .cool_node import CoolInvocation
|
|
||||||
```
|
|
||||||
|
|
||||||
|
**Note:** _All Invocations must be inside this directory for InvokeAI to
|
||||||
|
recognize them as valid Invocations._
|
||||||
|
|
||||||
## Creating A New Invocation
|
## Creating A New Invocation
|
||||||
|
|
||||||
@ -65,7 +44,7 @@ The first set of things we need to do when creating a new Invocation are -
|
|||||||
So let us do that.
|
So let us do that.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
from .baseinvocation import BaseInvocation, invocation
|
||||||
|
|
||||||
@invocation('resize')
|
@invocation('resize')
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
@ -99,8 +78,8 @@ create your own custom field types later in this guide. For now, let's go ahead
|
|||||||
and use it.
|
and use it.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
|
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from .primitives import ImageField
|
||||||
|
|
||||||
@invocation('resize')
|
@invocation('resize')
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
@ -124,8 +103,8 @@ image: ImageField = InputField(description="The input image")
|
|||||||
Great. Now let us create our other inputs for `width` and `height`
|
Great. Now let us create our other inputs for `width` and `height`
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation
|
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from .primitives import ImageField
|
||||||
|
|
||||||
@invocation('resize')
|
@invocation('resize')
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
@ -160,8 +139,8 @@ that are provided by it by InvokeAI.
|
|||||||
Let us create this function first.
|
Let us create this function first.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from .primitives import ImageField
|
||||||
|
|
||||||
@invocation('resize')
|
@invocation('resize')
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
@ -189,9 +168,9 @@ all the necessary info related to image outputs. So let us use that.
|
|||||||
We will cover how to create your own output types later in this guide.
|
We will cover how to create your own output types later in this guide.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from .primitives import ImageField
|
||||||
from invokeai.app.invocations.image import ImageOutput
|
from .image import ImageOutput
|
||||||
|
|
||||||
@invocation('resize')
|
@invocation('resize')
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
@ -216,9 +195,9 @@ Perfect. Now that we have our Invocation setup, let us do what we want to do.
|
|||||||
So let's do that.
|
So let's do that.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, invocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InputField, invocation
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from .primitives import ImageField
|
||||||
from invokeai.app.invocations.image import ImageOutput, ResourceOrigin, ImageCategory
|
from .image import ImageOutput
|
||||||
|
|
||||||
@invocation("resize")
|
@invocation("resize")
|
||||||
class ResizeInvocation(BaseInvocation):
|
class ResizeInvocation(BaseInvocation):
|
||||||
|
@ -0,0 +1,75 @@
|
|||||||
|
# Contributing to the Frontend
|
||||||
|
|
||||||
|
# InvokeAI Web UI
|
||||||
|
|
||||||
|
- [InvokeAI Web UI](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#invokeai-web-ui)
|
||||||
|
- [Stack](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#stack)
|
||||||
|
- [Contributing](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#contributing)
|
||||||
|
- [Dev Environment](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#dev-environment)
|
||||||
|
- [Production builds](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web/docs#production-builds)
|
||||||
|
|
||||||
|
The UI is a fairly straightforward Typescript React app, with the Unified Canvas being more complex.
|
||||||
|
|
||||||
|
Code is located in `invokeai/frontend/web/` for review.
|
||||||
|
|
||||||
|
## Stack
|
||||||
|
|
||||||
|
State management is Redux via [Redux Toolkit](https://github.com/reduxjs/redux-toolkit). We lean heavily on RTK:
|
||||||
|
|
||||||
|
- `createAsyncThunk` for HTTP requests
|
||||||
|
- `createEntityAdapter` for fetching images and models
|
||||||
|
- `createListenerMiddleware` for workflows
|
||||||
|
|
||||||
|
The API client and associated types are generated from the OpenAPI schema. See API_CLIENT.md.
|
||||||
|
|
||||||
|
Communication with server is a mix of HTTP and [socket.io](https://github.com/socketio/socket.io-client) (with a simple socket.io redux middleware to help).
|
||||||
|
|
||||||
|
[Chakra-UI](https://github.com/chakra-ui/chakra-ui) & [Mantine](https://github.com/mantinedev/mantine) for components and styling.
|
||||||
|
|
||||||
|
[Konva](https://github.com/konvajs/react-konva) for the canvas, but we are pushing the limits of what is feasible with it (and HTML canvas in general). We plan to rebuild it with [PixiJS](https://github.com/pixijs/pixijs) to take advantage of WebGL's improved raster handling.
|
||||||
|
|
||||||
|
[Vite](https://vitejs.dev/) for bundling.
|
||||||
|
|
||||||
|
Localisation is via [i18next](https://github.com/i18next/react-i18next), but translation happens on our [Weblate](https://hosted.weblate.org/engage/invokeai/) project. Only the English source strings should be changed on this repo.
|
||||||
|
|
||||||
|
## Contributing
|
||||||
|
|
||||||
|
Thanks for your interest in contributing to the InvokeAI Web UI!
|
||||||
|
|
||||||
|
We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](https://discord.gg/ZmtBAhwWhy) if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
|
||||||
|
|
||||||
|
### Dev Environment
|
||||||
|
|
||||||
|
**Setup**
|
||||||
|
|
||||||
|
1. Install [node](https://nodejs.org/en/download/). You can confirm node is installed with:
|
||||||
|
```bash
|
||||||
|
node --version
|
||||||
|
```
|
||||||
|
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
|
||||||
|
```bash
|
||||||
|
npm install --global yarn
|
||||||
|
yarn --version
|
||||||
|
```
|
||||||
|
|
||||||
|
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
|
||||||
|
|
||||||
|
Start everything in dev mode:
|
||||||
|
1. Ensure your virtual environment is running
|
||||||
|
2. Start the dev server: `yarn dev`
|
||||||
|
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
|
||||||
|
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
|
||||||
|
|
||||||
|
### VSCode Remote Dev
|
||||||
|
|
||||||
|
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out. Suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
|
||||||
|
|
||||||
|
`ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host`
|
||||||
|
|
||||||
|
### Production builds
|
||||||
|
|
||||||
|
For a number of technical and logistical reasons, we need to commit UI build artefacts to the repo.
|
||||||
|
|
||||||
|
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
|
||||||
|
|
||||||
|
To build for production, run `yarn build`.
|
@ -12,7 +12,7 @@ To get started, take a look at our [new contributors checklist](newContributorCh
|
|||||||
Once you're setup, for more information, you can review the documentation specific to your area of interest:
|
Once you're setup, for more information, you can review the documentation specific to your area of interest:
|
||||||
|
|
||||||
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
|
* #### [InvokeAI Architecure](../ARCHITECTURE.md)
|
||||||
* #### [Frontend Documentation](https://github.com/invoke-ai/InvokeAI/tree/main/invokeai/frontend/web)
|
* #### [Frontend Documentation](./contributingToFrontend.md)
|
||||||
* #### [Node Documentation](../INVOCATIONS.md)
|
* #### [Node Documentation](../INVOCATIONS.md)
|
||||||
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
|
* #### [Local Development](../LOCAL_DEVELOPMENT.md)
|
||||||
|
|
||||||
|
@ -1,53 +0,0 @@
|
|||||||
## :octicons-log-16: Important Changes Since Version 2.3
|
|
||||||
|
|
||||||
### Nodes
|
|
||||||
|
|
||||||
Behind the scenes, InvokeAI has been completely rewritten to support
|
|
||||||
"nodes," small unitary operations that can be combined into graphs to
|
|
||||||
form arbitrary workflows. For example, there is a prompt node that
|
|
||||||
processes the prompt string and feeds it to a text2latent node that
|
|
||||||
generates a latent image. The latents are then fed to a latent2image
|
|
||||||
node that translates the latent image into a PNG.
|
|
||||||
|
|
||||||
The WebGUI has a node editor that allows you to graphically design and
|
|
||||||
execute custom node graphs. The ability to save and load graphs is
|
|
||||||
still a work in progress, but coming soon.
|
|
||||||
|
|
||||||
### Command-Line Interface Retired
|
|
||||||
|
|
||||||
All "invokeai" command-line interfaces have been retired as of version
|
|
||||||
3.4.
|
|
||||||
|
|
||||||
To launch the Web GUI from the command-line, use the command
|
|
||||||
`invokeai-web` rather than the traditional `invokeai --web`.
|
|
||||||
|
|
||||||
### ControlNet
|
|
||||||
|
|
||||||
This version of InvokeAI features ControlNet, a system that allows you
|
|
||||||
to achieve exact poses for human and animal figures by providing a
|
|
||||||
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
|
|
||||||
|
|
||||||
### New Schedulers
|
|
||||||
|
|
||||||
The list of schedulers has been completely revamped and brought up to date:
|
|
||||||
|
|
||||||
| **Short Name** | **Scheduler** | **Notes** |
|
|
||||||
|----------------|---------------------------------|-----------------------------|
|
|
||||||
| **ddim** | DDIMScheduler | |
|
|
||||||
| **ddpm** | DDPMScheduler | |
|
|
||||||
| **deis** | DEISMultistepScheduler | |
|
|
||||||
| **lms** | LMSDiscreteScheduler | |
|
|
||||||
| **pndm** | PNDMScheduler | |
|
|
||||||
| **heun** | HeunDiscreteScheduler | original noise schedule |
|
|
||||||
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
|
|
||||||
| **euler** | EulerDiscreteScheduler | original noise schedule |
|
|
||||||
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
|
|
||||||
| **kdpm_2** | KDPM2DiscreteScheduler | |
|
|
||||||
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
|
|
||||||
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
|
|
||||||
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
|
|
||||||
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
|
|
||||||
| **unipc** | UniPCMultistepScheduler | CPU only |
|
|
||||||
| **lcm** | LCMScheduler | |
|
|
||||||
|
|
||||||
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
|
|
89
docs/features/CONCEPTS.md
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
---
|
||||||
|
title: Textual Inversion Embeddings and LoRAs
|
||||||
|
---
|
||||||
|
|
||||||
|
# :material-library-shelves: Textual Inversions and LoRAs
|
||||||
|
|
||||||
|
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
|
||||||
|
|
||||||
|
|
||||||
|
## Using Textual Inversion Files
|
||||||
|
|
||||||
|
Textual inversion (TI) files are small models that customize the output of
|
||||||
|
Stable Diffusion image generation. They can augment SD with specialized subjects
|
||||||
|
and artistic styles. They are also known as "embeds" in the machine learning
|
||||||
|
world.
|
||||||
|
|
||||||
|
Each TI file introduces one or more vocabulary terms to the SD model. These are
|
||||||
|
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
|
||||||
|
as in "<trigger-phrase>". The two most common type of
|
||||||
|
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
|
||||||
|
different TI training packages. InvokeAI supports both formats, but its
|
||||||
|
[built-in TI training system](TRAINING.md) produces `.pt`.
|
||||||
|
|
||||||
|
[Hugging Face](https://huggingface.co/sd-concepts-library) has
|
||||||
|
amassed a large library of >800 community-contributed TI files covering a
|
||||||
|
broad range of subjects and styles. You can also install your own or others' TI files
|
||||||
|
by placing them in the designated directory for the compatible model type
|
||||||
|
|
||||||
|
### An Example
|
||||||
|
|
||||||
|
Here are a few examples to illustrate how it works. All these images
|
||||||
|
were generated using the legacy command-line client and the Stable
|
||||||
|
Diffusion 1.5 model:
|
||||||
|
|
||||||
|
| Japanese gardener | Japanese gardener <ghibli-face> | Japanese gardener <hoi4-leaders> | Japanese gardener <cartoona-animals> |
|
||||||
|
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
|
||||||
|
|  |  |  |  |
|
||||||
|
|
||||||
|
You can also combine styles and concepts:
|
||||||
|
|
||||||
|
<figure markdown>
|
||||||
|
| A portrait of <alf> in <cartoona-animal> style |
|
||||||
|
| :--------------------------------------------------------: |
|
||||||
|
|  |
|
||||||
|
</figure>
|
||||||
|
|
||||||
|
|
||||||
|
## Installing your Own TI Files
|
||||||
|
|
||||||
|
You may install any number of `.pt` and `.bin` files simply by copying them into
|
||||||
|
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
|
||||||
|
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
|
||||||
|
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
|
||||||
|
For example, TI files generated by the Hugging Face toolkit share the named
|
||||||
|
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
|
||||||
|
|
||||||
|
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
|
||||||
|
files it finds there for compatible models. At startup you will see a message similar to this one:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
|
||||||
|
```
|
||||||
|
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
|
||||||
|
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
|
||||||
|
|
||||||
|
## Using LoRAs
|
||||||
|
|
||||||
|
LoRA files are models that customize the output of Stable Diffusion
|
||||||
|
image generation. Larger than embeddings, but much smaller than full
|
||||||
|
models, they augment SD with improved understanding of subjects and
|
||||||
|
artistic styles.
|
||||||
|
|
||||||
|
Unlike TI files, LoRAs do not introduce novel vocabulary into the
|
||||||
|
model's known tokens. Instead, LoRAs augment the model's weights that
|
||||||
|
are applied to generate imagery. LoRAs may be supplied with a
|
||||||
|
"trigger" word that they have been explicitly trained on, or may
|
||||||
|
simply apply their effect without being triggered.
|
||||||
|
|
||||||
|
LoRAs are typically stored in .safetensors files, which are the most
|
||||||
|
secure way to store and transmit these types of weights. You may
|
||||||
|
install any number of `.safetensors` LoRA files simply by copying them
|
||||||
|
into the `autoimport/lora` directory of the corresponding InvokeAI models
|
||||||
|
directory (usually `invokeai` in your home directory).
|
||||||
|
|
||||||
|
To use these when generating, open the LoRA menu item in the options
|
||||||
|
panel, select the LoRAs you want to apply and ensure that they have
|
||||||
|
the appropriate weight recommended by the model provider. Typically,
|
||||||
|
most LoRAs perform best at a weight of .75-1.
|
||||||
|
|
@ -154,16 +154,14 @@ groups in `invokeia.yaml`:
|
|||||||
|
|
||||||
### Web Server
|
### Web Server
|
||||||
|
|
||||||
| Setting | Default Value | Description |
|
| Setting | Default Value | Description |
|
||||||
|---------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|
|
|----------|----------------|--------------|
|
||||||
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
|
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
|
||||||
| `port` | `9090` | Network port number that the web server will listen on |
|
| `port` | `9090` | Network port number that the web server will listen on |
|
||||||
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
|
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
|
||||||
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
|
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
|
||||||
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
|
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
|
||||||
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
|
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
|
||||||
| `ssl_certfile` | null | Path to an SSL certificate file, used to enable HTTPS. |
|
|
||||||
| `ssl_keyfile` | null | Path to an SSL keyfile, if the key is not included in the certificate file. |
|
|
||||||
|
|
||||||
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
|
The documentation for InvokeAI's API can be accessed by browsing to the following URL: [http://localhost:9090/docs].
|
||||||
|
|
||||||
|
@ -1,53 +0,0 @@
|
|||||||
---
|
|
||||||
title: LoRAs & LCM-LoRAs
|
|
||||||
---
|
|
||||||
|
|
||||||
# :material-library-shelves: LoRAs & LCM-LoRAs
|
|
||||||
|
|
||||||
With the advances in research, many new capabilities are available to customize the knowledge and understanding of novel concepts not originally contained in the base model.
|
|
||||||
|
|
||||||
## LoRAs
|
|
||||||
|
|
||||||
Low-Rank Adaptation (LoRA) files are models that customize the output of Stable Diffusion
|
|
||||||
image generation. Larger than embeddings, but much smaller than full
|
|
||||||
models, they augment SD with improved understanding of subjects and
|
|
||||||
artistic styles.
|
|
||||||
|
|
||||||
Unlike TI files, LoRAs do not introduce novel vocabulary into the
|
|
||||||
model's known tokens. Instead, LoRAs augment the model's weights that
|
|
||||||
are applied to generate imagery. LoRAs may be supplied with a
|
|
||||||
"trigger" word that they have been explicitly trained on, or may
|
|
||||||
simply apply their effect without being triggered.
|
|
||||||
|
|
||||||
LoRAs are typically stored in .safetensors files, which are the most
|
|
||||||
secure way to store and transmit these types of weights. You may
|
|
||||||
install any number of `.safetensors` LoRA files simply by copying them
|
|
||||||
into the `autoimport/lora` directory of the corresponding InvokeAI models
|
|
||||||
directory (usually `invokeai` in your home directory).
|
|
||||||
|
|
||||||
To use these when generating, open the LoRA menu item in the options
|
|
||||||
panel, select the LoRAs you want to apply and ensure that they have
|
|
||||||
the appropriate weight recommended by the model provider. Typically,
|
|
||||||
most LoRAs perform best at a weight of .75-1.
|
|
||||||
|
|
||||||
|
|
||||||
## LCM-LoRAs
|
|
||||||
Latent Consistency Models (LCMs) allowed a reduced number of steps to be used to generate images with Stable Diffusion. These are created by distilling base models, creating models that only require a small number of steps to generate images. However, LCMs require that any fine-tune of a base model be distilled to be used as an LCM.
|
|
||||||
|
|
||||||
LCM-LoRAs are models that provide the benefit of LCMs but are able to be used as LoRAs and applied to any fine tune of a base model. LCM-LoRAs are created by training a small number of adapters, rather than distilling the entire fine-tuned base model. The resulting LoRA can be used the same way as a standard LoRA, but with a greatly reduced step count. This enables SDXL images to be generated up to 10x faster than without the use of LCM-LoRAs.
|
|
||||||
|
|
||||||
|
|
||||||
**Using LCM-LoRAs**
|
|
||||||
|
|
||||||
LCM-LoRAs are natively supported in InvokeAI throughout the application. To get started, install any diffusers format LCM-LoRAs using the model manager and select it in the LoRA field.
|
|
||||||
|
|
||||||
There are a number parameter differences when using LCM-LoRAs and standard generation:
|
|
||||||
|
|
||||||
- When using LCM-LoRAs, the LoRA strength should be lower than if using a standard LoRA, with 0.35 recommended as a starting point.
|
|
||||||
- The LCM scheduler should be used for generation
|
|
||||||
- CFG-Scale should be reduced to ~1
|
|
||||||
- Steps should be reduced in the range of 4-8
|
|
||||||
|
|
||||||
Standard LoRAs can also be used alongside LCM-LoRAs, but will also require a lower strength, with 0.45 being recommended as a starting point.
|
|
||||||
|
|
||||||
More information can be found here: https://huggingface.co/blog/lcm_lora#fast-inference-with-sdxl-lcm-loras
|
|
@ -120,7 +120,7 @@ Generate an image with a given prompt, record the seed of the image, and then
|
|||||||
use the `prompt2prompt` syntax to substitute words in the original prompt for
|
use the `prompt2prompt` syntax to substitute words in the original prompt for
|
||||||
words in a new prompt. This works for `img2img` as well.
|
words in a new prompt. This works for `img2img` as well.
|
||||||
|
|
||||||
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because the words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
|
For example, consider the prompt `a cat.swap(dog) playing with a ball in the forest`. Normally, because of the word words interact with each other when doing a stable diffusion image generation, these two prompts would generate different compositions:
|
||||||
- `a cat playing with a ball in the forest`
|
- `a cat playing with a ball in the forest`
|
||||||
- `a dog playing with a ball in the forest`
|
- `a dog playing with a ball in the forest`
|
||||||
|
|
||||||
|
@ -1,55 +0,0 @@
|
|||||||
## Using Textual Inversion Files
|
|
||||||
|
|
||||||
Textual inversion (TI) files are small models that customize the output of
|
|
||||||
Stable Diffusion image generation. They can augment SD with specialized subjects
|
|
||||||
and artistic styles. They are also known as "embeds" in the machine learning
|
|
||||||
world.
|
|
||||||
|
|
||||||
Each TI file introduces one or more vocabulary terms to the SD model. These are
|
|
||||||
known in InvokeAI as "triggers." Triggers are denoted using angle brackets
|
|
||||||
as in "<trigger-phrase>". The two most common type of
|
|
||||||
TI files that you'll encounter are `.pt` and `.bin` files, which are produced by
|
|
||||||
different TI training packages. InvokeAI supports both formats, but its
|
|
||||||
[built-in TI training system](TRAINING.md) produces `.pt`.
|
|
||||||
|
|
||||||
[Hugging Face](https://huggingface.co/sd-concepts-library) has
|
|
||||||
amassed a large library of >800 community-contributed TI files covering a
|
|
||||||
broad range of subjects and styles. You can also install your own or others' TI files
|
|
||||||
by placing them in the designated directory for the compatible model type
|
|
||||||
|
|
||||||
### An Example
|
|
||||||
|
|
||||||
Here are a few examples to illustrate how it works. All these images
|
|
||||||
were generated using the legacy command-line client and the Stable
|
|
||||||
Diffusion 1.5 model:
|
|
||||||
|
|
||||||
| Japanese gardener | Japanese gardener <ghibli-face> | Japanese gardener <hoi4-leaders> | Japanese gardener <cartoona-animals> |
|
|
||||||
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |
|
|
||||||
|  |  |  |  |
|
|
||||||
|
|
||||||
You can also combine styles and concepts:
|
|
||||||
|
|
||||||
<figure markdown>
|
|
||||||
| A portrait of <alf> in <cartoona-animal> style |
|
|
||||||
| :--------------------------------------------------------: |
|
|
||||||
|  |
|
|
||||||
</figure>
|
|
||||||
|
|
||||||
|
|
||||||
## Installing your Own TI Files
|
|
||||||
|
|
||||||
You may install any number of `.pt` and `.bin` files simply by copying them into
|
|
||||||
the `embedding` directory of the corresponding InvokeAI models directory (usually `invokeai`
|
|
||||||
in your home directory). For example, you can simply move a Stable Diffusion 1.5 embedding file to
|
|
||||||
the `sd-1/embedding` folder. Be careful not to overwrite one file with another.
|
|
||||||
For example, TI files generated by the Hugging Face toolkit share the named
|
|
||||||
`learned_embedding.bin`. You can rename these, or use subdirectories to keep them distinct.
|
|
||||||
|
|
||||||
At startup time, InvokeAI will scan the various `embedding` directories and load any TI
|
|
||||||
files it finds there for compatible models. At startup you will see a message similar to this one:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
>> Current embedding manager terms: <HOI4-Leader>, <princess-knight>
|
|
||||||
```
|
|
||||||
To use these when generating, simply type the `<` key in your prompt to open the Textual Inversion WebUI and
|
|
||||||
select the embedding you'd like to use. This UI has type-ahead support, so you can easily find supported embeddings.
|
|
@ -229,28 +229,29 @@ clarity on the intent and common use cases we expect for utilizing them.
|
|||||||
currently being rendered by your browser into a merged copy of the image. This
|
currently being rendered by your browser into a merged copy of the image. This
|
||||||
lowers the resource requirements and should improve performance.
|
lowers the resource requirements and should improve performance.
|
||||||
|
|
||||||
### Compositing / Seam Correction
|
### Seam Correction
|
||||||
|
|
||||||
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
|
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
|
||||||
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is
|
by Stable Diffusion into your existing image. To do this, the area around the
|
||||||
|
`seam` at the boundary between your image and the new generation is
|
||||||
automatically blended to produce a seamless output. In a fully automatic
|
automatically blended to produce a seamless output. In a fully automatic
|
||||||
process, a mask is generated to cover the boundary, and then the area of the boundary is
|
process, a mask is generated to cover the seam, and then the area of the seam is
|
||||||
Inpainted.
|
Inpainted.
|
||||||
|
|
||||||
Although the default options should work well most of the time, sometimes it can
|
Although the default options should work well most of the time, sometimes it can
|
||||||
help to alter the parameters that control the Compositing. A larger blur and
|
help to alter the parameters that control the seam Inpainting. A wider seam and
|
||||||
a blur setting have been noted as producing
|
a blur setting of about 1/3 of the seam have been noted as producing
|
||||||
consistently strong results . Strength of 0.7 is best for reducing hard seams.
|
consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
|
||||||
|
both sides). Seam strength of 0.7 is best for reducing hard seams.
|
||||||
- **Mode** - What part of the image will have the the Compositing applied to it.
|
|
||||||
- **Mask edge** will apply Compositing to the edge of the masked area
|
|
||||||
- **Mask** will apply Compositing to the entire masked area
|
|
||||||
- **Unmasked** will apply Compositing to the entire image
|
|
||||||
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
|
|
||||||
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
|
|
||||||
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
|
|
||||||
- **Blur Method** - The method of blur applied to the masked area.
|
|
||||||
|
|
||||||
|
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
|
||||||
|
mask around the seam.
|
||||||
|
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
|
||||||
|
masked area.
|
||||||
|
- **Seam Strength** - The Image To Image Strength parameter used for the
|
||||||
|
Inpainting generation that is applied to the seam area.
|
||||||
|
- **Seam Steps** - The number of generation steps that should be used to Inpaint
|
||||||
|
the seam.
|
||||||
|
|
||||||
### Infill & Scaling
|
### Infill & Scaling
|
||||||
|
|
||||||
|
@ -20,7 +20,7 @@ a single convenient digital artist-optimized user interface.
|
|||||||
### * [Prompt Engineering](PROMPTS.md)
|
### * [Prompt Engineering](PROMPTS.md)
|
||||||
Get the images you want with the InvokeAI prompt engineering language.
|
Get the images you want with the InvokeAI prompt engineering language.
|
||||||
|
|
||||||
### * The [LoRA, LyCORIS, LCM-LoRA Models](CONCEPTS.md)
|
### * The [LoRA, LyCORIS and Textual Inversion Models](CONCEPTS.md)
|
||||||
Add custom subjects and styles using a variety of fine-tuned models.
|
Add custom subjects and styles using a variety of fine-tuned models.
|
||||||
|
|
||||||
### * [ControlNet](CONTROLNET.md)
|
### * [ControlNet](CONTROLNET.md)
|
||||||
@ -40,7 +40,7 @@ guide also covers optimizing models to load quickly.
|
|||||||
Teach an old model new tricks. Merge 2-3 models together to create a
|
Teach an old model new tricks. Merge 2-3 models together to create a
|
||||||
new model that combines characteristics of the originals.
|
new model that combines characteristics of the originals.
|
||||||
|
|
||||||
### * [Textual Inversion](TEXTUAL_INVERSIONS.md)
|
### * [Textual Inversion](TRAINING.md)
|
||||||
Personalize models by adding your own style or subjects.
|
Personalize models by adding your own style or subjects.
|
||||||
|
|
||||||
## Other Features
|
## Other Features
|
||||||
|
@ -1,43 +0,0 @@
|
|||||||
# FAQs
|
|
||||||
|
|
||||||
**Where do I get started? How can I install Invoke?**
|
|
||||||
|
|
||||||
- You can download the latest installers [here](https://github.com/invoke-ai/InvokeAI/releases) - Note that any releases marked as *pre-release* are in a beta state. You may experience some issues, but we appreciate your help testing those! For stable/reliable installations, please install the **[Latest Release](https://github.com/invoke-ai/InvokeAI/releases/latest)**
|
|
||||||
|
|
||||||
**How can I download models? Can I use models I already have downloaded?**
|
|
||||||
|
|
||||||
- Models can be downloaded through the model manager, or through option [4] in the invoke.bat/invoke.sh launcher script. To download a model through the Model Manager, use the HuggingFace Repo ID by pressing the “Copy” button next to the repository name. Alternatively, to download a model from CivitAi, use the download link in the Model Manager.
|
|
||||||
- Models that are already downloaded can be used by creating a symlink to the model location in the `autoimport` folder or by using the Model Manger’s “Scan for Models” function.
|
|
||||||
|
|
||||||
**My images are taking a long time to generate. How can I speed up generation?**
|
|
||||||
|
|
||||||
- A common solution is to reduce the size of your RAM & VRAM cache to 0.25. This ensures your system has enough memory to generate images.
|
|
||||||
- Additionally, check the [hardware requirements](https://invoke-ai.github.io/InvokeAI/#hardware-requirements) to ensure that your system is capable of generating images.
|
|
||||||
- Lastly, double check your generations are happening on your GPU (if you have one). InvokeAI will log what is being used for generation upon startup.
|
|
||||||
|
|
||||||
**I’ve installed Python on Windows but the installer says it can’t find it?**
|
|
||||||
|
|
||||||
- Then ensure that you checked **'Add python.exe to PATH'** when installing Python. This can be found at the bottom of the Python Installer window. If you already have Python installed, this can be done with the modify / repair feature of the installer.
|
|
||||||
|
|
||||||
**I’ve installed everything successfully but I still get an error about Triton when starting Invoke?**
|
|
||||||
|
|
||||||
- This can be safely ignored. InvokeAI doesn't use Triton, but if you are on Linux and wish to dismiss the error, you can install Triton.
|
|
||||||
|
|
||||||
**I updated to 3.4.0 and now xFormers can’t load C++/CUDA?**
|
|
||||||
|
|
||||||
- An issue occurred with your PyTorch update. Follow these steps to fix :
|
|
||||||
1. Launch your invoke.bat / invoke.sh and select the option to open the developer console
|
|
||||||
2. Run:`pip install ".[xformers]" --upgrade --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121`
|
|
||||||
- If you run into an error with `typing_extensions`, re-open the developer console and run: `pip install -U typing-extensions`
|
|
||||||
|
|
||||||
**It says my pip is out of date - is that why my install isn't working?**
|
|
||||||
- An out of date won't cause an installation to fail. The cause of the error can likely be found above the message that says pip is out of date.
|
|
||||||
- If you saw that warning but the install went well, don't worry about it (but you can update pip afterwards if you'd like).
|
|
||||||
|
|
||||||
**How can I generate the exact same that I found on the internet?**
|
|
||||||
Most example images with prompts that you'll find on the internet have been generated using different software, so you can't expect to get identical results. In order to reproduce an image, you need to replicate the exact settings and processing steps, including (but not limited to) the model, the positive and negative prompts, the seed, the sampler, the exact image size, any upscaling steps, etc.
|
|
||||||
|
|
||||||
|
|
||||||
**Where can I get more help?**
|
|
||||||
|
|
||||||
- Create an issue on [GitHub](https://github.com/invoke-ai/InvokeAI/issues) or post in the [#help channel](https://discord.com/channels/1020123559063990373/1149510134058471514) of the InvokeAI Discord
|
|
@ -18,7 +18,7 @@ title: Home
|
|||||||
width: 100%;
|
width: 100%;
|
||||||
max-width: 100%;
|
max-width: 100%;
|
||||||
height: 50px;
|
height: 50px;
|
||||||
background-color: #35A4DB;
|
background-color: #448AFF;
|
||||||
color: #fff;
|
color: #fff;
|
||||||
font-size: 16px;
|
font-size: 16px;
|
||||||
border: none;
|
border: none;
|
||||||
@ -43,7 +43,7 @@ title: Home
|
|||||||
<div align="center" markdown>
|
<div align="center" markdown>
|
||||||
|
|
||||||
|
|
||||||
[](https://github.com/invoke-ai/InvokeAI)
|
[](https://github.com/invoke-ai/InvokeAI)
|
||||||
|
|
||||||
[![discord badge]][discord link]
|
[![discord badge]][discord link]
|
||||||
|
|
||||||
@ -101,13 +101,16 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
|
|||||||
|
|
||||||
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
|
<div align="center"><img src="assets/invoke-web-server-1.png" width=640></div>
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
|
||||||
|
This project is rapidly evolving. Please use the [Issues tab](https://github.com/invoke-ai/InvokeAI/issues) to report bugs and make feature requests. Be sure to use the provided templates as it will help aid response time.
|
||||||
|
|
||||||
## :octicons-link-24: Quick Links
|
## :octicons-link-24: Quick Links
|
||||||
|
|
||||||
<div class="button-container">
|
<div class="button-container">
|
||||||
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
|
<a href="installation/INSTALLATION"> <button class="button">Installation</button> </a>
|
||||||
<a href="features/"> <button class="button">Features</button> </a>
|
<a href="features/"> <button class="button">Features</button> </a>
|
||||||
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
|
<a href="help/gettingStartedWithAI/"> <button class="button">Getting Started</button> </a>
|
||||||
<a href="help/FAQ/"> <button class="button">FAQ</button> </a>
|
|
||||||
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
|
<a href="contributing/CONTRIBUTING/"> <button class="button">Contributing</button> </a>
|
||||||
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
|
<a href="https://github.com/invoke-ai/InvokeAI/"> <button class="button">Code and Downloads</button> </a>
|
||||||
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
|
<a href="https://github.com/invoke-ai/InvokeAI/issues"> <button class="button">Bug Reports </button> </a>
|
||||||
@ -145,6 +148,59 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
|
|||||||
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
|
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
|
||||||
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
|
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
|
||||||
|
|
||||||
|
## :octicons-log-16: Important Changes Since Version 2.3
|
||||||
|
|
||||||
|
### Nodes
|
||||||
|
|
||||||
|
Behind the scenes, InvokeAI has been completely rewritten to support
|
||||||
|
"nodes," small unitary operations that can be combined into graphs to
|
||||||
|
form arbitrary workflows. For example, there is a prompt node that
|
||||||
|
processes the prompt string and feeds it to a text2latent node that
|
||||||
|
generates a latent image. The latents are then fed to a latent2image
|
||||||
|
node that translates the latent image into a PNG.
|
||||||
|
|
||||||
|
The WebGUI has a node editor that allows you to graphically design and
|
||||||
|
execute custom node graphs. The ability to save and load graphs is
|
||||||
|
still a work in progress, but coming soon.
|
||||||
|
|
||||||
|
### Command-Line Interface Retired
|
||||||
|
|
||||||
|
All "invokeai" command-line interfaces have been retired as of version
|
||||||
|
3.4.
|
||||||
|
|
||||||
|
To launch the Web GUI from the command-line, use the command
|
||||||
|
`invokeai-web` rather than the traditional `invokeai --web`.
|
||||||
|
|
||||||
|
### ControlNet
|
||||||
|
|
||||||
|
This version of InvokeAI features ControlNet, a system that allows you
|
||||||
|
to achieve exact poses for human and animal figures by providing a
|
||||||
|
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
|
||||||
|
|
||||||
|
### New Schedulers
|
||||||
|
|
||||||
|
The list of schedulers has been completely revamped and brought up to date:
|
||||||
|
|
||||||
|
| **Short Name** | **Scheduler** | **Notes** |
|
||||||
|
|----------------|---------------------------------|-----------------------------|
|
||||||
|
| **ddim** | DDIMScheduler | |
|
||||||
|
| **ddpm** | DDPMScheduler | |
|
||||||
|
| **deis** | DEISMultistepScheduler | |
|
||||||
|
| **lms** | LMSDiscreteScheduler | |
|
||||||
|
| **pndm** | PNDMScheduler | |
|
||||||
|
| **heun** | HeunDiscreteScheduler | original noise schedule |
|
||||||
|
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
|
||||||
|
| **euler** | EulerDiscreteScheduler | original noise schedule |
|
||||||
|
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
|
||||||
|
| **kdpm_2** | KDPM2DiscreteScheduler | |
|
||||||
|
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
|
||||||
|
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
|
||||||
|
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
|
||||||
|
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
|
||||||
|
| **unipc** | UniPCMultistepScheduler | CPU only |
|
||||||
|
|
||||||
|
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
|
||||||
|
|
||||||
## :material-target: Troubleshooting
|
## :material-target: Troubleshooting
|
||||||
|
|
||||||
Please check out our **[:material-frequently-asked-questions:
|
Please check out our **[:material-frequently-asked-questions:
|
||||||
|
@ -179,7 +179,7 @@ experimental versions later.
|
|||||||
you will have the choice of CUDA (NVidia cards), ROCm (AMD cards),
|
you will have the choice of CUDA (NVidia cards), ROCm (AMD cards),
|
||||||
or CPU (no graphics acceleration). On Windows, you'll have the
|
or CPU (no graphics acceleration). On Windows, you'll have the
|
||||||
choice of CUDA vs CPU, and on Macs you'll be offered CPU only. When
|
choice of CUDA vs CPU, and on Macs you'll be offered CPU only. When
|
||||||
you select CPU on M1/M2/M3 Macintoshes, you will get MPS-based
|
you select CPU on M1 or M2 Macintoshes, you will get MPS-based
|
||||||
graphics acceleration without installing additional drivers. If you
|
graphics acceleration without installing additional drivers. If you
|
||||||
are unsure what GPU you are using, you can ask the installer to
|
are unsure what GPU you are using, you can ask the installer to
|
||||||
guess.
|
guess.
|
||||||
@ -471,7 +471,7 @@ Then type the following commands:
|
|||||||
|
|
||||||
=== "NVIDIA System"
|
=== "NVIDIA System"
|
||||||
```bash
|
```bash
|
||||||
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu121
|
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
pip install xformers
|
pip install xformers
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -148,7 +148,7 @@ manager, please follow these steps:
|
|||||||
=== "CUDA (NVidia)"
|
=== "CUDA (NVidia)"
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "ROCm (AMD)"
|
=== "ROCm (AMD)"
|
||||||
@ -293,19 +293,6 @@ manager, please follow these steps:
|
|||||||
|
|
||||||
## Developer Install
|
## Developer Install
|
||||||
|
|
||||||
!!! warning
|
|
||||||
|
|
||||||
InvokeAI uses a SQLite database. By running on `main`, you accept responsibility for your database. This
|
|
||||||
means making regular backups (especially before pulling) and/or fixing it yourself in the event that a
|
|
||||||
PR introduces a schema change.
|
|
||||||
|
|
||||||
If you don't need persistent backend storage, you can use an ephemeral in-memory database by setting
|
|
||||||
`use_memory_db: true` under `Path:` in your `invokeai.yaml` file.
|
|
||||||
|
|
||||||
If this is untenable, you should run the application via the official installer or a manual install of the
|
|
||||||
python package from pypi. These releases will not break your database.
|
|
||||||
|
|
||||||
|
|
||||||
If you have an interest in how InvokeAI works, or you would like to
|
If you have an interest in how InvokeAI works, or you would like to
|
||||||
add features or bugfixes, you are encouraged to install the source
|
add features or bugfixes, you are encouraged to install the source
|
||||||
code for InvokeAI. For this to work, you will need to install the
|
code for InvokeAI. For this to work, you will need to install the
|
||||||
@ -340,7 +327,7 @@ installation protocol (important!)
|
|||||||
|
|
||||||
=== "CUDA (NVidia)"
|
=== "CUDA (NVidia)"
|
||||||
```bash
|
```bash
|
||||||
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
pip install -e .[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "ROCm (AMD)"
|
=== "ROCm (AMD)"
|
||||||
@ -388,7 +375,7 @@ you can do so using this unsupported recipe:
|
|||||||
mkdir ~/invokeai
|
mkdir ~/invokeai
|
||||||
conda create -n invokeai python=3.10
|
conda create -n invokeai python=3.10
|
||||||
conda activate invokeai
|
conda activate invokeai
|
||||||
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
pip install InvokeAI[xformers] --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu118
|
||||||
invokeai-configure --root ~/invokeai
|
invokeai-configure --root ~/invokeai
|
||||||
invokeai --root ~/invokeai --web
|
invokeai --root ~/invokeai --web
|
||||||
```
|
```
|
||||||
@ -401,5 +388,3 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
|
|||||||
|
|
||||||
Note that if you run into problems with the Conda installation, the InvokeAI
|
Note that if you run into problems with the Conda installation, the InvokeAI
|
||||||
staff will **not** be able to help you out. Caveat Emptor!
|
staff will **not** be able to help you out. Caveat Emptor!
|
||||||
|
|
||||||
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
|
|
@ -85,7 +85,7 @@ You can find which version you should download from [this link](https://docs.nvi
|
|||||||
|
|
||||||
When installing torch and torchvision manually with `pip`, remember to provide
|
When installing torch and torchvision manually with `pip`, remember to provide
|
||||||
the argument `--extra-index-url
|
the argument `--extra-index-url
|
||||||
https://download.pytorch.org/whl/cu121` as described in the [Manual
|
https://download.pytorch.org/whl/cu118` as described in the [Manual
|
||||||
Installation Guide](020_INSTALL_MANUAL.md).
|
Installation Guide](020_INSTALL_MANUAL.md).
|
||||||
|
|
||||||
## :simple-amd: ROCm
|
## :simple-amd: ROCm
|
||||||
|
@ -30,7 +30,7 @@ methodology for details on why running applications in such a stateless fashion
|
|||||||
The container is configured for CUDA by default, but can be built to support AMD GPUs
|
The container is configured for CUDA by default, but can be built to support AMD GPUs
|
||||||
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
|
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time.
|
||||||
|
|
||||||
Developers on Apple silicon (M1/M2/M3): You
|
Developers on Apple silicon (M1/M2): You
|
||||||
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
|
||||||
and performance is reduced compared with running it directly on macOS but for
|
and performance is reduced compared with running it directly on macOS but for
|
||||||
development purposes it's fine. Once you're done with development tasks on your
|
development purposes it's fine. Once you're done with development tasks on your
|
||||||
|
@ -28,7 +28,7 @@ command line, then just be sure to activate it's virtual environment.
|
|||||||
Then run the following three commands:
|
Then run the following three commands:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
pip install xformers~=0.0.22
|
pip install xformers~=0.0.19
|
||||||
pip install triton # WON'T WORK ON WINDOWS
|
pip install triton # WON'T WORK ON WINDOWS
|
||||||
python -m xformers.info output
|
python -m xformers.info output
|
||||||
```
|
```
|
||||||
@ -42,7 +42,7 @@ If all goes well, you'll see a report like the
|
|||||||
following:
|
following:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
xFormers 0.0.22
|
xFormers 0.0.20
|
||||||
memory_efficient_attention.cutlassF: available
|
memory_efficient_attention.cutlassF: available
|
||||||
memory_efficient_attention.cutlassB: available
|
memory_efficient_attention.cutlassB: available
|
||||||
memory_efficient_attention.flshattF: available
|
memory_efficient_attention.flshattF: available
|
||||||
@ -59,14 +59,14 @@ swiglu.gemm_fused_operand_sum: available
|
|||||||
swiglu.fused.p.cpp: available
|
swiglu.fused.p.cpp: available
|
||||||
is_triton_available: True
|
is_triton_available: True
|
||||||
is_functorch_available: False
|
is_functorch_available: False
|
||||||
pytorch.version: 2.1.0+cu121
|
pytorch.version: 2.0.1+cu118
|
||||||
pytorch.cuda: available
|
pytorch.cuda: available
|
||||||
gpu.compute_capability: 8.9
|
gpu.compute_capability: 8.9
|
||||||
gpu.name: NVIDIA GeForce RTX 4070
|
gpu.name: NVIDIA GeForce RTX 4070
|
||||||
build.info: available
|
build.info: available
|
||||||
build.cuda_version: 1108
|
build.cuda_version: 1108
|
||||||
build.python_version: 3.10.11
|
build.python_version: 3.10.11
|
||||||
build.torch_version: 2.1.0+cu121
|
build.torch_version: 2.0.1+cu118
|
||||||
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
|
build.env.TORCH_CUDA_ARCH_LIST: 5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6
|
||||||
build.env.XFORMERS_BUILD_TYPE: Release
|
build.env.XFORMERS_BUILD_TYPE: Release
|
||||||
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
|
build.env.XFORMERS_ENABLE_DEBUG_ASSERTIONS: None
|
||||||
@ -92,22 +92,33 @@ installed from source. These instructions were written for a system
|
|||||||
running Ubuntu 22.04, but other Linux distributions should be able to
|
running Ubuntu 22.04, but other Linux distributions should be able to
|
||||||
adapt this recipe.
|
adapt this recipe.
|
||||||
|
|
||||||
#### 1. Install CUDA Toolkit 12.1
|
#### 1. Install CUDA Toolkit 11.8
|
||||||
|
|
||||||
You will need the CUDA developer's toolkit in order to compile and
|
You will need the CUDA developer's toolkit in order to compile and
|
||||||
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
|
install xFormers. **Do not try to install Ubuntu's nvidia-cuda-toolkit
|
||||||
package.** It is out of date and will cause conflicts among the NVIDIA
|
package.** It is out of date and will cause conflicts among the NVIDIA
|
||||||
driver and binaries. Instead install the CUDA Toolkit package provided
|
driver and binaries. Instead install the CUDA Toolkit package provided
|
||||||
by NVIDIA itself. Go to [CUDA Toolkit 12.1
|
by NVIDIA itself. Go to [CUDA Toolkit 11.8
|
||||||
Downloads](https://developer.nvidia.com/cuda-12-1-0-download-archive)
|
Downloads](https://developer.nvidia.com/cuda-11-8-0-download-archive)
|
||||||
and use the target selection wizard to choose your platform and Linux
|
and use the target selection wizard to choose your platform and Linux
|
||||||
distribution. Select an installer type of "runfile (local)" at the
|
distribution. Select an installer type of "runfile (local)" at the
|
||||||
last step.
|
last step.
|
||||||
|
|
||||||
This will provide you with a recipe for downloading and running a
|
This will provide you with a recipe for downloading and running a
|
||||||
install shell script that will install the toolkit and drivers.
|
install shell script that will install the toolkit and drivers. For
|
||||||
|
example, the install script recipe for Ubuntu 22.04 running on a
|
||||||
|
x86_64 system is:
|
||||||
|
|
||||||
#### 2. Confirm/Install pyTorch 2.1.0 with CUDA 12.1 support
|
```
|
||||||
|
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
|
||||||
|
sudo sh cuda_11.8.0_520.61.05_linux.run
|
||||||
|
```
|
||||||
|
|
||||||
|
Rather than cut-and-paste this example, We recommend that you walk
|
||||||
|
through the toolkit wizard in order to get the most up to date
|
||||||
|
installer for your system.
|
||||||
|
|
||||||
|
#### 2. Confirm/Install pyTorch 2.01 with CUDA 11.8 support
|
||||||
|
|
||||||
If you are using InvokeAI 3.0.2 or higher, these will already be
|
If you are using InvokeAI 3.0.2 or higher, these will already be
|
||||||
installed. If not, you can check whether you have the needed libraries
|
installed. If not, you can check whether you have the needed libraries
|
||||||
@ -122,7 +133,7 @@ Then run the command:
|
|||||||
python -c 'exec("import torch\nprint(torch.__version__)")'
|
python -c 'exec("import torch\nprint(torch.__version__)")'
|
||||||
```
|
```
|
||||||
|
|
||||||
If it prints __2.1.0+cu121__ you're good. If not, you can install the
|
If it prints __1.13.1+cu118__ you're good. If not, you can install the
|
||||||
most up to date libraries with this command:
|
most up to date libraries with this command:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
|
@ -1,10 +0,0 @@
|
|||||||
document.addEventListener("DOMContentLoaded", function () {
|
|
||||||
var script = document.createElement("script");
|
|
||||||
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
|
|
||||||
script.setAttribute("data-website-id", "b5973bb1-476b-451e-8cf4-98de86745a10");
|
|
||||||
script.setAttribute("data-project-name", "Invoke.AI");
|
|
||||||
script.setAttribute("data-project-color", "#11213C");
|
|
||||||
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/113954515?s=280&v=4");
|
|
||||||
script.async = true;
|
|
||||||
document.head.appendChild(script);
|
|
||||||
});
|
|
@ -6,17 +6,10 @@ If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](
|
|||||||
|
|
||||||
## Features
|
## Features
|
||||||
|
|
||||||
### Workflow Library
|
|
||||||
The Workflow Library enables you to save workflows to the Invoke database, allowing you to easily creating, modify and share workflows as needed.
|
|
||||||
|
|
||||||
A curated set of workflows are provided by default - these are designed to help explain important nodes' usage in the Workflow Editor.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
### Linear View
|
### Linear View
|
||||||
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
|
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
|
||||||
|
|
||||||
To add an input to the Linear UI, right click on the **input label** and select "Add to Linear View".
|
To add an input to the Linear UI, right click on the input label and select "Add to Linear View".
|
||||||
|
|
||||||
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
|
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
|
||||||
|
|
||||||
@ -37,7 +30,7 @@ Any node or input field can be renamed in the workflow editor. If the input fiel
|
|||||||
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
|
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
|
||||||
|
|
||||||
|
|
||||||
## Important Nodes & Concepts
|
## Important Concepts
|
||||||
|
|
||||||
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
|
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
|
||||||
|
|
||||||
@ -63,7 +56,7 @@ The ImageToLatents node takes in a pixel image and a VAE and outputs a latents.
|
|||||||
|
|
||||||
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
|
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
### ControlNet
|
### ControlNet
|
||||||
|
|
||||||
|
@ -8,64 +8,36 @@ To use a node, add the node to the `nodes` folder found in your InvokeAI install
|
|||||||
|
|
||||||
The suggested method is to use `git clone` to clone the repository the node is found in. This allows for easy updates of the node in the future.
|
The suggested method is to use `git clone` to clone the repository the node is found in. This allows for easy updates of the node in the future.
|
||||||
|
|
||||||
If you'd prefer, you can also just download the whole node folder from the linked repository and add it to the `nodes` folder.
|
If you'd prefer, you can also just download the `.py` file from the linked repository and add it to the `nodes` folder.
|
||||||
|
|
||||||
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
|
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
|
||||||
|
|
||||||
- Community Nodes
|
- Community Nodes
|
||||||
+ [Adapters-Linked](#adapters-linked-nodes)
|
|
||||||
+ [Average Images](#average-images)
|
+ [Average Images](#average-images)
|
||||||
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
|
|
||||||
+ [Close Color Mask](#close-color-mask)
|
|
||||||
+ [Clothing Mask](#clothing-mask)
|
|
||||||
+ [Contrast Limited Adaptive Histogram Equalization](#contrast-limited-adaptive-histogram-equalization)
|
|
||||||
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
|
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
|
||||||
+ [Film Grain](#film-grain)
|
+ [Film Grain](#film-grain)
|
||||||
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
|
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
|
||||||
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
|
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
|
||||||
+ [Grid to Gif](#grid-to-gif)
|
+ [Grid to Gif](#grid-to-gif)
|
||||||
+ [Halftone](#halftone)
|
+ [Halftone](#halftone)
|
||||||
|
+ [Ideal Size](#ideal-size)
|
||||||
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
|
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
|
||||||
+ [Image Dominant Color](#image-dominant-color)
|
|
||||||
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
|
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
|
||||||
+ [Image Picker](#image-picker)
|
+ [Image Picker](#image-picker)
|
||||||
+ [Image Resize Plus](#image-resize-plus)
|
|
||||||
+ [Load Video Frame](#load-video-frame)
|
+ [Load Video Frame](#load-video-frame)
|
||||||
+ [Make 3D](#make-3d)
|
+ [Make 3D](#make-3d)
|
||||||
+ [Mask Operations](#mask-operations)
|
|
||||||
+ [Match Histogram](#match-histogram)
|
|
||||||
+ [Metadata-Linked](#metadata-linked-nodes)
|
|
||||||
+ [Negative Image](#negative-image)
|
|
||||||
+ [Nightmare Promptgen](#nightmare-promptgen)
|
|
||||||
+ [Oobabooga](#oobabooga)
|
+ [Oobabooga](#oobabooga)
|
||||||
+ [Prompt Tools](#prompt-tools)
|
+ [Prompt Tools](#prompt-tools)
|
||||||
+ [Remote Image](#remote-image)
|
|
||||||
+ [Remove Background](#remove-background)
|
|
||||||
+ [Retroize](#retroize)
|
+ [Retroize](#retroize)
|
||||||
+ [Size Stepper Nodes](#size-stepper-nodes)
|
+ [Size Stepper Nodes](#size-stepper-nodes)
|
||||||
+ [Simple Skin Detection](#simple-skin-detection)
|
|
||||||
+ [Text font to Image](#text-font-to-image)
|
+ [Text font to Image](#text-font-to-image)
|
||||||
+ [Thresholding](#thresholding)
|
+ [Thresholding](#thresholding)
|
||||||
+ [Unsharp Mask](#unsharp-mask)
|
|
||||||
+ [XY Image to Grid and Images to Grids nodes](#xy-image-to-grid-and-images-to-grids-nodes)
|
+ [XY Image to Grid and Images to Grids nodes](#xy-image-to-grid-and-images-to-grids-nodes)
|
||||||
- [Example Node Template](#example-node-template)
|
- [Example Node Template](#example-node-template)
|
||||||
- [Disclaimer](#disclaimer)
|
- [Disclaimer](#disclaimer)
|
||||||
- [Help](#help)
|
- [Help](#help)
|
||||||
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Adapters Linked Nodes
|
|
||||||
|
|
||||||
**Description:** A set of nodes for linked adapters (ControlNet, IP-Adaptor & T2I-Adapter). This allows multiple adapters to be chained together without using a `collect` node which means it can be used inside an `iterate` node without any collecting on every iteration issues.
|
|
||||||
|
|
||||||
- `ControlNet-Linked` - Collects ControlNet info to pass to other nodes.
|
|
||||||
- `IP-Adapter-Linked` - Collects IP-Adapter info to pass to other nodes.
|
|
||||||
- `T2I-Adapter-Linked` - Collects T2I-Adapter info to pass to other nodes.
|
|
||||||
|
|
||||||
Note: These are inherited from the core nodes so any update to the core nodes should be reflected in these.
|
|
||||||
|
|
||||||
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Average Images
|
### Average Images
|
||||||
|
|
||||||
@ -73,46 +45,6 @@ Note: These are inherited from the core nodes so any update to the core nodes sh
|
|||||||
|
|
||||||
**Node Link:** https://github.com/JPPhoto/average-images-node
|
**Node Link:** https://github.com/JPPhoto/average-images-node
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Clean Image Artifacts After Cut
|
|
||||||
|
|
||||||
Description: Removes residual artifacts after an image is separated from its background.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/clean-artifact-after-cut-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/clean-artifact-after-cut-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Close Color Mask
|
|
||||||
|
|
||||||
Description: Generates a mask for images based on a closely matching color, useful for color-based selections.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/close-color-mask-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/close-color-mask-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Clothing Mask
|
|
||||||
|
|
||||||
Description: Employs a U2NET neural network trained for the segmentation of clothing items in images.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/clothing-mask-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/clothing-mask-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Contrast Limited Adaptive Histogram Equalization
|
|
||||||
|
|
||||||
Description: Enhances local image contrast using adaptive histogram equalization with contrast limiting.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/clahe-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/clahe-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Depth Map from Wavefront OBJ
|
### Depth Map from Wavefront OBJ
|
||||||
|
|
||||||
@ -195,6 +127,13 @@ CMYK Halftone Output:
|
|||||||
|
|
||||||
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
|
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
|
||||||
|
|
||||||
|
--------------------------------
|
||||||
|
### Ideal Size
|
||||||
|
|
||||||
|
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
|
||||||
|
|
||||||
|
**Node Link:** https://github.com/JPPhoto/ideal-size-node
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Image and Mask Composition Pack
|
### Image and Mask Composition Pack
|
||||||
|
|
||||||
@ -222,16 +161,6 @@ This includes 15 Nodes:
|
|||||||
|
|
||||||
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
|
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" />
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Image Dominant Color
|
|
||||||
|
|
||||||
Description: Identifies and extracts the dominant color from an image using k-means clustering.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/image-dominant-color-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-dominant-color-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Image to Character Art Image Nodes
|
### Image to Character Art Image Nodes
|
||||||
|
|
||||||
@ -253,17 +182,6 @@ View:
|
|||||||
|
|
||||||
**Node Link:** https://github.com/JPPhoto/image-picker-node
|
**Node Link:** https://github.com/JPPhoto/image-picker-node
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Image Resize Plus
|
|
||||||
|
|
||||||
Description: Provides various image resizing options such as fill, stretch, fit, center, and crop.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/image-resize-plus-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Load Video Frame
|
### Load Video Frame
|
||||||
|
|
||||||
@ -288,64 +206,6 @@ View:
|
|||||||
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
|
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
|
||||||
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
|
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Mask Operations
|
|
||||||
|
|
||||||
Description: Offers logical operations (OR, SUB, AND) for combining and manipulating image masks.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/mask-operations-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/mask-operations-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Match Histogram
|
|
||||||
|
|
||||||
**Description:** An InvokeAI node to match a histogram from one image to another. This is a bit like the `color correct` node in the main InvokeAI but this works in the YCbCr colourspace and can handle images of different sizes. Also does not require a mask input.
|
|
||||||
- Option to only transfer luminance channel.
|
|
||||||
- Option to save output as grayscale
|
|
||||||
|
|
||||||
A good use case for this node is to normalize the colors of an image that has been through the tiled scaling workflow of my XYGrid Nodes.
|
|
||||||
|
|
||||||
See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/main/README.md
|
|
||||||
|
|
||||||
**Node Link:** https://github.com/skunkworxdark/match_histogram
|
|
||||||
|
|
||||||
**Output Examples**
|
|
||||||
|
|
||||||
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Metadata Linked Nodes
|
|
||||||
|
|
||||||
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
|
|
||||||
|
|
||||||
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
|
|
||||||
- `Metadata From Image` - Provides Metadata from an image.
|
|
||||||
- `Metadata To String` - Extracts a String value of a label from metadata.
|
|
||||||
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
|
|
||||||
- `Metadata To Float` - Extracts a Float value of a label from metadata.
|
|
||||||
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
|
|
||||||
|
|
||||||
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Negative Image
|
|
||||||
|
|
||||||
Description: Creates a negative version of an image, effective for visual effects and mask inversion.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/negative-image-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Nightmare Promptgen
|
|
||||||
|
|
||||||
**Description:** Nightmare Prompt Generator - Uses a local text generation model to create unique imaginative (but usually nightmarish) prompts for InvokeAI. By default, it allows you to choose from some gpt-neo models I finetuned on over 2500 of my own InvokeAI prompts in Compel format, but you're able to add your own, as well. Offers support for replacing any troublesome words with a random choice from list you can also define.
|
|
||||||
|
|
||||||
**Node Link:** [https://github.com/gogurtenjoyer/nightmare-promptgen](https://github.com/gogurtenjoyer/nightmare-promptgen)
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Oobabooga
|
### Oobabooga
|
||||||
|
|
||||||
@ -375,50 +235,22 @@ This node works best with SDXL models, especially as the style can be described
|
|||||||
--------------------------------
|
--------------------------------
|
||||||
### Prompt Tools
|
### Prompt Tools
|
||||||
|
|
||||||
**Description:** A set of InvokeAI nodes that add general prompt (string) manipulation tools. Designed to accompany the `Prompts From File` node and other prompt generation nodes.
|
**Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These were written to accompany the PromptsFromFile node and other prompt generation nodes.
|
||||||
|
|
||||||
1. `Prompt To File` - saves a prompt or collection of prompts to a file. one per line. There is an append/overwrite option.
|
|
||||||
2. `PTFields Collect` - Converts image generation fields into a Json format string that can be passed to Prompt to file.
|
|
||||||
3. `PTFields Expand` - Takes Json string and converts it to individual generation parameters. This can be fed from the Prompts to file node.
|
|
||||||
4. `Prompt Strength` - Formats prompt with strength like the weighted format of compel
|
|
||||||
5. `Prompt Strength Combine` - Combines weighted prompts for .and()/.blend()
|
|
||||||
6. `CSV To Index String` - Gets a string from a CSV by index. Includes a Random index option
|
|
||||||
|
|
||||||
The following Nodes are now included in v3.2 of Invoke and are nolonger in this set of tools.<br>
|
|
||||||
- `Prompt Join` -> `String Join`
|
|
||||||
- `Prompt Join Three` -> `String Join Three`
|
|
||||||
- `Prompt Replace` -> `String Replace`
|
|
||||||
- `Prompt Split Neg` -> `String Split Neg`
|
|
||||||
|
|
||||||
|
1. PromptJoin - Joins to prompts into one.
|
||||||
|
2. PromptReplace - performs a search and replace on a prompt. With the option of using regex.
|
||||||
|
3. PromptSplitNeg - splits a prompt into positive and negative using the old V2 method of [] for negative.
|
||||||
|
4. PromptToFile - saves a prompt or collection of prompts to a file. one per line. There is an append/overwrite option.
|
||||||
|
5. PTFieldsCollect - Converts image generation fields into a Json format string that can be passed to Prompt to file.
|
||||||
|
6. PTFieldsExpand - Takes Json string and converts it to individual generation parameters This can be fed from the Prompts to file node.
|
||||||
|
7. PromptJoinThree - Joins 3 prompt together.
|
||||||
|
8. PromptStrength - This take a string and float and outputs another string in the format of (string)strength like the weighted format of compel.
|
||||||
|
9. PromptStrengthCombine - This takes a collection of prompt strength strings and outputs a string in the .and() or .blend() format that can be fed into a proper prompt node.
|
||||||
|
|
||||||
See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/main/README.md
|
See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/main/README.md
|
||||||
|
|
||||||
**Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes
|
**Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes
|
||||||
|
|
||||||
**Workflow Examples**
|
|
||||||
|
|
||||||
<img src="https://github.com/skunkworxdark/prompt-tools/blob/main/images/CSVToIndexStringNode.png" width="300" />
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Remote Image
|
|
||||||
|
|
||||||
**Description:** This is a pack of nodes to interoperate with other services, be they public websites or bespoke local servers. The pack consists of these nodes:
|
|
||||||
|
|
||||||
- *Load Remote Image* - Lets you load remote images such as a realtime webcam image, an image of the day, or dynamically created images.
|
|
||||||
- *Post Image to Remote Server* - Lets you upload an image to a remote server using an HTTP POST request, eg for storage, display or further processing.
|
|
||||||
|
|
||||||
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
|
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Remove Background
|
|
||||||
|
|
||||||
Description: An integration of the rembg package to remove backgrounds from images using multiple U2NET models.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/remove-background-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/remove-background-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Retroize
|
### Retroize
|
||||||
|
|
||||||
@ -430,17 +262,6 @@ View:
|
|||||||
|
|
||||||
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
|
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Simple Skin Detection
|
|
||||||
|
|
||||||
Description: Detects skin in images based on predefined color thresholds.
|
|
||||||
|
|
||||||
Node Link: https://github.com/VeyDlin/simple-skin-detection-node
|
|
||||||
|
|
||||||
View:
|
|
||||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/simple-skin-detection-node/master/.readme/node.png" width="500" />
|
|
||||||
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Size Stepper Nodes
|
### Size Stepper Nodes
|
||||||
|
|
||||||
@ -495,38 +316,18 @@ Highlights/Midtones/Shadows (with LUT blur enabled):
|
|||||||
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" width="300" />
|
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" width="300" />
|
||||||
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" width="300" />
|
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" width="300" />
|
||||||
|
|
||||||
--------------------------------
|
|
||||||
### Unsharp Mask
|
|
||||||
|
|
||||||
**Description:** Applies an unsharp mask filter to an image, preserving its alpha channel in the process.
|
|
||||||
|
|
||||||
**Node Link:** https://github.com/JPPhoto/unsharp-mask-node
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### XY Image to Grid and Images to Grids nodes
|
### XY Image to Grid and Images to Grids nodes
|
||||||
|
|
||||||
**Description:** These nodes add the following to InvokeAI:
|
**Description:** Image to grid nodes and supporting tools.
|
||||||
- Generate grids of images from multiple input images
|
|
||||||
- Create XY grid images with labels from parameters
|
|
||||||
- Split images into overlapping tiles for processing (for super-resolution workflows)
|
|
||||||
- Recombine image tiles into a single output image blending the seams
|
|
||||||
|
|
||||||
The nodes include:
|
1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then multiple grids will be created until it runs out of images.
|
||||||
1. `Images To Grids` - Combine multiple images into a grid of images
|
2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporting nodes. See example node setups for more details.
|
||||||
2. `XYImage To Grid` - Take X & Y params and creates a labeled image grid.
|
|
||||||
3. `XYImage Tiles` - Super-resolution (embiggen) style tiled resizing
|
|
||||||
4. `Image Tot XYImages` - Takes an image and cuts it up into a number of columns and rows.
|
|
||||||
5. Multiple supporting nodes - Helper nodes for data wrangling and building `XYImage` collections
|
|
||||||
|
|
||||||
See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md
|
See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md
|
||||||
|
|
||||||
**Node Link:** https://github.com/skunkworxdark/XYGrid_nodes
|
**Node Link:** https://github.com/skunkworxdark/XYGrid_nodes
|
||||||
|
|
||||||
**Output Examples**
|
|
||||||
|
|
||||||
<img src="https://github.com/skunkworxdark/XYGrid_nodes/blob/main/images/collage.png" width="300" />
|
|
||||||
|
|
||||||
|
|
||||||
--------------------------------
|
--------------------------------
|
||||||
### Example Node Template
|
### Example Node Template
|
||||||
|
|
||||||
|
@ -1,107 +1,104 @@
|
|||||||
# List of Default Nodes
|
# List of Default Nodes
|
||||||
|
|
||||||
The table below contains a list of the default nodes shipped with InvokeAI and
|
The table below contains a list of the default nodes shipped with InvokeAI and their descriptions.
|
||||||
their descriptions.
|
|
||||||
|
|
||||||
| Node <img width=160 align="right"> | Function |
|
| Node <img width=160 align="right"> | Function |
|
||||||
| :------------------------------------------------------------ | :--------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|: ---------------------------------- | :--------------------------------------------------------------------------------------|
|
||||||
| Add Integers | Adds two numbers |
|
|Add Integers | Adds two numbers|
|
||||||
| Boolean Primitive Collection | A collection of boolean primitive values |
|
|Boolean Primitive Collection | A collection of boolean primitive values|
|
||||||
| Boolean Primitive | A boolean primitive value |
|
|Boolean Primitive | A boolean primitive value|
|
||||||
| Canny Processor | Canny edge detection for ControlNet |
|
|Canny Processor | Canny edge detection for ControlNet|
|
||||||
| CenterPadCrop | Pad or crop an image's sides from the center by specified pixels. Positive values are outside of the image. |
|
|CLIP Skip | Skip layers in clip text_encoder model.|
|
||||||
| CLIP Skip | Skip layers in clip text_encoder model. |
|
|Collect | Collects values into a collection|
|
||||||
| Collect | Collects values into a collection |
|
|Color Correct | Shifts the colors of a target image to match the reference image, optionally using a mask to only color-correct certain regions of the target image.|
|
||||||
| Color Correct | Shifts the colors of a target image to match the reference image, optionally using a mask to only color-correct certain regions of the target image. |
|
|Color Primitive | A color primitive value|
|
||||||
| Color Primitive | A color primitive value |
|
|Compel Prompt | Parse prompt using compel package to conditioning.|
|
||||||
| Compel Prompt | Parse prompt using compel package to conditioning. |
|
|Conditioning Primitive Collection | A collection of conditioning tensor primitive values|
|
||||||
| Conditioning Primitive Collection | A collection of conditioning tensor primitive values |
|
|Conditioning Primitive | A conditioning tensor primitive value|
|
||||||
| Conditioning Primitive | A conditioning tensor primitive value |
|
|Content Shuffle Processor | Applies content shuffle processing to image|
|
||||||
| Content Shuffle Processor | Applies content shuffle processing to image |
|
|ControlNet | Collects ControlNet info to pass to other nodes|
|
||||||
| ControlNet | Collects ControlNet info to pass to other nodes |
|
|Denoise Latents | Denoises noisy latents to decodable images|
|
||||||
| Denoise Latents | Denoises noisy latents to decodable images |
|
|Divide Integers | Divides two numbers|
|
||||||
| Divide Integers | Divides two numbers |
|
|Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator|
|
||||||
| Dynamic Prompt | Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator |
|
|[FaceMask](./detailedNodes/faceTools.md#facemask) | Generates masks for faces in an image to use with Inpainting|
|
||||||
| [FaceMask](./detailedNodes/faceTools.md#facemask) | Generates masks for faces in an image to use with Inpainting |
|
|[FaceIdentifier](./detailedNodes/faceTools.md#faceidentifier) | Identifies and labels faces in an image|
|
||||||
| [FaceIdentifier](./detailedNodes/faceTools.md#faceidentifier) | Identifies and labels faces in an image |
|
|[FaceOff](./detailedNodes/faceTools.md#faceoff) | Creates a new image that is a scaled bounding box with a mask on the face for Inpainting|
|
||||||
| [FaceOff](./detailedNodes/faceTools.md#faceoff) | Creates a new image that is a scaled bounding box with a mask on the face for Inpainting |
|
|Float Math | Perform basic math operations on two floats|
|
||||||
| Float Math | Perform basic math operations on two floats |
|
|Float Primitive Collection | A collection of float primitive values|
|
||||||
| Float Primitive Collection | A collection of float primitive values |
|
|Float Primitive | A float primitive value|
|
||||||
| Float Primitive | A float primitive value |
|
|Float Range | Creates a range|
|
||||||
| Float Range | Creates a range |
|
|HED (softedge) Processor | Applies HED edge detection to image|
|
||||||
| HED (softedge) Processor | Applies HED edge detection to image |
|
|Blur Image | Blurs an image|
|
||||||
| Blur Image | Blurs an image |
|
|Extract Image Channel | Gets a channel from an image.|
|
||||||
| Extract Image Channel | Gets a channel from an image. |
|
|Image Primitive Collection | A collection of image primitive values|
|
||||||
| Image Primitive Collection | A collection of image primitive values |
|
|Integer Math | Perform basic math operations on two integers|
|
||||||
| Integer Math | Perform basic math operations on two integers |
|
|Convert Image Mode | Converts an image to a different mode.|
|
||||||
| Convert Image Mode | Converts an image to a different mode. |
|
|Crop Image | Crops an image to a specified box. The box can be outside of the image.|
|
||||||
| Crop Image | Crops an image to a specified box. The box can be outside of the image. |
|
|Image Hue Adjustment | Adjusts the Hue of an image.|
|
||||||
| Ideal Size | Calculates an ideal image size for latents for a first pass of a multi-pass upscaling to avoid duplication and other artifacts |
|
|Inverse Lerp Image | Inverse linear interpolation of all pixels of an image|
|
||||||
| Image Hue Adjustment | Adjusts the Hue of an image. |
|
|Image Primitive | An image primitive value|
|
||||||
| Inverse Lerp Image | Inverse linear interpolation of all pixels of an image |
|
|Lerp Image | Linear interpolation of all pixels of an image|
|
||||||
| Image Primitive | An image primitive value |
|
|Offset Image Channel | Add to or subtract from an image color channel by a uniform value.|
|
||||||
| Lerp Image | Linear interpolation of all pixels of an image |
|
|Multiply Image Channel | Multiply or Invert an image color channel by a scalar value.|
|
||||||
| Offset Image Channel | Add to or subtract from an image color channel by a uniform value. |
|
|Multiply Images | Multiplies two images together using `PIL.ImageChops.multiply()`.|
|
||||||
| Multiply Image Channel | Multiply or Invert an image color channel by a scalar value. |
|
|Blur NSFW Image | Add blur to NSFW-flagged images|
|
||||||
| Multiply Images | Multiplies two images together using `PIL.ImageChops.multiply()`. |
|
|Paste Image | Pastes an image into another image.|
|
||||||
| Blur NSFW Image | Add blur to NSFW-flagged images |
|
|ImageProcessor | Base class for invocations that preprocess images for ControlNet|
|
||||||
| Paste Image | Pastes an image into another image. |
|
|Resize Image | Resizes an image to specific dimensions|
|
||||||
| ImageProcessor | Base class for invocations that preprocess images for ControlNet |
|
|Round Float | Rounds a float to a specified number of decimal places|
|
||||||
| Resize Image | Resizes an image to specific dimensions |
|
|Float to Integer | Converts a float to an integer. Optionally rounds to an even multiple of a input number.|
|
||||||
| Round Float | Rounds a float to a specified number of decimal places |
|
|Scale Image | Scales an image by a factor|
|
||||||
| Float to Integer | Converts a float to an integer. Optionally rounds to an even multiple of a input number. |
|
|Image to Latents | Encodes an image into latents.|
|
||||||
| Scale Image | Scales an image by a factor |
|
|Add Invisible Watermark | Add an invisible watermark to an image|
|
||||||
| Image to Latents | Encodes an image into latents. |
|
|Solid Color Infill | Infills transparent areas of an image with a solid color|
|
||||||
| Add Invisible Watermark | Add an invisible watermark to an image |
|
|PatchMatch Infill | Infills transparent areas of an image using the PatchMatch algorithm|
|
||||||
| Solid Color Infill | Infills transparent areas of an image with a solid color |
|
|Tile Infill | Infills transparent areas of an image with tiles of the image|
|
||||||
| PatchMatch Infill | Infills transparent areas of an image using the PatchMatch algorithm |
|
|Integer Primitive Collection | A collection of integer primitive values|
|
||||||
| Tile Infill | Infills transparent areas of an image with tiles of the image |
|
|Integer Primitive | An integer primitive value|
|
||||||
| Integer Primitive Collection | A collection of integer primitive values |
|
|Iterate | Iterates over a list of items|
|
||||||
| Integer Primitive | An integer primitive value |
|
|Latents Primitive Collection | A collection of latents tensor primitive values|
|
||||||
| Iterate | Iterates over a list of items |
|
|Latents Primitive | A latents tensor primitive value|
|
||||||
| Latents Primitive Collection | A collection of latents tensor primitive values |
|
|Latents to Image | Generates an image from latents.|
|
||||||
| Latents Primitive | A latents tensor primitive value |
|
|Leres (Depth) Processor | Applies leres processing to image|
|
||||||
| Latents to Image | Generates an image from latents. |
|
|Lineart Anime Processor | Applies line art anime processing to image|
|
||||||
| Leres (Depth) Processor | Applies leres processing to image |
|
|Lineart Processor | Applies line art processing to image|
|
||||||
| Lineart Anime Processor | Applies line art anime processing to image |
|
|LoRA Loader | Apply selected lora to unet and text_encoder.|
|
||||||
| Lineart Processor | Applies line art processing to image |
|
|Main Model Loader | Loads a main model, outputting its submodels.|
|
||||||
| LoRA Loader | Apply selected lora to unet and text_encoder. |
|
|Combine Mask | Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`.|
|
||||||
| Main Model Loader | Loads a main model, outputting its submodels. |
|
|Mask Edge | Applies an edge mask to an image|
|
||||||
| Combine Mask | Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`. |
|
|Mask from Alpha | Extracts the alpha channel of an image as a mask.|
|
||||||
| Mask Edge | Applies an edge mask to an image |
|
|Mediapipe Face Processor | Applies mediapipe face processing to image|
|
||||||
| Mask from Alpha | Extracts the alpha channel of an image as a mask. |
|
|Midas (Depth) Processor | Applies Midas depth processing to image|
|
||||||
| Mediapipe Face Processor | Applies mediapipe face processing to image |
|
|MLSD Processor | Applies MLSD processing to image|
|
||||||
| Midas (Depth) Processor | Applies Midas depth processing to image |
|
|Multiply Integers | Multiplies two numbers|
|
||||||
| MLSD Processor | Applies MLSD processing to image |
|
|Noise | Generates latent noise.|
|
||||||
| Multiply Integers | Multiplies two numbers |
|
|Normal BAE Processor | Applies NormalBae processing to image|
|
||||||
| Noise | Generates latent noise. |
|
|ONNX Latents to Image | Generates an image from latents.|
|
||||||
| Normal BAE Processor | Applies NormalBae processing to image |
|
|ONNX Prompt (Raw) | A node to process inputs and produce outputs. May use dependency injection in __init__ to receive providers.|
|
||||||
| ONNX Latents to Image | Generates an image from latents. |
|
|ONNX Text to Latents | Generates latents from conditionings.|
|
||||||
| ONNX Prompt (Raw) | A node to process inputs and produce outputs. May use dependency injection in **init** to receive providers. |
|
|ONNX Model Loader | Loads a main model, outputting its submodels.|
|
||||||
| ONNX Text to Latents | Generates latents from conditionings. |
|
|OpenCV Inpaint | Simple inpaint using opencv.|
|
||||||
| ONNX Model Loader | Loads a main model, outputting its submodels. |
|
|Openpose Processor | Applies Openpose processing to image|
|
||||||
| OpenCV Inpaint | Simple inpaint using opencv. |
|
|PIDI Processor | Applies PIDI processing to image|
|
||||||
| Openpose Processor | Applies Openpose processing to image |
|
|Prompts from File | Loads prompts from a text file|
|
||||||
| PIDI Processor | Applies PIDI processing to image |
|
|Random Integer | Outputs a single random integer.|
|
||||||
| Prompts from File | Loads prompts from a text file |
|
|Random Range | Creates a collection of random numbers|
|
||||||
| Random Integer | Outputs a single random integer. |
|
|Integer Range | Creates a range of numbers from start to stop with step|
|
||||||
| Random Range | Creates a collection of random numbers |
|
|Integer Range of Size | Creates a range from start to start + size with step|
|
||||||
| Integer Range | Creates a range of numbers from start to stop with step |
|
|Resize Latents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.|
|
||||||
| Integer Range of Size | Creates a range from start to start + size with step |
|
|SDXL Compel Prompt | Parse prompt using compel package to conditioning.|
|
||||||
| Resize Latents | Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8. |
|
|SDXL LoRA Loader | Apply selected lora to unet and text_encoder.|
|
||||||
| SDXL Compel Prompt | Parse prompt using compel package to conditioning. |
|
|SDXL Main Model Loader | Loads an sdxl base model, outputting its submodels.|
|
||||||
| SDXL LoRA Loader | Apply selected lora to unet and text_encoder. |
|
|SDXL Refiner Compel Prompt | Parse prompt using compel package to conditioning.|
|
||||||
| SDXL Main Model Loader | Loads an sdxl base model, outputting its submodels. |
|
|SDXL Refiner Model Loader | Loads an sdxl refiner model, outputting its submodels.|
|
||||||
| SDXL Refiner Compel Prompt | Parse prompt using compel package to conditioning. |
|
|Scale Latents | Scales latents by a given factor.|
|
||||||
| SDXL Refiner Model Loader | Loads an sdxl refiner model, outputting its submodels. |
|
|Segment Anything Processor | Applies segment anything processing to image|
|
||||||
| Scale Latents | Scales latents by a given factor. |
|
|Show Image | Displays a provided image, and passes it forward in the pipeline.|
|
||||||
| Segment Anything Processor | Applies segment anything processing to image |
|
|Step Param Easing | Experimental per-step parameter easing for denoising steps|
|
||||||
| Show Image | Displays a provided image, and passes it forward in the pipeline. |
|
|String Primitive Collection | A collection of string primitive values|
|
||||||
| Step Param Easing | Experimental per-step parameter easing for denoising steps |
|
|String Primitive | A string primitive value|
|
||||||
| String Primitive Collection | A collection of string primitive values |
|
|Subtract Integers | Subtracts two numbers|
|
||||||
| String Primitive | A string primitive value |
|
|Tile Resample Processor | Tile resampler processor|
|
||||||
| Subtract Integers | Subtracts two numbers |
|
|Upscale (RealESRGAN) | Upscales an image using RealESRGAN.|
|
||||||
| Tile Resample Processor | Tile resampler processor |
|
|VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput|
|
||||||
| Upscale (RealESRGAN) | Upscales an image using RealESRGAN. |
|
|Zoe (Depth) Processor | Applies Zoe depth processing to image|
|
||||||
| VAE Loader | Loads a VAE model, outputting a VaeLoaderOutput |
|
|
||||||
| Zoe (Depth) Processor | Applies Zoe depth processing to image |
|
|
@ -1,18 +1,18 @@
|
|||||||
# Example Workflows
|
# Example Workflows
|
||||||
|
|
||||||
We've curated some example workflows for you to get started with Workflows in InvokeAI! These can also be found in the Workflow Library, located in the Workflow Editor of Invoke.
|
We've curated some example workflows for you to get started with Workflows in InvokeAI
|
||||||
|
|
||||||
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!
|
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!
|
||||||
|
|
||||||
If you're interested in finding more workflows, checkout the [#share-your-workflows](https://discord.com/channels/1020123559063990373/1130291608097661000) channel in the InvokeAI Discord.
|
If you're interested in finding more workflows, checkout the [#share-your-workflows](https://discord.com/channels/1020123559063990373/1130291608097661000) channel in the InvokeAI Discord.
|
||||||
|
|
||||||
* [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json)
|
* [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json)
|
||||||
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
|
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_Text_to_Image.json)
|
||||||
* [SDXL Text to Image with Refiner](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_w_Refiner_Text_to_Image.json)
|
* [SDXL Text to Image with Refiner](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_w_Refiner_Text_to_Image.json)
|
||||||
* [Multi ControlNet (Canny & Depth)](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Multi_ControlNet_Canny_and_Depth.json)
|
* [Multi ControlNet (Canny & Depth)](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Multi_ControlNet_Canny_and_Depth.json)
|
||||||
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale_w_Canny_ControlNet.json)
|
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale_w_Canny_ControlNet.json)
|
||||||
* [Prompt From File](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Prompt_from_File.json)
|
* [Prompt From File](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Prompt_from_File.json)
|
||||||
* [Face Detailer with IP-Adapter & ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Face_Detailer_with_IP-Adapter_and_Canny.json)
|
* [Face Detailer with IP-Adapter & ControlNet](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Face_Detailer_with_IP-Adapter_and_Canny.json.json)
|
||||||
* [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json)
|
* [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json)
|
||||||
* [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json)
|
* [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json)
|
||||||
* [QR Code Monster](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/QR_Code_Monster.json)
|
* [QR Code Monster](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/QR_Code_Monster.json)
|
@ -215,7 +215,6 @@ We thank them for all of their time and hard work.
|
|||||||
- Robert Bolender
|
- Robert Bolender
|
||||||
- Robin Rombach
|
- Robin Rombach
|
||||||
- Rohan Barar
|
- Rohan Barar
|
||||||
- rohinish404
|
|
||||||
- rpagliuca
|
- rpagliuca
|
||||||
- rromb
|
- rromb
|
||||||
- Rupesh Sreeraman
|
- Rupesh Sreeraman
|
||||||
|
@ -1,5 +0,0 @@
|
|||||||
:root {
|
|
||||||
--md-primary-fg-color: #35A4DB;
|
|
||||||
--md-primary-fg-color--light: #35A4DB;
|
|
||||||
--md-primary-fg-color--dark: #35A4DB;
|
|
||||||
}
|
|
@ -1,8 +1,8 @@
|
|||||||
{
|
{
|
||||||
"name": "Text to Image - SD1.5",
|
"name": "Text to Image",
|
||||||
"author": "InvokeAI",
|
"author": "InvokeAI",
|
||||||
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
|
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
|
||||||
"version": "1.1.0",
|
"version": "1.0.1",
|
||||||
"contact": "invoke@invoke.ai",
|
"contact": "invoke@invoke.ai",
|
||||||
"tags": "text2image, SD1.5, SD2, default",
|
"tags": "text2image, SD1.5, SD2, default",
|
||||||
"notes": "",
|
"notes": "",
|
||||||
@ -18,19 +18,10 @@
|
|||||||
{
|
{
|
||||||
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||||
"fieldName": "prompt"
|
"fieldName": "prompt"
|
||||||
},
|
|
||||||
{
|
|
||||||
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
|
|
||||||
"fieldName": "width"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
|
|
||||||
"fieldName": "height"
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"meta": {
|
"meta": {
|
||||||
"category": "default",
|
"version": "1.0.0"
|
||||||
"version": "2.0.0"
|
|
||||||
},
|
},
|
||||||
"nodes": [
|
"nodes": [
|
||||||
{
|
{
|
||||||
@ -39,56 +30,44 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||||
"type": "compel",
|
"type": "compel",
|
||||||
"label": "Negative Compel Prompt",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.0.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"prompt": {
|
"prompt": {
|
||||||
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
||||||
"name": "prompt",
|
"name": "prompt",
|
||||||
|
"type": "string",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "Negative Prompt",
|
"label": "Negative Prompt",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "StringField"
|
|
||||||
},
|
|
||||||
"value": ""
|
"value": ""
|
||||||
},
|
},
|
||||||
"clip": {
|
"clip": {
|
||||||
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
||||||
"name": "clip",
|
"name": "clip",
|
||||||
|
"type": "ClipField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ClipField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"conditioning": {
|
"conditioning": {
|
||||||
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
||||||
"name": "conditioning",
|
"name": "conditioning",
|
||||||
"fieldKind": "output",
|
"type": "ConditioningField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ConditioningField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "Negative Compel Prompt",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 259,
|
"height": 261,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 1000,
|
"x": 995.7263915923627,
|
||||||
"y": 350
|
"y": 239.67783573351227
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -97,60 +76,37 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
|
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||||
"type": "noise",
|
"type": "noise",
|
||||||
"label": "",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.0.1",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"seed": {
|
"seed": {
|
||||||
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
|
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
|
||||||
"name": "seed",
|
"name": "seed",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 0
|
"value": 0
|
||||||
},
|
},
|
||||||
"width": {
|
"width": {
|
||||||
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
|
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
|
||||||
"name": "width",
|
"name": "width",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 512
|
"value": 512
|
||||||
},
|
},
|
||||||
"height": {
|
"height": {
|
||||||
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
|
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
|
||||||
"name": "height",
|
"name": "height",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 512
|
"value": 512
|
||||||
},
|
},
|
||||||
"use_cpu": {
|
"use_cpu": {
|
||||||
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
|
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
|
||||||
"name": "use_cpu",
|
"name": "use_cpu",
|
||||||
|
"type": "boolean",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "BooleanField"
|
|
||||||
},
|
|
||||||
"value": true
|
"value": true
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@ -158,40 +114,35 @@
|
|||||||
"noise": {
|
"noise": {
|
||||||
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
|
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
|
||||||
"name": "noise",
|
"name": "noise",
|
||||||
"fieldKind": "output",
|
"type": "LatentsField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "LatentsField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"width": {
|
"width": {
|
||||||
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
|
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
|
||||||
"name": "width",
|
"name": "width",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"height": {
|
"height": {
|
||||||
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
|
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
|
||||||
"name": "height",
|
"name": "height",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 388,
|
"height": 389,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 600,
|
"x": 993.4442117555518,
|
||||||
"y": 325
|
"y": 605.6757415334787
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -200,24 +151,13 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||||
"type": "main_model_loader",
|
"type": "main_model_loader",
|
||||||
"label": "",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.0.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"model": {
|
"model": {
|
||||||
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
|
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
|
||||||
"name": "model",
|
"name": "model",
|
||||||
|
"type": "MainModelField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "MainModelField"
|
|
||||||
},
|
|
||||||
"value": {
|
"value": {
|
||||||
"model_name": "stable-diffusion-v1-5",
|
"model_name": "stable-diffusion-v1-5",
|
||||||
"base_model": "sd-1",
|
"base_model": "sd-1",
|
||||||
@ -229,40 +169,35 @@
|
|||||||
"unet": {
|
"unet": {
|
||||||
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
|
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
|
||||||
"name": "unet",
|
"name": "unet",
|
||||||
"fieldKind": "output",
|
"type": "UNetField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "UNetField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"clip": {
|
"clip": {
|
||||||
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
|
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
|
||||||
"name": "clip",
|
"name": "clip",
|
||||||
"fieldKind": "output",
|
"type": "ClipField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ClipField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"vae": {
|
"vae": {
|
||||||
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
|
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
|
||||||
"name": "vae",
|
"name": "vae",
|
||||||
"fieldKind": "output",
|
"type": "VaeField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "VaeField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 226,
|
"height": 226,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 600,
|
"x": 163.04436745878343,
|
||||||
"y": 25
|
"y": 254.63156870373479
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -271,56 +206,44 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||||
"type": "compel",
|
"type": "compel",
|
||||||
"label": "Positive Compel Prompt",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.0.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"prompt": {
|
"prompt": {
|
||||||
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
||||||
"name": "prompt",
|
"name": "prompt",
|
||||||
|
"type": "string",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "Positive Prompt",
|
"label": "Positive Prompt",
|
||||||
"type": {
|
"value": ""
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "StringField"
|
|
||||||
},
|
|
||||||
"value": "Super cute tiger cub, national geographic award-winning photograph"
|
|
||||||
},
|
},
|
||||||
"clip": {
|
"clip": {
|
||||||
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
||||||
"name": "clip",
|
"name": "clip",
|
||||||
|
"type": "ClipField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ClipField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"conditioning": {
|
"conditioning": {
|
||||||
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
||||||
"name": "conditioning",
|
"name": "conditioning",
|
||||||
"fieldKind": "output",
|
"type": "ConditioningField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ConditioningField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "Positive Compel Prompt",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 259,
|
"height": 261,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 1000,
|
"x": 595.7263915923627,
|
||||||
"y": 25
|
"y": 239.67783573351227
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -329,36 +252,21 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
||||||
"type": "rand_int",
|
"type": "rand_int",
|
||||||
"label": "Random Seed",
|
|
||||||
"isOpen": false,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": false,
|
|
||||||
"version": "1.0.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"low": {
|
"low": {
|
||||||
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
|
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
|
||||||
"name": "low",
|
"name": "low",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 0
|
"value": 0
|
||||||
},
|
},
|
||||||
"high": {
|
"high": {
|
||||||
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
|
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
|
||||||
"name": "high",
|
"name": "high",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 2147483647
|
"value": 2147483647
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@ -366,20 +274,23 @@
|
|||||||
"value": {
|
"value": {
|
||||||
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
|
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
|
||||||
"name": "value",
|
"name": "value",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "Random Seed",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": false,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 32,
|
"height": 218,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 600,
|
"x": 541.094822888628,
|
||||||
"y": 275
|
"y": 694.5704476446829
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -388,224 +299,144 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
"type": "denoise_latents",
|
"type": "denoise_latents",
|
||||||
"label": "",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": true,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.5.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"positive_conditioning": {
|
"positive_conditioning": {
|
||||||
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
|
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
|
||||||
"name": "positive_conditioning",
|
"name": "positive_conditioning",
|
||||||
|
"type": "ConditioningField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ConditioningField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"negative_conditioning": {
|
"negative_conditioning": {
|
||||||
"id": "9393779e-796c-4f64-b740-902a1177bf53",
|
"id": "9393779e-796c-4f64-b740-902a1177bf53",
|
||||||
"name": "negative_conditioning",
|
"name": "negative_conditioning",
|
||||||
|
"type": "ConditioningField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ConditioningField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"noise": {
|
"noise": {
|
||||||
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
|
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
|
||||||
"name": "noise",
|
"name": "noise",
|
||||||
|
"type": "LatentsField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "LatentsField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"steps": {
|
"steps": {
|
||||||
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
|
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
|
||||||
"name": "steps",
|
"name": "steps",
|
||||||
|
"type": "integer",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
"value": 10
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
},
|
|
||||||
"value": 50
|
|
||||||
},
|
},
|
||||||
"cfg_scale": {
|
"cfg_scale": {
|
||||||
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
|
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
|
||||||
"name": "cfg_scale",
|
"name": "cfg_scale",
|
||||||
|
"type": "FloatPolymorphic",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": true,
|
|
||||||
"name": "FloatField"
|
|
||||||
},
|
|
||||||
"value": 7.5
|
"value": 7.5
|
||||||
},
|
},
|
||||||
"denoising_start": {
|
"denoising_start": {
|
||||||
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
|
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
|
||||||
"name": "denoising_start",
|
"name": "denoising_start",
|
||||||
|
"type": "float",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "FloatField"
|
|
||||||
},
|
|
||||||
"value": 0
|
"value": 0
|
||||||
},
|
},
|
||||||
"denoising_end": {
|
"denoising_end": {
|
||||||
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
|
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
|
||||||
"name": "denoising_end",
|
"name": "denoising_end",
|
||||||
|
"type": "float",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "FloatField"
|
|
||||||
},
|
|
||||||
"value": 1
|
"value": 1
|
||||||
},
|
},
|
||||||
"scheduler": {
|
"scheduler": {
|
||||||
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
|
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
|
||||||
"name": "scheduler",
|
"name": "scheduler",
|
||||||
|
"type": "Scheduler",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
"value": "euler"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "SchedulerField"
|
|
||||||
},
|
|
||||||
"value": "unipc"
|
|
||||||
},
|
},
|
||||||
"unet": {
|
"unet": {
|
||||||
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
|
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
|
||||||
"name": "unet",
|
"name": "unet",
|
||||||
|
"type": "UNetField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "UNetField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"control": {
|
"control": {
|
||||||
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
|
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
|
||||||
"name": "control",
|
"name": "control",
|
||||||
|
"type": "ControlPolymorphic",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": true,
|
|
||||||
"name": "ControlField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"ip_adapter": {
|
"ip_adapter": {
|
||||||
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
|
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
|
||||||
"name": "ip_adapter",
|
"name": "ip_adapter",
|
||||||
|
"type": "IPAdapterPolymorphic",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": true,
|
|
||||||
"name": "IPAdapterField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"t2i_adapter": {
|
"t2i_adapter": {
|
||||||
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
|
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
|
||||||
"name": "t2i_adapter",
|
"name": "t2i_adapter",
|
||||||
|
"type": "T2IAdapterPolymorphic",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": true,
|
|
||||||
"name": "T2IAdapterField"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"cfg_rescale_multiplier": {
|
|
||||||
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
|
|
||||||
"name": "cfg_rescale_multiplier",
|
|
||||||
"fieldKind": "input",
|
|
||||||
"label": "",
|
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "FloatField"
|
|
||||||
},
|
|
||||||
"value": 0
|
|
||||||
},
|
},
|
||||||
"latents": {
|
"latents": {
|
||||||
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
|
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
|
||||||
"name": "latents",
|
"name": "latents",
|
||||||
|
"type": "LatentsField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "LatentsField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"denoise_mask": {
|
"denoise_mask": {
|
||||||
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
|
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
|
||||||
"name": "denoise_mask",
|
"name": "denoise_mask",
|
||||||
|
"type": "DenoiseMaskField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "DenoiseMaskField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"latents": {
|
"latents": {
|
||||||
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
|
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
|
||||||
"name": "latents",
|
"name": "latents",
|
||||||
"fieldKind": "output",
|
"type": "LatentsField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "LatentsField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"width": {
|
"width": {
|
||||||
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
|
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
|
||||||
"name": "width",
|
"name": "width",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"height": {
|
"height": {
|
||||||
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
|
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
|
||||||
"name": "height",
|
"name": "height",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": true,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.4.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 703,
|
"height": 646,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 1400,
|
"x": 1476.5794704734735,
|
||||||
"y": 25
|
"y": 256.80174342731783
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -614,185 +445,153 @@
|
|||||||
"data": {
|
"data": {
|
||||||
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||||
"type": "l2i",
|
"type": "l2i",
|
||||||
"label": "",
|
|
||||||
"isOpen": true,
|
|
||||||
"notes": "",
|
|
||||||
"isIntermediate": false,
|
|
||||||
"useCache": true,
|
|
||||||
"version": "1.2.0",
|
|
||||||
"nodePack": "invokeai",
|
|
||||||
"inputs": {
|
"inputs": {
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"id": "ab375f12-0042-4410-9182-29e30db82c85",
|
"id": "ab375f12-0042-4410-9182-29e30db82c85",
|
||||||
"name": "metadata",
|
"name": "metadata",
|
||||||
|
"type": "MetadataField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "MetadataField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"latents": {
|
"latents": {
|
||||||
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
|
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
|
||||||
"name": "latents",
|
"name": "latents",
|
||||||
|
"type": "LatentsField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "LatentsField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"vae": {
|
"vae": {
|
||||||
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
|
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
|
||||||
"name": "vae",
|
"name": "vae",
|
||||||
|
"type": "VaeField",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": ""
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "VaeField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"tiled": {
|
"tiled": {
|
||||||
"id": "da52059a-0cee-4668-942f-519aa794d739",
|
"id": "da52059a-0cee-4668-942f-519aa794d739",
|
||||||
"name": "tiled",
|
"name": "tiled",
|
||||||
|
"type": "boolean",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "BooleanField"
|
|
||||||
},
|
|
||||||
"value": false
|
"value": false
|
||||||
},
|
},
|
||||||
"fp32": {
|
"fp32": {
|
||||||
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
|
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
|
||||||
"name": "fp32",
|
"name": "fp32",
|
||||||
|
"type": "boolean",
|
||||||
"fieldKind": "input",
|
"fieldKind": "input",
|
||||||
"label": "",
|
"label": "",
|
||||||
"type": {
|
"value": false
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "BooleanField"
|
|
||||||
},
|
|
||||||
"value": true
|
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": {
|
"outputs": {
|
||||||
"image": {
|
"image": {
|
||||||
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
|
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
|
||||||
"name": "image",
|
"name": "image",
|
||||||
"fieldKind": "output",
|
"type": "ImageField",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "ImageField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"width": {
|
"width": {
|
||||||
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
|
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
|
||||||
"name": "width",
|
"name": "width",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"height": {
|
"height": {
|
||||||
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
|
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
|
||||||
"name": "height",
|
"name": "height",
|
||||||
"fieldKind": "output",
|
"type": "integer",
|
||||||
"type": {
|
"fieldKind": "output"
|
||||||
"isCollection": false,
|
|
||||||
"isCollectionOrScalar": false,
|
|
||||||
"name": "IntegerField"
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
|
"label": "",
|
||||||
|
"isOpen": true,
|
||||||
|
"notes": "",
|
||||||
|
"embedWorkflow": false,
|
||||||
|
"isIntermediate": false,
|
||||||
|
"useCache": true,
|
||||||
|
"version": "1.0.0"
|
||||||
},
|
},
|
||||||
"width": 320,
|
"width": 320,
|
||||||
"height": 266,
|
"height": 267,
|
||||||
"position": {
|
"position": {
|
||||||
"x": 1800,
|
"x": 2037.9648469717395,
|
||||||
"y": 25
|
"y": 426.10844427600136
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"edges": [
|
"edges": [
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
|
|
||||||
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
||||||
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
|
|
||||||
"type": "default",
|
|
||||||
"sourceHandle": "value",
|
"sourceHandle": "value",
|
||||||
"targetHandle": "seed"
|
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||||
|
"targetHandle": "seed",
|
||||||
|
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
|
||||||
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
|
|
||||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||||
|
"sourceHandle": "clip",
|
||||||
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||||
"type": "default",
|
"targetHandle": "clip",
|
||||||
"sourceHandle": "clip",
|
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
|
||||||
"targetHandle": "clip"
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
|
|
||||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||||
|
"sourceHandle": "clip",
|
||||||
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||||
"type": "default",
|
"targetHandle": "clip",
|
||||||
"sourceHandle": "clip",
|
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
|
||||||
"targetHandle": "clip"
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
|
|
||||||
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
|
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
|
||||||
"type": "default",
|
|
||||||
"sourceHandle": "noise",
|
"sourceHandle": "noise",
|
||||||
"targetHandle": "noise"
|
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
|
"targetHandle": "noise",
|
||||||
|
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
|
||||||
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
|
|
||||||
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
|
||||||
"type": "default",
|
|
||||||
"sourceHandle": "conditioning",
|
"sourceHandle": "conditioning",
|
||||||
"targetHandle": "positive_conditioning"
|
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
|
"targetHandle": "positive_conditioning",
|
||||||
|
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
|
||||||
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
|
|
||||||
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
|
||||||
"type": "default",
|
|
||||||
"sourceHandle": "conditioning",
|
"sourceHandle": "conditioning",
|
||||||
"targetHandle": "negative_conditioning"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
|
|
||||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
|
||||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
"type": "default",
|
"targetHandle": "negative_conditioning",
|
||||||
"sourceHandle": "unet",
|
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
|
||||||
"targetHandle": "unet"
|
"type": "default"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
|
|
||||||
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
|
||||||
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
|
||||||
"type": "default",
|
|
||||||
"sourceHandle": "latents",
|
|
||||||
"targetHandle": "latents"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
|
|
||||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||||
|
"sourceHandle": "unet",
|
||||||
|
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
|
"targetHandle": "unet",
|
||||||
|
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
|
||||||
|
"type": "default"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||||
|
"sourceHandle": "latents",
|
||||||
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||||
"type": "default",
|
"targetHandle": "latents",
|
||||||
|
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
|
||||||
|
"type": "default"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||||
"sourceHandle": "vae",
|
"sourceHandle": "vae",
|
||||||
"targetHandle": "vae"
|
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||||
|
"targetHandle": "vae",
|
||||||
|
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
|
||||||
|
"type": "default"
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
@ -2,72 +2,43 @@
|
|||||||
|
|
||||||
set -e
|
set -e
|
||||||
|
|
||||||
BCYAN="\e[1;36m"
|
|
||||||
BYELLOW="\e[1;33m"
|
|
||||||
BGREEN="\e[1;32m"
|
|
||||||
BRED="\e[1;31m"
|
|
||||||
RED="\e[31m"
|
|
||||||
RESET="\e[0m"
|
|
||||||
|
|
||||||
function is_bin_in_path {
|
|
||||||
builtin type -P "$1" &>/dev/null
|
|
||||||
}
|
|
||||||
|
|
||||||
function git_show {
|
|
||||||
git show -s --format='%h %s' $1
|
|
||||||
}
|
|
||||||
|
|
||||||
cd "$(dirname "$0")"
|
cd "$(dirname "$0")"
|
||||||
|
|
||||||
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
|
|
||||||
echo "The current working directory is $(pwd)"
|
|
||||||
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
|
|
||||||
echo
|
|
||||||
|
|
||||||
# Some machines only have `python3` in PATH, others have `python` - make an alias.
|
|
||||||
# We can use a function to approximate an alias within a non-interactive shell.
|
|
||||||
if ! is_bin_in_path python && is_bin_in_path python3; then
|
|
||||||
function python {
|
|
||||||
python3 "$@"
|
|
||||||
}
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [[ -v "VIRTUAL_ENV" ]]; then
|
if [[ -v "VIRTUAL_ENV" ]]; then
|
||||||
# we can't just call 'deactivate' because this function is not exported
|
# we can't just call 'deactivate' because this function is not exported
|
||||||
# to the environment of this script from the bash process that runs the script
|
# to the environment of this script from the bash process that runs the script
|
||||||
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
|
echo "A virtual environment is activated. Please deactivate it before proceeding".
|
||||||
exit -1
|
exit -1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
VERSION=$(
|
VERSION=$(cd ..; python -c "from invokeai.version import __version__ as version; print(version)")
|
||||||
cd ..
|
|
||||||
python -c "from invokeai.version import __version__ as version; print(version)"
|
|
||||||
)
|
|
||||||
PATCH=""
|
PATCH=""
|
||||||
VERSION="v${VERSION}${PATCH}"
|
VERSION="v${VERSION}${PATCH}"
|
||||||
|
LATEST_TAG="v3-latest"
|
||||||
|
|
||||||
echo -e "${BGREEN}HEAD${RESET}:"
|
echo Building installer for version $VERSION
|
||||||
git_show
|
echo "Be certain that you're in the 'installer' directory before continuing."
|
||||||
echo
|
read -p "Press any key to continue, or CTRL-C to exit..."
|
||||||
|
|
||||||
# ---------------------- FRONTEND ----------------------
|
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
|
||||||
|
RESPONSE=${input:='n'}
|
||||||
|
if [ "$RESPONSE" == 'y' ]; then
|
||||||
|
|
||||||
pushd ../invokeai/frontend/web >/dev/null
|
git push origin :refs/tags/$VERSION
|
||||||
echo
|
if ! git tag -fa $VERSION ; then
|
||||||
echo "Installing frontend dependencies..."
|
echo "Existing/invalid tag"
|
||||||
echo
|
exit -1
|
||||||
pnpm i --frozen-lockfile
|
fi
|
||||||
echo
|
|
||||||
echo "Building frontend..."
|
|
||||||
echo
|
|
||||||
pnpm build
|
|
||||||
popd
|
|
||||||
|
|
||||||
# ---------------------- BACKEND ----------------------
|
git push origin :refs/tags/$LATEST_TAG
|
||||||
|
git tag -fa $LATEST_TAG
|
||||||
|
|
||||||
echo
|
echo "remember to push --tags!"
|
||||||
echo "Building wheel..."
|
fi
|
||||||
echo
|
|
||||||
|
# ----------------------
|
||||||
|
|
||||||
|
echo Building the wheel
|
||||||
|
|
||||||
# install the 'build' package in the user site packages, if needed
|
# install the 'build' package in the user site packages, if needed
|
||||||
# could be improved by using a temporary venv, but it's tiny and harmless
|
# could be improved by using a temporary venv, but it's tiny and harmless
|
||||||
@ -75,15 +46,12 @@ if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build"
|
|||||||
pip install --user build
|
pip install --user build
|
||||||
fi
|
fi
|
||||||
|
|
||||||
rm -rf ../build
|
rm -r ../build
|
||||||
|
|
||||||
python -m build --wheel --outdir dist/ ../.
|
python -m build --wheel --outdir dist/ ../.
|
||||||
|
|
||||||
# ----------------------
|
# ----------------------
|
||||||
|
|
||||||
echo
|
echo Building installer zip fles for InvokeAI $VERSION
|
||||||
echo "Building installer zip files for InvokeAI ${VERSION}..."
|
|
||||||
echo
|
|
||||||
|
|
||||||
# get rid of any old ones
|
# get rid of any old ones
|
||||||
rm -f *.zip
|
rm -f *.zip
|
||||||
@ -91,11 +59,9 @@ rm -rf InvokeAI-Installer
|
|||||||
|
|
||||||
# copy content
|
# copy content
|
||||||
mkdir InvokeAI-Installer
|
mkdir InvokeAI-Installer
|
||||||
for f in templates *.txt *.reg; do
|
for f in templates lib *.txt *.reg; do
|
||||||
cp -r ${f} InvokeAI-Installer/
|
cp -r ${f} InvokeAI-Installer/
|
||||||
done
|
done
|
||||||
mkdir InvokeAI-Installer/lib
|
|
||||||
cp lib/*.py InvokeAI-Installer/lib
|
|
||||||
|
|
||||||
# Move the wheel
|
# Move the wheel
|
||||||
mv dist/*.whl InvokeAI-Installer/lib/
|
mv dist/*.whl InvokeAI-Installer/lib/
|
||||||
@ -106,13 +72,13 @@ cp install.sh.in InvokeAI-Installer/install.sh
|
|||||||
chmod a+x InvokeAI-Installer/install.sh
|
chmod a+x InvokeAI-Installer/install.sh
|
||||||
|
|
||||||
# Windows
|
# Windows
|
||||||
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
|
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in > InvokeAI-Installer/install.bat
|
||||||
cp WinLongPathsEnabled.reg InvokeAI-Installer/
|
cp WinLongPathsEnabled.reg InvokeAI-Installer/
|
||||||
|
|
||||||
# Zip everything up
|
# Zip everything up
|
||||||
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
|
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
|
||||||
|
|
||||||
# clean up
|
# clean up
|
||||||
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
|
rm -rf InvokeAI-Installer tmp dist
|
||||||
|
|
||||||
exit 0
|
exit 0
|
||||||
|
@ -241,12 +241,12 @@ class InvokeAiInstance:
|
|||||||
pip[
|
pip[
|
||||||
"install",
|
"install",
|
||||||
"--require-virtualenv",
|
"--require-virtualenv",
|
||||||
"numpy==1.26.3", # choose versions that won't be uninstalled during phase 2
|
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
|
||||||
"urllib3~=1.26.0",
|
"urllib3~=1.26.0",
|
||||||
"requests~=2.28.0",
|
"requests~=2.28.0",
|
||||||
"torch==2.1.2",
|
"torch~=2.0.0",
|
||||||
"torchmetrics==0.11.4",
|
"torchmetrics==0.11.4",
|
||||||
"torchvision==0.16.2",
|
"torchvision>=0.14.1",
|
||||||
"--force-reinstall",
|
"--force-reinstall",
|
||||||
"--find-links" if find_links is not None else None,
|
"--find-links" if find_links is not None else None,
|
||||||
find_links,
|
find_links,
|
||||||
@ -460,10 +460,10 @@ def get_torch_source() -> (Union[str, None], str):
|
|||||||
url = "https://download.pytorch.org/whl/cpu"
|
url = "https://download.pytorch.org/whl/cpu"
|
||||||
|
|
||||||
if device == "cuda":
|
if device == "cuda":
|
||||||
url = "https://download.pytorch.org/whl/cu121"
|
url = "https://download.pytorch.org/whl/cu118"
|
||||||
optional_modules = "[xformers,onnx-cuda]"
|
optional_modules = "[xformers,onnx-cuda]"
|
||||||
if device == "cuda_and_dml":
|
if device == "cuda_and_dml":
|
||||||
url = "https://download.pytorch.org/whl/cu121"
|
url = "https://download.pytorch.org/whl/cu118"
|
||||||
optional_modules = "[xformers,onnx-directml]"
|
optional_modules = "[xformers,onnx-directml]"
|
||||||
|
|
||||||
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
|
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
|
||||||
|
@ -137,7 +137,7 @@ def dest_path(dest=None) -> Path:
|
|||||||
path_completer = PathCompleter(
|
path_completer = PathCompleter(
|
||||||
only_directories=True,
|
only_directories=True,
|
||||||
expanduser=True,
|
expanduser=True,
|
||||||
get_paths=lambda: [browse_start], # noqa: B023
|
get_paths=lambda: [browse_start],
|
||||||
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
|
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -149,7 +149,7 @@ def dest_path(dest=None) -> Path:
|
|||||||
completer=path_completer,
|
completer=path_completer,
|
||||||
default=str(browse_start) + os.sep,
|
default=str(browse_start) + os.sep,
|
||||||
vi_mode=True,
|
vi_mode=True,
|
||||||
complete_while_typing=True,
|
complete_while_typing=True
|
||||||
# Test that this is not needed on Windows
|
# Test that this is not needed on Windows
|
||||||
# complete_style=CompleteStyle.READLINE_LIKE,
|
# complete_style=CompleteStyle.READLINE_LIKE,
|
||||||
)
|
)
|
||||||
|
@ -1,71 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
set -e
|
|
||||||
|
|
||||||
BCYAN="\e[1;36m"
|
|
||||||
BYELLOW="\e[1;33m"
|
|
||||||
BGREEN="\e[1;32m"
|
|
||||||
BRED="\e[1;31m"
|
|
||||||
RED="\e[31m"
|
|
||||||
RESET="\e[0m"
|
|
||||||
|
|
||||||
function does_tag_exist {
|
|
||||||
git rev-parse --quiet --verify "refs/tags/$1" >/dev/null
|
|
||||||
}
|
|
||||||
|
|
||||||
function git_show_ref {
|
|
||||||
git show-ref --dereference $1 --abbrev 7
|
|
||||||
}
|
|
||||||
|
|
||||||
function git_show {
|
|
||||||
git show -s --format='%h %s' $1
|
|
||||||
}
|
|
||||||
|
|
||||||
VERSION=$(
|
|
||||||
cd ..
|
|
||||||
python -c "from invokeai.version import __version__ as version; print(version)"
|
|
||||||
)
|
|
||||||
PATCH=""
|
|
||||||
MAJOR_VERSION=$(echo $VERSION | sed 's/\..*$//')
|
|
||||||
VERSION="v${VERSION}${PATCH}"
|
|
||||||
LATEST_TAG="v${MAJOR_VERSION}-latest"
|
|
||||||
|
|
||||||
if does_tag_exist $VERSION; then
|
|
||||||
echo -e "${BCYAN}${VERSION}${RESET} already exists:"
|
|
||||||
git_show_ref tags/$VERSION
|
|
||||||
echo
|
|
||||||
fi
|
|
||||||
if does_tag_exist $LATEST_TAG; then
|
|
||||||
echo -e "${BCYAN}${LATEST_TAG}${RESET} already exists:"
|
|
||||||
git_show_ref tags/$LATEST_TAG
|
|
||||||
echo
|
|
||||||
fi
|
|
||||||
|
|
||||||
echo -e "${BGREEN}HEAD${RESET}:"
|
|
||||||
git_show
|
|
||||||
echo
|
|
||||||
|
|
||||||
echo -e -n "Create tags ${BCYAN}${VERSION}${RESET} and ${BCYAN}${LATEST_TAG}${RESET} @ ${BGREEN}HEAD${RESET}, ${RED}deleting existing tags on remote${RESET}? "
|
|
||||||
read -e -p 'y/n [n]: ' input
|
|
||||||
RESPONSE=${input:='n'}
|
|
||||||
if [ "$RESPONSE" == 'y' ]; then
|
|
||||||
echo
|
|
||||||
echo -e "Deleting ${BCYAN}${VERSION}${RESET} tag on remote..."
|
|
||||||
git push --delete origin $VERSION
|
|
||||||
|
|
||||||
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${VERSION}${RESET} locally..."
|
|
||||||
if ! git tag -fa $VERSION; then
|
|
||||||
echo "Existing/invalid tag"
|
|
||||||
exit -1
|
|
||||||
fi
|
|
||||||
|
|
||||||
echo -e "Deleting ${BCYAN}${LATEST_TAG}${RESET} tag on remote..."
|
|
||||||
git push --delete origin $LATEST_TAG
|
|
||||||
|
|
||||||
echo -e "Tagging ${BGREEN}HEAD${RESET} with ${BCYAN}${LATEST_TAG}${RESET} locally..."
|
|
||||||
git tag -fa $LATEST_TAG
|
|
||||||
|
|
||||||
echo -e "Pushing updated tags to remote..."
|
|
||||||
git push origin --tags
|
|
||||||
fi
|
|
||||||
exit 0
|
|
@ -2,8 +2,7 @@
|
|||||||
|
|
||||||
from logging import Logger
|
from logging import Logger
|
||||||
|
|
||||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
from invokeai.app.services.workflow_image_records.workflow_image_records_sqlite import SqliteWorkflowImageRecordsStorage
|
||||||
from invokeai.backend.model_manager.metadata import ModelMetadataStore
|
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
from invokeai.backend.util.logging import InvokeAILogger
|
||||||
from invokeai.version.invokeai_version import __version__
|
from invokeai.version.invokeai_version import __version__
|
||||||
|
|
||||||
@ -12,7 +11,6 @@ from ..services.board_images.board_images_default import BoardImagesService
|
|||||||
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||||
from ..services.boards.boards_default import BoardService
|
from ..services.boards.boards_default import BoardService
|
||||||
from ..services.config import InvokeAIAppConfig
|
from ..services.config import InvokeAIAppConfig
|
||||||
from ..services.download import DownloadQueueService
|
|
||||||
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
||||||
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||||
from ..services.images.images_default import ImageService
|
from ..services.images.images_default import ImageService
|
||||||
@ -25,13 +23,13 @@ from ..services.invoker import Invoker
|
|||||||
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
|
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
|
||||||
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
|
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
|
||||||
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
|
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
|
||||||
from ..services.model_install import ModelInstallService
|
|
||||||
from ..services.model_manager.model_manager_default import ModelManagerService
|
from ..services.model_manager.model_manager_default import ModelManagerService
|
||||||
from ..services.model_records import ModelRecordServiceSQL
|
|
||||||
from ..services.names.names_default import SimpleNameService
|
from ..services.names.names_default import SimpleNameService
|
||||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
|
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
|
||||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||||
from ..services.shared.graph import GraphExecutionState
|
from ..services.shared.default_graphs import create_system_graphs
|
||||||
|
from ..services.shared.graph import GraphExecutionState, LibraryGraph
|
||||||
|
from ..services.shared.sqlite import SqliteDatabase
|
||||||
from ..services.urls.urls_default import LocalUrlService
|
from ..services.urls.urls_default import LocalUrlService
|
||||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||||
from .events import FastAPIEventService
|
from .events import FastAPIEventService
|
||||||
@ -62,15 +60,14 @@ class ApiDependencies:
|
|||||||
invoker: Invoker
|
invoker: Invoker
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
|
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger):
|
||||||
logger.info(f"InvokeAI version {__version__}")
|
logger.info(f"InvokeAI version {__version__}")
|
||||||
logger.info(f"Root directory = {str(config.root_path)}")
|
logger.info(f"Root directory = {str(config.root_path)}")
|
||||||
logger.debug(f"Internet connectivity is {config.internet_available}")
|
logger.debug(f"Internet connectivity is {config.internet_available}")
|
||||||
|
|
||||||
output_folder = config.output_path
|
output_folder = config.output_path
|
||||||
image_files = DiskImageFileStorage(f"{output_folder}/images")
|
|
||||||
|
|
||||||
db = init_db(config=config, logger=logger, image_files=image_files)
|
db = SqliteDatabase(config, logger)
|
||||||
|
|
||||||
configuration = config
|
configuration = config
|
||||||
logger = logger
|
logger = logger
|
||||||
@ -81,21 +78,13 @@ class ApiDependencies:
|
|||||||
boards = BoardService()
|
boards = BoardService()
|
||||||
events = FastAPIEventService(event_handler_id)
|
events = FastAPIEventService(event_handler_id)
|
||||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
|
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
|
||||||
|
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
|
||||||
|
image_files = DiskImageFileStorage(f"{output_folder}/images")
|
||||||
image_records = SqliteImageRecordStorage(db=db)
|
image_records = SqliteImageRecordStorage(db=db)
|
||||||
images = ImageService()
|
images = ImageService()
|
||||||
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
|
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
|
||||||
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
||||||
model_manager = ModelManagerService(config, logger)
|
model_manager = ModelManagerService(config, logger)
|
||||||
model_record_service = ModelRecordServiceSQL(db=db)
|
|
||||||
download_queue_service = DownloadQueueService(event_bus=events)
|
|
||||||
metadata_store = ModelMetadataStore(db=db)
|
|
||||||
model_install_service = ModelInstallService(
|
|
||||||
app_config=config,
|
|
||||||
record_store=model_record_service,
|
|
||||||
download_queue=download_queue_service,
|
|
||||||
metadata_store=metadata_store,
|
|
||||||
event_bus=events,
|
|
||||||
)
|
|
||||||
names = SimpleNameService()
|
names = SimpleNameService()
|
||||||
performance_statistics = InvocationStatsService()
|
performance_statistics = InvocationStatsService()
|
||||||
processor = DefaultInvocationProcessor()
|
processor = DefaultInvocationProcessor()
|
||||||
@ -103,6 +92,7 @@ class ApiDependencies:
|
|||||||
session_processor = DefaultSessionProcessor()
|
session_processor = DefaultSessionProcessor()
|
||||||
session_queue = SqliteSessionQueue(db=db)
|
session_queue = SqliteSessionQueue(db=db)
|
||||||
urls = LocalUrlService()
|
urls = LocalUrlService()
|
||||||
|
workflow_image_records = SqliteWorkflowImageRecordsStorage(db=db)
|
||||||
workflow_records = SqliteWorkflowRecordsStorage(db=db)
|
workflow_records = SqliteWorkflowRecordsStorage(db=db)
|
||||||
|
|
||||||
services = InvocationServices(
|
services = InvocationServices(
|
||||||
@ -113,6 +103,7 @@ class ApiDependencies:
|
|||||||
configuration=configuration,
|
configuration=configuration,
|
||||||
events=events,
|
events=events,
|
||||||
graph_execution_manager=graph_execution_manager,
|
graph_execution_manager=graph_execution_manager,
|
||||||
|
graph_library=graph_library,
|
||||||
image_files=image_files,
|
image_files=image_files,
|
||||||
image_records=image_records,
|
image_records=image_records,
|
||||||
images=images,
|
images=images,
|
||||||
@ -120,9 +111,6 @@ class ApiDependencies:
|
|||||||
latents=latents,
|
latents=latents,
|
||||||
logger=logger,
|
logger=logger,
|
||||||
model_manager=model_manager,
|
model_manager=model_manager,
|
||||||
model_records=model_record_service,
|
|
||||||
download_queue=download_queue_service,
|
|
||||||
model_install=model_install_service,
|
|
||||||
names=names,
|
names=names,
|
||||||
performance_statistics=performance_statistics,
|
performance_statistics=performance_statistics,
|
||||||
processor=processor,
|
processor=processor,
|
||||||
@ -130,13 +118,17 @@ class ApiDependencies:
|
|||||||
session_processor=session_processor,
|
session_processor=session_processor,
|
||||||
session_queue=session_queue,
|
session_queue=session_queue,
|
||||||
urls=urls,
|
urls=urls,
|
||||||
|
workflow_image_records=workflow_image_records,
|
||||||
workflow_records=workflow_records,
|
workflow_records=workflow_records,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
create_system_graphs(services.graph_library)
|
||||||
|
|
||||||
ApiDependencies.invoker = Invoker(services)
|
ApiDependencies.invoker = Invoker(services)
|
||||||
|
|
||||||
db.clean()
|
db.clean()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def shutdown() -> None:
|
def shutdown():
|
||||||
if ApiDependencies.invoker:
|
if ApiDependencies.invoker:
|
||||||
ApiDependencies.invoker.stop()
|
ApiDependencies.invoker.stop()
|
||||||
|
@ -28,7 +28,7 @@ class FastAPIEventService(EventServiceBase):
|
|||||||
self.__queue.put(None)
|
self.__queue.put(None)
|
||||||
|
|
||||||
def dispatch(self, event_name: str, payload: Any) -> None:
|
def dispatch(self, event_name: str, payload: Any) -> None:
|
||||||
self.__queue.put({"event_name": event_name, "payload": payload})
|
self.__queue.put(dict(event_name=event_name, payload=payload))
|
||||||
|
|
||||||
async def __dispatch_from_queue(self, stop_event: threading.Event):
|
async def __dispatch_from_queue(self, stop_event: threading.Event):
|
||||||
"""Get events on from the queue and dispatch them, from the correct thread"""
|
"""Get events on from the queue and dispatch them, from the correct thread"""
|
||||||
|
@ -1,28 +0,0 @@
|
|||||||
from typing import Any
|
|
||||||
|
|
||||||
from starlette.responses import Response
|
|
||||||
from starlette.staticfiles import StaticFiles
|
|
||||||
|
|
||||||
|
|
||||||
class NoCacheStaticFiles(StaticFiles):
|
|
||||||
"""
|
|
||||||
This class is used to override the default caching behavior of starlette for static files,
|
|
||||||
ensuring we *never* cache static files. It modifies the file response headers to strictly
|
|
||||||
never cache the files.
|
|
||||||
|
|
||||||
Static files include the javascript bundles, fonts, locales, and some images. Generated
|
|
||||||
images are not included, as they are served by a router.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, *args: Any, **kwargs: Any):
|
|
||||||
self.cachecontrol = "max-age=0, no-cache, no-store, , must-revalidate"
|
|
||||||
self.pragma = "no-cache"
|
|
||||||
self.expires = "0"
|
|
||||||
super().__init__(*args, **kwargs)
|
|
||||||
|
|
||||||
def file_response(self, *args: Any, **kwargs: Any) -> Response:
|
|
||||||
resp = super().file_response(*args, **kwargs)
|
|
||||||
resp.headers.setdefault("Cache-Control", self.cachecontrol)
|
|
||||||
resp.headers.setdefault("Pragma", self.pragma)
|
|
||||||
resp.headers.setdefault("Expires", self.expires)
|
|
||||||
return resp
|
|
@ -1,11 +1,7 @@
|
|||||||
import typing
|
import typing
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from importlib.metadata import PackageNotFoundError, version
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from platform import python_version
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from fastapi import Body
|
from fastapi import Body
|
||||||
from fastapi.routing import APIRouter
|
from fastapi.routing import APIRouter
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
@ -44,24 +40,6 @@ class AppVersion(BaseModel):
|
|||||||
version: str = Field(description="App version")
|
version: str = Field(description="App version")
|
||||||
|
|
||||||
|
|
||||||
class AppDependencyVersions(BaseModel):
|
|
||||||
"""App depencency Versions Response"""
|
|
||||||
|
|
||||||
accelerate: str = Field(description="accelerate version")
|
|
||||||
compel: str = Field(description="compel version")
|
|
||||||
cuda: Optional[str] = Field(description="CUDA version")
|
|
||||||
diffusers: str = Field(description="diffusers version")
|
|
||||||
numpy: str = Field(description="Numpy version")
|
|
||||||
opencv: str = Field(description="OpenCV version")
|
|
||||||
onnx: str = Field(description="ONNX version")
|
|
||||||
pillow: str = Field(description="Pillow (PIL) version")
|
|
||||||
python: str = Field(description="Python version")
|
|
||||||
torch: str = Field(description="PyTorch version")
|
|
||||||
torchvision: str = Field(description="PyTorch Vision version")
|
|
||||||
transformers: str = Field(description="transformers version")
|
|
||||||
xformers: Optional[str] = Field(description="xformers version")
|
|
||||||
|
|
||||||
|
|
||||||
class AppConfig(BaseModel):
|
class AppConfig(BaseModel):
|
||||||
"""App Config Response"""
|
"""App Config Response"""
|
||||||
|
|
||||||
@ -76,29 +54,6 @@ async def get_version() -> AppVersion:
|
|||||||
return AppVersion(version=__version__)
|
return AppVersion(version=__version__)
|
||||||
|
|
||||||
|
|
||||||
@app_router.get("/app_deps", operation_id="get_app_deps", status_code=200, response_model=AppDependencyVersions)
|
|
||||||
async def get_app_deps() -> AppDependencyVersions:
|
|
||||||
try:
|
|
||||||
xformers = version("xformers")
|
|
||||||
except PackageNotFoundError:
|
|
||||||
xformers = None
|
|
||||||
return AppDependencyVersions(
|
|
||||||
accelerate=version("accelerate"),
|
|
||||||
compel=version("compel"),
|
|
||||||
cuda=torch.version.cuda,
|
|
||||||
diffusers=version("diffusers"),
|
|
||||||
numpy=version("numpy"),
|
|
||||||
opencv=version("opencv-python"),
|
|
||||||
onnx=version("onnx"),
|
|
||||||
pillow=version("pillow"),
|
|
||||||
python=python_version(),
|
|
||||||
torch=torch.version.__version__,
|
|
||||||
torchvision=version("torchvision"),
|
|
||||||
transformers=version("transformers"),
|
|
||||||
xformers=xformers,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
|
@app_router.get("/config", operation_id="get_config", status_code=200, response_model=AppConfig)
|
||||||
async def get_config() -> AppConfig:
|
async def get_config() -> AppConfig:
|
||||||
infill_methods = ["tile", "lama", "cv2"]
|
infill_methods = ["tile", "lama", "cv2"]
|
||||||
|
@ -1,111 +0,0 @@
|
|||||||
# Copyright (c) 2023 Lincoln D. Stein
|
|
||||||
"""FastAPI route for the download queue."""
|
|
||||||
|
|
||||||
from typing import List, Optional
|
|
||||||
|
|
||||||
from fastapi import Body, Path, Response
|
|
||||||
from fastapi.routing import APIRouter
|
|
||||||
from pydantic.networks import AnyHttpUrl
|
|
||||||
from starlette.exceptions import HTTPException
|
|
||||||
|
|
||||||
from invokeai.app.services.download import (
|
|
||||||
DownloadJob,
|
|
||||||
UnknownJobIDException,
|
|
||||||
)
|
|
||||||
|
|
||||||
from ..dependencies import ApiDependencies
|
|
||||||
|
|
||||||
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.get(
|
|
||||||
"/",
|
|
||||||
operation_id="list_downloads",
|
|
||||||
)
|
|
||||||
async def list_downloads() -> List[DownloadJob]:
|
|
||||||
"""Get a list of active and inactive jobs."""
|
|
||||||
queue = ApiDependencies.invoker.services.download_queue
|
|
||||||
return queue.list_jobs()
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.patch(
|
|
||||||
"/",
|
|
||||||
operation_id="prune_downloads",
|
|
||||||
responses={
|
|
||||||
204: {"description": "All completed jobs have been pruned"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def prune_downloads():
|
|
||||||
"""Prune completed and errored jobs."""
|
|
||||||
queue = ApiDependencies.invoker.services.download_queue
|
|
||||||
queue.prune_jobs()
|
|
||||||
return Response(status_code=204)
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.post(
|
|
||||||
"/i/",
|
|
||||||
operation_id="download",
|
|
||||||
)
|
|
||||||
async def download(
|
|
||||||
source: AnyHttpUrl = Body(description="download source"),
|
|
||||||
dest: str = Body(description="download destination"),
|
|
||||||
priority: int = Body(default=10, description="queue priority"),
|
|
||||||
access_token: Optional[str] = Body(default=None, description="token for authorization to download"),
|
|
||||||
) -> DownloadJob:
|
|
||||||
"""Download the source URL to the file or directory indicted in dest."""
|
|
||||||
queue = ApiDependencies.invoker.services.download_queue
|
|
||||||
return queue.download(source, dest, priority, access_token)
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.get(
|
|
||||||
"/i/{id}",
|
|
||||||
operation_id="get_download_job",
|
|
||||||
responses={
|
|
||||||
200: {"description": "Success"},
|
|
||||||
404: {"description": "The requested download JobID could not be found"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def get_download_job(
|
|
||||||
id: int = Path(description="ID of the download job to fetch."),
|
|
||||||
) -> DownloadJob:
|
|
||||||
"""Get a download job using its ID."""
|
|
||||||
try:
|
|
||||||
job = ApiDependencies.invoker.services.download_queue.id_to_job(id)
|
|
||||||
return job
|
|
||||||
except UnknownJobIDException as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.delete(
|
|
||||||
"/i/{id}",
|
|
||||||
operation_id="cancel_download_job",
|
|
||||||
responses={
|
|
||||||
204: {"description": "Job has been cancelled"},
|
|
||||||
404: {"description": "The requested download JobID could not be found"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def cancel_download_job(
|
|
||||||
id: int = Path(description="ID of the download job to cancel."),
|
|
||||||
):
|
|
||||||
"""Cancel a download job using its ID."""
|
|
||||||
try:
|
|
||||||
queue = ApiDependencies.invoker.services.download_queue
|
|
||||||
job = queue.id_to_job(id)
|
|
||||||
queue.cancel_job(job)
|
|
||||||
return Response(status_code=204)
|
|
||||||
except UnknownJobIDException as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@download_queue_router.delete(
|
|
||||||
"/i",
|
|
||||||
operation_id="cancel_all_download_jobs",
|
|
||||||
responses={
|
|
||||||
204: {"description": "Download jobs have been cancelled"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def cancel_all_download_jobs():
|
|
||||||
"""Cancel all download jobs."""
|
|
||||||
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
|
|
||||||
return Response(status_code=204)
|
|
@ -8,11 +8,10 @@ from fastapi.routing import APIRouter
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from pydantic import BaseModel, Field, ValidationError
|
from pydantic import BaseModel, Field, ValidationError
|
||||||
|
|
||||||
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator
|
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator, WorkflowFieldValidator
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
||||||
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
|
||||||
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
|
||||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID, WorkflowWithoutIDValidator
|
|
||||||
|
|
||||||
from ..dependencies import ApiDependencies
|
from ..dependencies import ApiDependencies
|
||||||
|
|
||||||
@ -74,7 +73,7 @@ async def upload_image(
|
|||||||
workflow_raw = pil_image.info.get("invokeai_workflow", None)
|
workflow_raw = pil_image.info.get("invokeai_workflow", None)
|
||||||
if workflow_raw is not None:
|
if workflow_raw is not None:
|
||||||
try:
|
try:
|
||||||
workflow = WorkflowWithoutIDValidator.validate_json(workflow_raw)
|
workflow = WorkflowFieldValidator.validate_json(workflow_raw)
|
||||||
except ValidationError:
|
except ValidationError:
|
||||||
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
|
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
|
||||||
pass
|
pass
|
||||||
@ -185,18 +184,6 @@ async def get_image_metadata(
|
|||||||
raise HTTPException(status_code=404)
|
raise HTTPException(status_code=404)
|
||||||
|
|
||||||
|
|
||||||
@images_router.get(
|
|
||||||
"/i/{image_name}/workflow", operation_id="get_image_workflow", response_model=Optional[WorkflowWithoutID]
|
|
||||||
)
|
|
||||||
async def get_image_workflow(
|
|
||||||
image_name: str = Path(description="The name of image whose workflow to get"),
|
|
||||||
) -> Optional[WorkflowWithoutID]:
|
|
||||||
try:
|
|
||||||
return ApiDependencies.invoker.services.images.get_workflow(image_name)
|
|
||||||
except Exception:
|
|
||||||
raise HTTPException(status_code=404)
|
|
||||||
|
|
||||||
|
|
||||||
@images_router.api_route(
|
@images_router.api_route(
|
||||||
"/i/{image_name}/full",
|
"/i/{image_name}/full",
|
||||||
methods=["GET", "HEAD"],
|
methods=["GET", "HEAD"],
|
||||||
|
@ -1,417 +0,0 @@
|
|||||||
# Copyright (c) 2023 Lincoln D. Stein
|
|
||||||
"""FastAPI route for model configuration records."""
|
|
||||||
|
|
||||||
|
|
||||||
from hashlib import sha1
|
|
||||||
from random import randbytes
|
|
||||||
from typing import Any, Dict, List, Optional, Set
|
|
||||||
|
|
||||||
from fastapi import Body, Path, Query, Response
|
|
||||||
from fastapi.routing import APIRouter
|
|
||||||
from pydantic import BaseModel, ConfigDict
|
|
||||||
from starlette.exceptions import HTTPException
|
|
||||||
from typing_extensions import Annotated
|
|
||||||
|
|
||||||
from invokeai.app.services.model_install import ModelInstallJob, ModelSource
|
|
||||||
from invokeai.app.services.model_records import (
|
|
||||||
DuplicateModelException,
|
|
||||||
InvalidModelException,
|
|
||||||
ModelRecordOrderBy,
|
|
||||||
ModelSummary,
|
|
||||||
UnknownModelException,
|
|
||||||
)
|
|
||||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
|
||||||
from invokeai.backend.model_manager.config import (
|
|
||||||
AnyModelConfig,
|
|
||||||
BaseModelType,
|
|
||||||
ModelFormat,
|
|
||||||
ModelType,
|
|
||||||
)
|
|
||||||
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
|
|
||||||
|
|
||||||
from ..dependencies import ApiDependencies
|
|
||||||
|
|
||||||
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
|
|
||||||
|
|
||||||
|
|
||||||
class ModelsList(BaseModel):
|
|
||||||
"""Return list of configs."""
|
|
||||||
|
|
||||||
models: List[AnyModelConfig]
|
|
||||||
|
|
||||||
model_config = ConfigDict(use_enum_values=True)
|
|
||||||
|
|
||||||
|
|
||||||
class ModelTagSet(BaseModel):
|
|
||||||
"""Return tags for a set of models."""
|
|
||||||
|
|
||||||
key: str
|
|
||||||
name: str
|
|
||||||
author: str
|
|
||||||
tags: Set[str]
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/",
|
|
||||||
operation_id="list_model_records",
|
|
||||||
)
|
|
||||||
async def list_model_records(
|
|
||||||
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
|
|
||||||
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
|
||||||
model_name: Optional[str] = Query(default=None, description="Exact match on the name of the model"),
|
|
||||||
model_format: Optional[ModelFormat] = Query(
|
|
||||||
default=None, description="Exact match on the format of the model (e.g. 'diffusers')"
|
|
||||||
),
|
|
||||||
) -> ModelsList:
|
|
||||||
"""Get a list of models."""
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
found_models: list[AnyModelConfig] = []
|
|
||||||
if base_models:
|
|
||||||
for base_model in base_models:
|
|
||||||
found_models.extend(
|
|
||||||
record_store.search_by_attr(
|
|
||||||
base_model=base_model, model_type=model_type, model_name=model_name, model_format=model_format
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
found_models.extend(
|
|
||||||
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
|
|
||||||
)
|
|
||||||
return ModelsList(models=found_models)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/i/{key}",
|
|
||||||
operation_id="get_model_record",
|
|
||||||
responses={
|
|
||||||
200: {"description": "Success"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
404: {"description": "The model could not be found"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def get_model_record(
|
|
||||||
key: str = Path(description="Key of the model record to fetch."),
|
|
||||||
) -> AnyModelConfig:
|
|
||||||
"""Get a model record"""
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
try:
|
|
||||||
return record_store.get_model(key)
|
|
||||||
except UnknownModelException as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get("/meta", operation_id="list_model_summary")
|
|
||||||
async def list_model_summary(
|
|
||||||
page: int = Query(default=0, description="The page to get"),
|
|
||||||
per_page: int = Query(default=10, description="The number of models per page"),
|
|
||||||
order_by: ModelRecordOrderBy = Query(default=ModelRecordOrderBy.Default, description="The attribute to order by"),
|
|
||||||
) -> PaginatedResults[ModelSummary]:
|
|
||||||
"""Gets a page of model summary data."""
|
|
||||||
return ApiDependencies.invoker.services.model_records.list_models(page=page, per_page=per_page, order_by=order_by)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/meta/i/{key}",
|
|
||||||
operation_id="get_model_metadata",
|
|
||||||
responses={
|
|
||||||
200: {"description": "Success"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
404: {"description": "No metadata available"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def get_model_metadata(
|
|
||||||
key: str = Path(description="Key of the model repo metadata to fetch."),
|
|
||||||
) -> Optional[AnyModelRepoMetadata]:
|
|
||||||
"""Get a model metadata object."""
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
result = record_store.get_metadata(key)
|
|
||||||
if not result:
|
|
||||||
raise HTTPException(status_code=404, detail="No metadata for a model with this key")
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/tags",
|
|
||||||
operation_id="list_tags",
|
|
||||||
)
|
|
||||||
async def list_tags() -> Set[str]:
|
|
||||||
"""Get a unique set of all the model tags."""
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
return record_store.list_tags()
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/tags/search",
|
|
||||||
operation_id="search_by_metadata_tags",
|
|
||||||
)
|
|
||||||
async def search_by_metadata_tags(
|
|
||||||
tags: Set[str] = Query(default=None, description="Tags to search for"),
|
|
||||||
) -> ModelsList:
|
|
||||||
"""Get a list of models."""
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
results = record_store.search_by_metadata_tag(tags)
|
|
||||||
return ModelsList(models=results)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.patch(
|
|
||||||
"/i/{key}",
|
|
||||||
operation_id="update_model_record",
|
|
||||||
responses={
|
|
||||||
200: {"description": "The model was updated successfully"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
404: {"description": "The model could not be found"},
|
|
||||||
409: {"description": "There is already a model corresponding to the new name"},
|
|
||||||
},
|
|
||||||
status_code=200,
|
|
||||||
response_model=AnyModelConfig,
|
|
||||||
)
|
|
||||||
async def update_model_record(
|
|
||||||
key: Annotated[str, Path(description="Unique key of model")],
|
|
||||||
info: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
|
|
||||||
) -> AnyModelConfig:
|
|
||||||
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
|
|
||||||
logger = ApiDependencies.invoker.services.logger
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
try:
|
|
||||||
model_response = record_store.update_model(key, config=info)
|
|
||||||
logger.info(f"Updated model: {key}")
|
|
||||||
except UnknownModelException as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
except ValueError as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=409, detail=str(e))
|
|
||||||
return model_response
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.delete(
|
|
||||||
"/i/{key}",
|
|
||||||
operation_id="del_model_record",
|
|
||||||
responses={
|
|
||||||
204: {"description": "Model deleted successfully"},
|
|
||||||
404: {"description": "Model not found"},
|
|
||||||
},
|
|
||||||
status_code=204,
|
|
||||||
)
|
|
||||||
async def del_model_record(
|
|
||||||
key: str = Path(description="Unique key of model to remove from model registry."),
|
|
||||||
) -> Response:
|
|
||||||
"""
|
|
||||||
Delete model record from database.
|
|
||||||
|
|
||||||
The configuration record will be removed. The corresponding weights files will be
|
|
||||||
deleted as well if they reside within the InvokeAI "models" directory.
|
|
||||||
"""
|
|
||||||
logger = ApiDependencies.invoker.services.logger
|
|
||||||
|
|
||||||
try:
|
|
||||||
installer = ApiDependencies.invoker.services.model_install
|
|
||||||
installer.delete(key)
|
|
||||||
logger.info(f"Deleted model: {key}")
|
|
||||||
return Response(status_code=204)
|
|
||||||
except UnknownModelException as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.post(
|
|
||||||
"/i/",
|
|
||||||
operation_id="add_model_record",
|
|
||||||
responses={
|
|
||||||
201: {"description": "The model added successfully"},
|
|
||||||
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
|
||||||
415: {"description": "Unrecognized file/folder format"},
|
|
||||||
},
|
|
||||||
status_code=201,
|
|
||||||
)
|
|
||||||
async def add_model_record(
|
|
||||||
config: Annotated[AnyModelConfig, Body(description="Model config", discriminator="type")],
|
|
||||||
) -> AnyModelConfig:
|
|
||||||
"""Add a model using the configuration information appropriate for its type."""
|
|
||||||
logger = ApiDependencies.invoker.services.logger
|
|
||||||
record_store = ApiDependencies.invoker.services.model_records
|
|
||||||
if config.key == "<NOKEY>":
|
|
||||||
config.key = sha1(randbytes(100)).hexdigest()
|
|
||||||
logger.info(f"Created model {config.key} for {config.name}")
|
|
||||||
try:
|
|
||||||
record_store.add_model(config.key, config)
|
|
||||||
except DuplicateModelException as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=409, detail=str(e))
|
|
||||||
except InvalidModelException as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=415)
|
|
||||||
|
|
||||||
# now fetch it out
|
|
||||||
return record_store.get_model(config.key)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.post(
|
|
||||||
"/import",
|
|
||||||
operation_id="import_model_record",
|
|
||||||
responses={
|
|
||||||
201: {"description": "The model imported successfully"},
|
|
||||||
415: {"description": "Unrecognized file/folder format"},
|
|
||||||
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
|
|
||||||
409: {"description": "There is already a model corresponding to this path or repo_id"},
|
|
||||||
},
|
|
||||||
status_code=201,
|
|
||||||
)
|
|
||||||
async def import_model(
|
|
||||||
source: ModelSource,
|
|
||||||
config: Optional[Dict[str, Any]] = Body(
|
|
||||||
description="Dict of fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
|
|
||||||
default=None,
|
|
||||||
),
|
|
||||||
) -> ModelInstallJob:
|
|
||||||
"""Add a model using its local path, repo_id, or remote URL.
|
|
||||||
|
|
||||||
Models will be downloaded, probed, configured and installed in a
|
|
||||||
series of background threads. The return object has `status` attribute
|
|
||||||
that can be used to monitor progress.
|
|
||||||
|
|
||||||
The source object is a discriminated Union of LocalModelSource,
|
|
||||||
HFModelSource and URLModelSource. Set the "type" field to the
|
|
||||||
appropriate value:
|
|
||||||
|
|
||||||
* To install a local path using LocalModelSource, pass a source of form:
|
|
||||||
`{
|
|
||||||
"type": "local",
|
|
||||||
"path": "/path/to/model",
|
|
||||||
"inplace": false
|
|
||||||
}`
|
|
||||||
The "inplace" flag, if true, will register the model in place in its
|
|
||||||
current filesystem location. Otherwise, the model will be copied
|
|
||||||
into the InvokeAI models directory.
|
|
||||||
|
|
||||||
* To install a HuggingFace repo_id using HFModelSource, pass a source of form:
|
|
||||||
`{
|
|
||||||
"type": "hf",
|
|
||||||
"repo_id": "stabilityai/stable-diffusion-2.0",
|
|
||||||
"variant": "fp16",
|
|
||||||
"subfolder": "vae",
|
|
||||||
"access_token": "f5820a918aaf01"
|
|
||||||
}`
|
|
||||||
The `variant`, `subfolder` and `access_token` fields are optional.
|
|
||||||
|
|
||||||
* To install a remote model using an arbitrary URL, pass:
|
|
||||||
`{
|
|
||||||
"type": "url",
|
|
||||||
"url": "http://www.civitai.com/models/123456",
|
|
||||||
"access_token": "f5820a918aaf01"
|
|
||||||
}`
|
|
||||||
The `access_token` field is optonal
|
|
||||||
|
|
||||||
The model's configuration record will be probed and filled in
|
|
||||||
automatically. To override the default guesses, pass "metadata"
|
|
||||||
with a Dict containing the attributes you wish to override.
|
|
||||||
|
|
||||||
Installation occurs in the background. Either use list_model_install_jobs()
|
|
||||||
to poll for completion, or listen on the event bus for the following events:
|
|
||||||
|
|
||||||
"model_install_running"
|
|
||||||
"model_install_completed"
|
|
||||||
"model_install_error"
|
|
||||||
|
|
||||||
On successful completion, the event's payload will contain the field "key"
|
|
||||||
containing the installed ID of the model. On an error, the event's payload
|
|
||||||
will contain the fields "error_type" and "error" describing the nature of the
|
|
||||||
error and its traceback, respectively.
|
|
||||||
|
|
||||||
"""
|
|
||||||
logger = ApiDependencies.invoker.services.logger
|
|
||||||
|
|
||||||
try:
|
|
||||||
installer = ApiDependencies.invoker.services.model_install
|
|
||||||
result: ModelInstallJob = installer.import_model(
|
|
||||||
source=source,
|
|
||||||
config=config,
|
|
||||||
)
|
|
||||||
logger.info(f"Started installation of {source}")
|
|
||||||
except UnknownModelException as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=424, detail=str(e))
|
|
||||||
except InvalidModelException as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=415)
|
|
||||||
except ValueError as e:
|
|
||||||
logger.error(str(e))
|
|
||||||
raise HTTPException(status_code=409, detail=str(e))
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/import",
|
|
||||||
operation_id="list_model_install_jobs",
|
|
||||||
)
|
|
||||||
async def list_model_install_jobs() -> List[ModelInstallJob]:
|
|
||||||
"""Return list of model install jobs."""
|
|
||||||
jobs: List[ModelInstallJob] = ApiDependencies.invoker.services.model_install.list_jobs()
|
|
||||||
return jobs
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.get(
|
|
||||||
"/import/{id}",
|
|
||||||
operation_id="get_model_install_job",
|
|
||||||
responses={
|
|
||||||
200: {"description": "Success"},
|
|
||||||
404: {"description": "No such job"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def get_model_install_job(id: int = Path(description="Model install id")) -> ModelInstallJob:
|
|
||||||
"""Return model install job corresponding to the given source."""
|
|
||||||
try:
|
|
||||||
return ApiDependencies.invoker.services.model_install.get_job_by_id(id)
|
|
||||||
except ValueError as e:
|
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.delete(
|
|
||||||
"/import/{id}",
|
|
||||||
operation_id="cancel_model_install_job",
|
|
||||||
responses={
|
|
||||||
201: {"description": "The job was cancelled successfully"},
|
|
||||||
415: {"description": "No such job"},
|
|
||||||
},
|
|
||||||
status_code=201,
|
|
||||||
)
|
|
||||||
async def cancel_model_install_job(id: int = Path(description="Model install job ID")) -> None:
|
|
||||||
"""Cancel the model install job(s) corresponding to the given job ID."""
|
|
||||||
installer = ApiDependencies.invoker.services.model_install
|
|
||||||
try:
|
|
||||||
job = installer.get_job_by_id(id)
|
|
||||||
except ValueError as e:
|
|
||||||
raise HTTPException(status_code=415, detail=str(e))
|
|
||||||
installer.cancel_job(job)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.patch(
|
|
||||||
"/import",
|
|
||||||
operation_id="prune_model_install_jobs",
|
|
||||||
responses={
|
|
||||||
204: {"description": "All completed and errored jobs have been pruned"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def prune_model_install_jobs() -> Response:
|
|
||||||
"""Prune all completed and errored jobs from the install job list."""
|
|
||||||
ApiDependencies.invoker.services.model_install.prune_jobs()
|
|
||||||
return Response(status_code=204)
|
|
||||||
|
|
||||||
|
|
||||||
@model_records_router.patch(
|
|
||||||
"/sync",
|
|
||||||
operation_id="sync_models_to_config",
|
|
||||||
responses={
|
|
||||||
204: {"description": "Model config record database resynced with files on disk"},
|
|
||||||
400: {"description": "Bad request"},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def sync_models_to_config() -> Response:
|
|
||||||
"""
|
|
||||||
Traverse the models and autoimport directories.
|
|
||||||
|
|
||||||
Model files without a corresponding
|
|
||||||
record in the database are added. Orphan records without a models file are deleted.
|
|
||||||
"""
|
|
||||||
ApiDependencies.invoker.services.model_install.sync_to_config()
|
|
||||||
return Response(status_code=204)
|
|
@ -1,5 +1,6 @@
|
|||||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
|
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein
|
||||||
|
|
||||||
|
|
||||||
import pathlib
|
import pathlib
|
||||||
from typing import Annotated, List, Literal, Optional, Union
|
from typing import Annotated, List, Literal, Optional, Union
|
||||||
|
|
||||||
@ -54,7 +55,7 @@ async def list_models(
|
|||||||
) -> ModelsList:
|
) -> ModelsList:
|
||||||
"""Gets a list of models"""
|
"""Gets a list of models"""
|
||||||
if base_models and len(base_models) > 0:
|
if base_models and len(base_models) > 0:
|
||||||
models_raw = []
|
models_raw = list()
|
||||||
for base_model in base_models:
|
for base_model in base_models:
|
||||||
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
|
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
|
||||||
else:
|
else:
|
||||||
|
@ -23,11 +23,10 @@ class DynamicPromptsResponse(BaseModel):
|
|||||||
)
|
)
|
||||||
async def parse_dynamicprompts(
|
async def parse_dynamicprompts(
|
||||||
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
|
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
|
||||||
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
|
max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
|
||||||
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
|
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
|
||||||
) -> DynamicPromptsResponse:
|
) -> DynamicPromptsResponse:
|
||||||
"""Creates a batch process"""
|
"""Creates a batch process"""
|
||||||
max_prompts = min(max_prompts, 10000)
|
|
||||||
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
|
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
|
||||||
try:
|
try:
|
||||||
error: Optional[str] = None
|
error: Optional[str] = None
|
||||||
|
@ -1,19 +1,7 @@
|
|||||||
from typing import Optional
|
from fastapi import APIRouter, Path
|
||||||
|
|
||||||
from fastapi import APIRouter, Body, HTTPException, Path, Query
|
|
||||||
|
|
||||||
from invokeai.app.api.dependencies import ApiDependencies
|
from invokeai.app.api.dependencies import ApiDependencies
|
||||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
from invokeai.app.invocations.baseinvocation import WorkflowField
|
||||||
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
|
|
||||||
from invokeai.app.services.workflow_records.workflow_records_common import (
|
|
||||||
Workflow,
|
|
||||||
WorkflowCategory,
|
|
||||||
WorkflowNotFoundError,
|
|
||||||
WorkflowRecordDTO,
|
|
||||||
WorkflowRecordListItemDTO,
|
|
||||||
WorkflowRecordOrderBy,
|
|
||||||
WorkflowWithoutID,
|
|
||||||
)
|
|
||||||
|
|
||||||
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
|
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
|
||||||
|
|
||||||
@ -22,76 +10,11 @@ workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
|
|||||||
"/i/{workflow_id}",
|
"/i/{workflow_id}",
|
||||||
operation_id="get_workflow",
|
operation_id="get_workflow",
|
||||||
responses={
|
responses={
|
||||||
200: {"model": WorkflowRecordDTO},
|
200: {"model": WorkflowField},
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
async def get_workflow(
|
async def get_workflow(
|
||||||
workflow_id: str = Path(description="The workflow to get"),
|
workflow_id: str = Path(description="The workflow to get"),
|
||||||
) -> WorkflowRecordDTO:
|
) -> WorkflowField:
|
||||||
"""Gets a workflow"""
|
"""Gets a workflow"""
|
||||||
try:
|
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)
|
||||||
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)
|
|
||||||
except WorkflowNotFoundError:
|
|
||||||
raise HTTPException(status_code=404, detail="Workflow not found")
|
|
||||||
|
|
||||||
|
|
||||||
@workflows_router.patch(
|
|
||||||
"/i/{workflow_id}",
|
|
||||||
operation_id="update_workflow",
|
|
||||||
responses={
|
|
||||||
200: {"model": WorkflowRecordDTO},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def update_workflow(
|
|
||||||
workflow: Workflow = Body(description="The updated workflow", embed=True),
|
|
||||||
) -> WorkflowRecordDTO:
|
|
||||||
"""Updates a workflow"""
|
|
||||||
return ApiDependencies.invoker.services.workflow_records.update(workflow=workflow)
|
|
||||||
|
|
||||||
|
|
||||||
@workflows_router.delete(
|
|
||||||
"/i/{workflow_id}",
|
|
||||||
operation_id="delete_workflow",
|
|
||||||
)
|
|
||||||
async def delete_workflow(
|
|
||||||
workflow_id: str = Path(description="The workflow to delete"),
|
|
||||||
) -> None:
|
|
||||||
"""Deletes a workflow"""
|
|
||||||
ApiDependencies.invoker.services.workflow_records.delete(workflow_id)
|
|
||||||
|
|
||||||
|
|
||||||
@workflows_router.post(
|
|
||||||
"/",
|
|
||||||
operation_id="create_workflow",
|
|
||||||
responses={
|
|
||||||
200: {"model": WorkflowRecordDTO},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def create_workflow(
|
|
||||||
workflow: WorkflowWithoutID = Body(description="The workflow to create", embed=True),
|
|
||||||
) -> WorkflowRecordDTO:
|
|
||||||
"""Creates a workflow"""
|
|
||||||
return ApiDependencies.invoker.services.workflow_records.create(workflow=workflow)
|
|
||||||
|
|
||||||
|
|
||||||
@workflows_router.get(
|
|
||||||
"/",
|
|
||||||
operation_id="list_workflows",
|
|
||||||
responses={
|
|
||||||
200: {"model": PaginatedResults[WorkflowRecordListItemDTO]},
|
|
||||||
},
|
|
||||||
)
|
|
||||||
async def list_workflows(
|
|
||||||
page: int = Query(default=0, description="The page to get"),
|
|
||||||
per_page: int = Query(default=10, description="The number of workflows per page"),
|
|
||||||
order_by: WorkflowRecordOrderBy = Query(
|
|
||||||
default=WorkflowRecordOrderBy.Name, description="The attribute to order by"
|
|
||||||
),
|
|
||||||
direction: SQLiteDirection = Query(default=SQLiteDirection.Ascending, description="The direction to order by"),
|
|
||||||
category: WorkflowCategory = Query(default=WorkflowCategory.User, description="The category of workflow to get"),
|
|
||||||
query: Optional[str] = Query(default=None, description="The text to query by (matches name and description)"),
|
|
||||||
) -> PaginatedResults[WorkflowRecordListItemDTO]:
|
|
||||||
"""Gets a page of workflows"""
|
|
||||||
return ApiDependencies.invoker.services.workflow_records.get_many(
|
|
||||||
page=page, per_page=per_page, order_by=order_by, direction=direction, query=query, category=category
|
|
||||||
)
|
|
||||||
|
@ -20,7 +20,6 @@ class SocketIO:
|
|||||||
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
|
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
|
||||||
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
|
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
|
||||||
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
|
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
|
||||||
local_handler.register(event_name=EventServiceBase.model_event, _func=self._handle_model_event)
|
|
||||||
|
|
||||||
async def _handle_queue_event(self, event: Event):
|
async def _handle_queue_event(self, event: Event):
|
||||||
await self.__sio.emit(
|
await self.__sio.emit(
|
||||||
@ -29,13 +28,10 @@ class SocketIO:
|
|||||||
room=event[1]["data"]["queue_id"],
|
room=event[1]["data"]["queue_id"],
|
||||||
)
|
)
|
||||||
|
|
||||||
async def _handle_sub_queue(self, sid, data, *args, **kwargs) -> None:
|
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
|
||||||
if "queue_id" in data:
|
if "queue_id" in data:
|
||||||
await self.__sio.enter_room(sid, data["queue_id"])
|
await self.__sio.enter_room(sid, data["queue_id"])
|
||||||
|
|
||||||
async def _handle_unsub_queue(self, sid, data, *args, **kwargs) -> None:
|
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
|
||||||
if "queue_id" in data:
|
if "queue_id" in data:
|
||||||
await self.__sio.leave_room(sid, data["queue_id"])
|
await self.__sio.enter_room(sid, data["queue_id"])
|
||||||
|
|
||||||
async def _handle_model_event(self, event: Event) -> None:
|
|
||||||
await self.__sio.emit(event=event[1]["event"], data=event[1]["data"])
|
|
||||||
|
@ -1,18 +1,14 @@
|
|||||||
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
|
from typing import Any
|
||||||
# which are imported/used before parse_args() is called will get the default config values instead of the
|
|
||||||
# values from the command line or config file.
|
|
||||||
import sys
|
|
||||||
|
|
||||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
from fastapi.responses import HTMLResponse
|
||||||
from invokeai.version.invokeai_version import __version__
|
|
||||||
|
|
||||||
from .services.config import InvokeAIAppConfig
|
from .services.config import InvokeAIAppConfig
|
||||||
|
|
||||||
|
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
|
||||||
|
# which are imported/used before parse_args() is called will get the default config values instead of the
|
||||||
|
# values from the command line or config file.
|
||||||
app_config = InvokeAIAppConfig.get_config()
|
app_config = InvokeAIAppConfig.get_config()
|
||||||
app_config.parse_args()
|
app_config.parse_args()
|
||||||
if app_config.version:
|
|
||||||
print(f"InvokeAI version {__version__}")
|
|
||||||
sys.exit(0)
|
|
||||||
|
|
||||||
if True: # hack to make flake8 happy with imports coming after setting up the config
|
if True: # hack to make flake8 happy with imports coming after setting up the config
|
||||||
import asyncio
|
import asyncio
|
||||||
@ -20,7 +16,6 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
|||||||
import socket
|
import socket
|
||||||
from inspect import signature
|
from inspect import signature
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any
|
|
||||||
|
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from fastapi import FastAPI
|
from fastapi import FastAPI
|
||||||
@ -28,7 +23,8 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
|||||||
from fastapi.middleware.gzip import GZipMiddleware
|
from fastapi.middleware.gzip import GZipMiddleware
|
||||||
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
|
||||||
from fastapi.openapi.utils import get_openapi
|
from fastapi.openapi.utils import get_openapi
|
||||||
from fastapi.responses import HTMLResponse
|
from fastapi.responses import FileResponse
|
||||||
|
from fastapi.staticfiles import StaticFiles
|
||||||
from fastapi_events.handlers.local import local_handler
|
from fastapi_events.handlers.local import local_handler
|
||||||
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||||
from pydantic.json_schema import models_json_schema
|
from pydantic.json_schema import models_json_schema
|
||||||
@ -38,6 +34,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
|||||||
# noinspection PyUnresolvedReferences
|
# noinspection PyUnresolvedReferences
|
||||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||||
import invokeai.frontend.web as web_dir
|
import invokeai.frontend.web as web_dir
|
||||||
|
from invokeai.version.invokeai_version import __version__
|
||||||
|
|
||||||
from ..backend.util.logging import InvokeAILogger
|
from ..backend.util.logging import InvokeAILogger
|
||||||
from .api.dependencies import ApiDependencies
|
from .api.dependencies import ApiDependencies
|
||||||
@ -45,9 +42,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
|||||||
app_info,
|
app_info,
|
||||||
board_images,
|
board_images,
|
||||||
boards,
|
boards,
|
||||||
download_queue,
|
|
||||||
images,
|
images,
|
||||||
model_records,
|
|
||||||
models,
|
models,
|
||||||
session_queue,
|
session_queue,
|
||||||
sessions,
|
sessions,
|
||||||
@ -55,12 +50,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
|||||||
workflows,
|
workflows,
|
||||||
)
|
)
|
||||||
from .api.sockets import SocketIO
|
from .api.sockets import SocketIO
|
||||||
from .invocations.baseinvocation import (
|
from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField
|
||||||
BaseInvocation,
|
|
||||||
InputFieldJSONSchemaExtra,
|
|
||||||
OutputFieldJSONSchemaExtra,
|
|
||||||
UIConfigBase,
|
|
||||||
)
|
|
||||||
|
|
||||||
if is_mps_available():
|
if is_mps_available():
|
||||||
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
||||||
@ -76,7 +66,7 @@ mimetypes.add_type("text/css", ".css")
|
|||||||
|
|
||||||
# Create the app
|
# Create the app
|
||||||
# TODO: create this all in a method so configuration/etc. can be passed in?
|
# TODO: create this all in a method so configuration/etc. can be passed in?
|
||||||
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
|
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
|
||||||
|
|
||||||
# Add event handler
|
# Add event handler
|
||||||
event_handler_id: int = id(app)
|
event_handler_id: int = id(app)
|
||||||
@ -116,8 +106,6 @@ app.include_router(sessions.session_router, prefix="/api")
|
|||||||
|
|
||||||
app.include_router(utilities.utilities_router, prefix="/api")
|
app.include_router(utilities.utilities_router, prefix="/api")
|
||||||
app.include_router(models.models_router, prefix="/api")
|
app.include_router(models.models_router, prefix="/api")
|
||||||
app.include_router(model_records.model_records_router, prefix="/api")
|
|
||||||
app.include_router(download_queue.download_queue_router, prefix="/api")
|
|
||||||
app.include_router(images.images_router, prefix="/api")
|
app.include_router(images.images_router, prefix="/api")
|
||||||
app.include_router(boards.boards_router, prefix="/api")
|
app.include_router(boards.boards_router, prefix="/api")
|
||||||
app.include_router(board_images.board_images_router, prefix="/api")
|
app.include_router(board_images.board_images_router, prefix="/api")
|
||||||
@ -142,7 +130,7 @@ def custom_openapi() -> dict[str, Any]:
|
|||||||
# Add all outputs
|
# Add all outputs
|
||||||
all_invocations = BaseInvocation.get_invocations()
|
all_invocations = BaseInvocation.get_invocations()
|
||||||
output_types = set()
|
output_types = set()
|
||||||
output_type_titles = {}
|
output_type_titles = dict()
|
||||||
for invoker in all_invocations:
|
for invoker in all_invocations:
|
||||||
output_type = signature(invoker.invoke).return_annotation
|
output_type = signature(invoker.invoke).return_annotation
|
||||||
output_types.add(output_type)
|
output_types.add(output_type)
|
||||||
@ -157,11 +145,7 @@ def custom_openapi() -> dict[str, Any]:
|
|||||||
|
|
||||||
# Add Node Editor UI helper schemas
|
# Add Node Editor UI helper schemas
|
||||||
ui_config_schemas = models_json_schema(
|
ui_config_schemas = models_json_schema(
|
||||||
[
|
[(UIConfigBase, "serialization"), (_InputField, "serialization"), (_OutputField, "serialization")],
|
||||||
(UIConfigBase, "serialization"),
|
|
||||||
(InputFieldJSONSchemaExtra, "serialization"),
|
|
||||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
|
||||||
],
|
|
||||||
ref_template="#/components/schemas/{model}",
|
ref_template="#/components/schemas/{model}",
|
||||||
)
|
)
|
||||||
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
|
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
|
||||||
@ -169,7 +153,7 @@ def custom_openapi() -> dict[str, Any]:
|
|||||||
|
|
||||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||||
for invoker in all_invocations:
|
for invoker in all_invocations:
|
||||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
invoker_name = invoker.__name__
|
||||||
output_type = signature(obj=invoker.invoke).return_annotation
|
output_type = signature(obj=invoker.invoke).return_annotation
|
||||||
output_type_title = output_type_titles[output_type.__name__]
|
output_type_title = output_type_titles[output_type.__name__]
|
||||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||||
@ -187,12 +171,12 @@ def custom_openapi() -> dict[str, Any]:
|
|||||||
# print(f"Config with name {name} already defined")
|
# print(f"Config with name {name} already defined")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
openapi_schema["components"]["schemas"][name] = {
|
openapi_schema["components"]["schemas"][name] = dict(
|
||||||
"title": name,
|
title=name,
|
||||||
"description": "An enumeration.",
|
description="An enumeration.",
|
||||||
"type": "string",
|
type="string",
|
||||||
"enum": [v.value for v in model_config_format_enum],
|
enum=list(v.value for v in model_config_format_enum),
|
||||||
}
|
)
|
||||||
|
|
||||||
app.openapi_schema = openapi_schema
|
app.openapi_schema = openapi_schema
|
||||||
return app.openapi_schema
|
return app.openapi_schema
|
||||||
@ -205,8 +189,8 @@ app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid a
|
|||||||
def overridden_swagger() -> HTMLResponse:
|
def overridden_swagger() -> HTMLResponse:
|
||||||
return get_swagger_ui_html(
|
return get_swagger_ui_html(
|
||||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||||
title=f"{app.title} - Swagger UI",
|
title=app.title,
|
||||||
swagger_favicon_url="static/docs/invoke-favicon-docs.svg",
|
swagger_favicon_url="/static/docs/favicon.ico",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -214,20 +198,25 @@ def overridden_swagger() -> HTMLResponse:
|
|||||||
def overridden_redoc() -> HTMLResponse:
|
def overridden_redoc() -> HTMLResponse:
|
||||||
return get_redoc_html(
|
return get_redoc_html(
|
||||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||||
title=f"{app.title} - Redoc",
|
title=app.title,
|
||||||
redoc_favicon_url="static/docs/invoke-favicon-docs.svg",
|
redoc_favicon_url="/static/docs/favicon.ico",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
web_root_path = Path(list(web_dir.__path__)[0])
|
web_root_path = Path(list(web_dir.__path__)[0])
|
||||||
|
|
||||||
try:
|
|
||||||
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
|
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route
|
||||||
except RuntimeError:
|
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release
|
||||||
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount")
|
@app.get("/", include_in_schema=False, name="ui_root")
|
||||||
app.mount(
|
def get_index() -> FileResponse:
|
||||||
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
|
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
|
||||||
) # docs favicon is in here
|
|
||||||
|
|
||||||
|
# # Must mount *after* the other routes else it borks em
|
||||||
|
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
|
||||||
|
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
|
||||||
|
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
|
||||||
|
|
||||||
|
|
||||||
def invoke_api() -> None:
|
def invoke_api() -> None:
|
||||||
@ -268,8 +257,6 @@ def invoke_api() -> None:
|
|||||||
port=port,
|
port=port,
|
||||||
loop="asyncio",
|
loop="asyncio",
|
||||||
log_level=app_config.log_level,
|
log_level=app_config.log_level,
|
||||||
ssl_certfile=app_config.ssl_certfile,
|
|
||||||
ssl_keyfile=app_config.ssl_keyfile,
|
|
||||||
)
|
)
|
||||||
server = uvicorn.Server(config)
|
server = uvicorn.Server(config)
|
||||||
|
|
||||||
@ -284,4 +271,7 @@ def invoke_api() -> None:
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
invoke_api()
|
if app_config.version:
|
||||||
|
print(f"InvokeAI version {__version__}")
|
||||||
|
else:
|
||||||
|
invoke_api()
|
||||||
|
@ -5,7 +5,7 @@ from pathlib import Path
|
|||||||
|
|
||||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||||
|
|
||||||
custom_nodes_path = Path(InvokeAIAppConfig.get_config().custom_nodes_path.resolve())
|
custom_nodes_path = Path(InvokeAIAppConfig.get_config().custom_nodes_path.absolute())
|
||||||
custom_nodes_path.mkdir(parents=True, exist_ok=True)
|
custom_nodes_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
custom_nodes_init_path = str(custom_nodes_path / "__init__.py")
|
custom_nodes_init_path = str(custom_nodes_path / "__init__.py")
|
||||||
@ -25,4 +25,4 @@ spec.loader.exec_module(module)
|
|||||||
|
|
||||||
# add core nodes to __all__
|
# add core nodes to __all__
|
||||||
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
|
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
|
||||||
__all__ = [f.stem for f in python_files] # type: ignore
|
__all__ = list(f.stem for f in python_files) # type: ignore
|
||||||
|
@ -1,15 +1,14 @@
|
|||||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI team
|
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import inspect
|
import inspect
|
||||||
import re
|
import re
|
||||||
import warnings
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from inspect import signature
|
from inspect import signature
|
||||||
from types import UnionType
|
from types import UnionType
|
||||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union, cast
|
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union
|
||||||
|
|
||||||
import semver
|
import semver
|
||||||
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
|
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
|
||||||
@ -17,19 +16,11 @@ from pydantic.fields import FieldInfo, _Unset
|
|||||||
from pydantic_core import PydanticUndefined
|
from pydantic_core import PydanticUndefined
|
||||||
|
|
||||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||||
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowWithoutID
|
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.app.util.metaenum import MetaEnum
|
|
||||||
from invokeai.app.util.misc import uuid_string
|
from invokeai.app.util.misc import uuid_string
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from ..services.invocation_services import InvocationServices
|
from ..services.invocation_services import InvocationServices
|
||||||
|
|
||||||
logger = InvokeAILogger.get_logger()
|
|
||||||
|
|
||||||
CUSTOM_NODE_PACK_SUFFIX = "__invokeai-custom-node"
|
|
||||||
|
|
||||||
|
|
||||||
class InvalidVersionError(ValueError):
|
class InvalidVersionError(ValueError):
|
||||||
pass
|
pass
|
||||||
@ -39,20 +30,71 @@ class InvalidFieldError(TypeError):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
class Classification(str, Enum, metaclass=MetaEnum):
|
class FieldDescriptions:
|
||||||
"""
|
denoising_start = "When to start denoising, expressed a percentage of total steps"
|
||||||
The classification of an Invocation.
|
denoising_end = "When to stop denoising, expressed a percentage of total steps"
|
||||||
- `Stable`: The invocation, including its inputs/outputs and internal logic, is stable. You may build workflows with it, having confidence that they will not break because of a change in this invocation.
|
cfg_scale = "Classifier-Free Guidance scale"
|
||||||
- `Beta`: The invocation is not yet stable, but is planned to be stable in the future. Workflows built around this invocation may break, but we are committed to supporting this invocation long-term.
|
scheduler = "Scheduler to use during inference"
|
||||||
- `Prototype`: The invocation is not yet stable and may be removed from the application at any time. Workflows built around this invocation may break, and we are *not* committed to supporting this invocation.
|
positive_cond = "Positive conditioning tensor"
|
||||||
"""
|
negative_cond = "Negative conditioning tensor"
|
||||||
|
noise = "Noise tensor"
|
||||||
Stable = "stable"
|
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
|
||||||
Beta = "beta"
|
unet = "UNet (scheduler, LoRAs)"
|
||||||
Prototype = "prototype"
|
vae = "VAE"
|
||||||
|
cond = "Conditioning tensor"
|
||||||
|
controlnet_model = "ControlNet model to load"
|
||||||
|
vae_model = "VAE model to load"
|
||||||
|
lora_model = "LoRA model to load"
|
||||||
|
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||||
|
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
||||||
|
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
||||||
|
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
||||||
|
lora_weight = "The weight at which the LoRA is applied to each model"
|
||||||
|
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
|
||||||
|
raw_prompt = "Raw prompt text (no parsing)"
|
||||||
|
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
|
||||||
|
skipped_layers = "Number of layers to skip in text encoder"
|
||||||
|
seed = "Seed for random number generation"
|
||||||
|
steps = "Number of steps to run"
|
||||||
|
width = "Width of output (px)"
|
||||||
|
height = "Height of output (px)"
|
||||||
|
control = "ControlNet(s) to apply"
|
||||||
|
ip_adapter = "IP-Adapter to apply"
|
||||||
|
t2i_adapter = "T2I-Adapter(s) to apply"
|
||||||
|
denoised_latents = "Denoised latents tensor"
|
||||||
|
latents = "Latents tensor"
|
||||||
|
strength = "Strength of denoising (proportional to steps)"
|
||||||
|
metadata = "Optional metadata to be saved with the image"
|
||||||
|
metadata_collection = "Collection of Metadata"
|
||||||
|
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
|
||||||
|
metadata_item_label = "Label for this metadata item"
|
||||||
|
metadata_item_value = "The value for this metadata item (may be any type)"
|
||||||
|
workflow = "Optional workflow to be saved with the image"
|
||||||
|
interp_mode = "Interpolation mode"
|
||||||
|
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
|
||||||
|
fp32 = "Whether or not to use full float32 precision"
|
||||||
|
precision = "Precision to use"
|
||||||
|
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
||||||
|
detect_res = "Pixel resolution for detection"
|
||||||
|
image_res = "Pixel resolution for output image"
|
||||||
|
safe_mode = "Whether or not to use safe mode"
|
||||||
|
scribble_mode = "Whether or not to use scribble mode"
|
||||||
|
scale_factor = "The factor by which to scale"
|
||||||
|
blend_alpha = (
|
||||||
|
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
|
||||||
|
)
|
||||||
|
num_1 = "The first number"
|
||||||
|
num_2 = "The second number"
|
||||||
|
mask = "The mask to use for the operation"
|
||||||
|
board = "The board to save the image to"
|
||||||
|
image = "The image to process"
|
||||||
|
tile_size = "Tile size"
|
||||||
|
inclusive_low = "The inclusive low value"
|
||||||
|
exclusive_high = "The exclusive high value"
|
||||||
|
decimal_places = "The number of decimal places to round to"
|
||||||
|
|
||||||
|
|
||||||
class Input(str, Enum, metaclass=MetaEnum):
|
class Input(str, Enum):
|
||||||
"""
|
"""
|
||||||
The type of input a field accepts.
|
The type of input a field accepts.
|
||||||
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
|
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
|
||||||
@ -66,124 +108,86 @@ class Input(str, Enum, metaclass=MetaEnum):
|
|||||||
Any = "any"
|
Any = "any"
|
||||||
|
|
||||||
|
|
||||||
class FieldKind(str, Enum, metaclass=MetaEnum):
|
class UIType(str, Enum):
|
||||||
"""
|
"""
|
||||||
The kind of field.
|
Type hints for the UI.
|
||||||
- `Input`: An input field on a node.
|
If a field should be provided a data type that does not exactly match the python type of the field, \
|
||||||
- `Output`: An output field on a node.
|
use this to provide the type that should be used instead. See the node development docs for detail \
|
||||||
- `Internal`: A field which is treated as an input, but cannot be used in node definitions. Metadata is
|
on adding a new field type, which involves client-side changes.
|
||||||
one example. It is provided to nodes via the WithMetadata class, and we want to reserve the field name
|
|
||||||
"metadata" for this on all nodes. `FieldKind` is used to short-circuit the field name validation logic,
|
|
||||||
allowing "metadata" for that field.
|
|
||||||
- `NodeAttribute`: The field is a node attribute. These are fields which are not inputs or outputs,
|
|
||||||
but which are used to store information about the node. For example, the `id` and `type` fields are node
|
|
||||||
attributes.
|
|
||||||
|
|
||||||
The presence of this in `json_schema_extra["field_kind"]` is used when initializing node schemas on app
|
|
||||||
startup, and when generating the OpenAPI schema for the workflow editor.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
Input = "input"
|
# region Primitives
|
||||||
Output = "output"
|
Boolean = "boolean"
|
||||||
Internal = "internal"
|
Color = "ColorField"
|
||||||
NodeAttribute = "node_attribute"
|
Conditioning = "ConditioningField"
|
||||||
|
Control = "ControlField"
|
||||||
|
Float = "float"
|
||||||
|
Image = "ImageField"
|
||||||
|
Integer = "integer"
|
||||||
|
Latents = "LatentsField"
|
||||||
|
String = "string"
|
||||||
|
# endregion
|
||||||
|
|
||||||
|
# region Collection Primitives
|
||||||
|
BooleanCollection = "BooleanCollection"
|
||||||
|
ColorCollection = "ColorCollection"
|
||||||
|
ConditioningCollection = "ConditioningCollection"
|
||||||
|
ControlCollection = "ControlCollection"
|
||||||
|
FloatCollection = "FloatCollection"
|
||||||
|
ImageCollection = "ImageCollection"
|
||||||
|
IntegerCollection = "IntegerCollection"
|
||||||
|
LatentsCollection = "LatentsCollection"
|
||||||
|
StringCollection = "StringCollection"
|
||||||
|
# endregion
|
||||||
|
|
||||||
class UIType(str, Enum, metaclass=MetaEnum):
|
# region Polymorphic Primitives
|
||||||
"""
|
BooleanPolymorphic = "BooleanPolymorphic"
|
||||||
Type hints for the UI for situations in which the field type is not enough to infer the correct UI type.
|
ColorPolymorphic = "ColorPolymorphic"
|
||||||
|
ConditioningPolymorphic = "ConditioningPolymorphic"
|
||||||
|
ControlPolymorphic = "ControlPolymorphic"
|
||||||
|
FloatPolymorphic = "FloatPolymorphic"
|
||||||
|
ImagePolymorphic = "ImagePolymorphic"
|
||||||
|
IntegerPolymorphic = "IntegerPolymorphic"
|
||||||
|
LatentsPolymorphic = "LatentsPolymorphic"
|
||||||
|
StringPolymorphic = "StringPolymorphic"
|
||||||
|
# endregion
|
||||||
|
|
||||||
- Model Fields
|
# region Models
|
||||||
The most common node-author-facing use will be for model fields. Internally, there is no difference
|
MainModel = "MainModelField"
|
||||||
between SD-1, SD-2 and SDXL model fields - they all use the class `MainModelField`. To ensure the
|
|
||||||
base-model-specific UI is rendered, use e.g. `ui_type=UIType.SDXLMainModelField` to indicate that
|
|
||||||
the field is an SDXL main model field.
|
|
||||||
|
|
||||||
- Any Field
|
|
||||||
We cannot infer the usage of `typing.Any` via schema parsing, so you *must* use `ui_type=UIType.Any` to
|
|
||||||
indicate that the field accepts any type. Use with caution. This cannot be used on outputs.
|
|
||||||
|
|
||||||
- Scheduler Field
|
|
||||||
Special handling in the UI is needed for this field, which otherwise would be parsed as a plain enum field.
|
|
||||||
|
|
||||||
- Internal Fields
|
|
||||||
Similar to the Any Field, the `collect` and `iterate` nodes make use of `typing.Any`. To facilitate
|
|
||||||
handling these types in the client, we use `UIType._Collection` and `UIType._CollectionItem`. These
|
|
||||||
should not be used by node authors.
|
|
||||||
|
|
||||||
- DEPRECATED Fields
|
|
||||||
These types are deprecated and should not be used by node authors. A warning will be logged if one is
|
|
||||||
used, and the type will be ignored. They are included here for backwards compatibility.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# region Model Field Types
|
|
||||||
SDXLMainModel = "SDXLMainModelField"
|
SDXLMainModel = "SDXLMainModelField"
|
||||||
SDXLRefinerModel = "SDXLRefinerModelField"
|
SDXLRefinerModel = "SDXLRefinerModelField"
|
||||||
ONNXModel = "ONNXModelField"
|
ONNXModel = "ONNXModelField"
|
||||||
VaeModel = "VAEModelField"
|
VaeModel = "VaeModelField"
|
||||||
LoRAModel = "LoRAModelField"
|
LoRAModel = "LoRAModelField"
|
||||||
ControlNetModel = "ControlNetModelField"
|
ControlNetModel = "ControlNetModelField"
|
||||||
IPAdapterModel = "IPAdapterModelField"
|
IPAdapterModel = "IPAdapterModelField"
|
||||||
|
UNet = "UNetField"
|
||||||
|
Vae = "VaeField"
|
||||||
|
CLIP = "ClipField"
|
||||||
# endregion
|
# endregion
|
||||||
|
|
||||||
# region Misc Field Types
|
# region Iterate/Collect
|
||||||
Scheduler = "SchedulerField"
|
Collection = "Collection"
|
||||||
Any = "AnyField"
|
CollectionItem = "CollectionItem"
|
||||||
# endregion
|
# endregion
|
||||||
|
|
||||||
# region Internal Field Types
|
# region Misc
|
||||||
_Collection = "CollectionField"
|
Enum = "enum"
|
||||||
_CollectionItem = "CollectionItemField"
|
Scheduler = "Scheduler"
|
||||||
# endregion
|
WorkflowField = "WorkflowField"
|
||||||
|
IsIntermediate = "IsIntermediate"
|
||||||
# region DEPRECATED
|
BoardField = "BoardField"
|
||||||
Boolean = "DEPRECATED_Boolean"
|
Any = "Any"
|
||||||
Color = "DEPRECATED_Color"
|
MetadataItem = "MetadataItem"
|
||||||
Conditioning = "DEPRECATED_Conditioning"
|
MetadataItemCollection = "MetadataItemCollection"
|
||||||
Control = "DEPRECATED_Control"
|
MetadataItemPolymorphic = "MetadataItemPolymorphic"
|
||||||
Float = "DEPRECATED_Float"
|
MetadataDict = "MetadataDict"
|
||||||
Image = "DEPRECATED_Image"
|
|
||||||
Integer = "DEPRECATED_Integer"
|
|
||||||
Latents = "DEPRECATED_Latents"
|
|
||||||
String = "DEPRECATED_String"
|
|
||||||
BooleanCollection = "DEPRECATED_BooleanCollection"
|
|
||||||
ColorCollection = "DEPRECATED_ColorCollection"
|
|
||||||
ConditioningCollection = "DEPRECATED_ConditioningCollection"
|
|
||||||
ControlCollection = "DEPRECATED_ControlCollection"
|
|
||||||
FloatCollection = "DEPRECATED_FloatCollection"
|
|
||||||
ImageCollection = "DEPRECATED_ImageCollection"
|
|
||||||
IntegerCollection = "DEPRECATED_IntegerCollection"
|
|
||||||
LatentsCollection = "DEPRECATED_LatentsCollection"
|
|
||||||
StringCollection = "DEPRECATED_StringCollection"
|
|
||||||
BooleanPolymorphic = "DEPRECATED_BooleanPolymorphic"
|
|
||||||
ColorPolymorphic = "DEPRECATED_ColorPolymorphic"
|
|
||||||
ConditioningPolymorphic = "DEPRECATED_ConditioningPolymorphic"
|
|
||||||
ControlPolymorphic = "DEPRECATED_ControlPolymorphic"
|
|
||||||
FloatPolymorphic = "DEPRECATED_FloatPolymorphic"
|
|
||||||
ImagePolymorphic = "DEPRECATED_ImagePolymorphic"
|
|
||||||
IntegerPolymorphic = "DEPRECATED_IntegerPolymorphic"
|
|
||||||
LatentsPolymorphic = "DEPRECATED_LatentsPolymorphic"
|
|
||||||
StringPolymorphic = "DEPRECATED_StringPolymorphic"
|
|
||||||
MainModel = "DEPRECATED_MainModel"
|
|
||||||
UNet = "DEPRECATED_UNet"
|
|
||||||
Vae = "DEPRECATED_Vae"
|
|
||||||
CLIP = "DEPRECATED_CLIP"
|
|
||||||
Collection = "DEPRECATED_Collection"
|
|
||||||
CollectionItem = "DEPRECATED_CollectionItem"
|
|
||||||
Enum = "DEPRECATED_Enum"
|
|
||||||
WorkflowField = "DEPRECATED_WorkflowField"
|
|
||||||
IsIntermediate = "DEPRECATED_IsIntermediate"
|
|
||||||
BoardField = "DEPRECATED_BoardField"
|
|
||||||
MetadataItem = "DEPRECATED_MetadataItem"
|
|
||||||
MetadataItemCollection = "DEPRECATED_MetadataItemCollection"
|
|
||||||
MetadataItemPolymorphic = "DEPRECATED_MetadataItemPolymorphic"
|
|
||||||
MetadataDict = "DEPRECATED_MetadataDict"
|
|
||||||
# endregion
|
# endregion
|
||||||
|
|
||||||
|
|
||||||
class UIComponent(str, Enum, metaclass=MetaEnum):
|
class UIComponent(str, Enum):
|
||||||
"""
|
"""
|
||||||
The type of UI component to use for a field, used to override the default components, which are
|
The type of UI component to use for a field, used to override the default components, which are \
|
||||||
inferred from the field type.
|
inferred from the field type.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -192,22 +196,21 @@ class UIComponent(str, Enum, metaclass=MetaEnum):
|
|||||||
Slider = "slider"
|
Slider = "slider"
|
||||||
|
|
||||||
|
|
||||||
class InputFieldJSONSchemaExtra(BaseModel):
|
class _InputField(BaseModel):
|
||||||
"""
|
"""
|
||||||
Extra attributes to be added to input fields and their OpenAPI schema. Used during graph execution,
|
*DO NOT USE*
|
||||||
and by the workflow editor during schema parsing and UI rendering.
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
||||||
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
||||||
|
purpose in the backend.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
input: Input
|
input: Input
|
||||||
orig_required: bool
|
ui_hidden: bool
|
||||||
field_kind: FieldKind
|
ui_type: Optional[UIType]
|
||||||
default: Optional[Any] = None
|
ui_component: Optional[UIComponent]
|
||||||
orig_default: Optional[Any] = None
|
ui_order: Optional[int]
|
||||||
ui_hidden: bool = False
|
ui_choice_labels: Optional[dict[str, str]]
|
||||||
ui_type: Optional[UIType] = None
|
item_default: Optional[Any]
|
||||||
ui_component: Optional[UIComponent] = None
|
|
||||||
ui_order: Optional[int] = None
|
|
||||||
ui_choice_labels: Optional[dict[str, str]] = None
|
|
||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
validate_assignment=True,
|
validate_assignment=True,
|
||||||
@ -215,13 +218,14 @@ class InputFieldJSONSchemaExtra(BaseModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class OutputFieldJSONSchemaExtra(BaseModel):
|
class _OutputField(BaseModel):
|
||||||
"""
|
"""
|
||||||
Extra attributes to be added to input fields and their OpenAPI schema. Used by the workflow editor
|
*DO NOT USE*
|
||||||
during schema parsing and UI rendering.
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
||||||
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
||||||
|
purpose in the backend.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
field_kind: FieldKind
|
|
||||||
ui_hidden: bool
|
ui_hidden: bool
|
||||||
ui_type: Optional[UIType]
|
ui_type: Optional[UIType]
|
||||||
ui_order: Optional[int]
|
ui_order: Optional[int]
|
||||||
@ -232,9 +236,13 @@ class OutputFieldJSONSchemaExtra(BaseModel):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_type(klass: BaseModel) -> str:
|
||||||
|
"""Helper function to get an invocation or invocation output's type. This is the default value of the `type` field."""
|
||||||
|
return klass.model_fields["type"].default
|
||||||
|
|
||||||
|
|
||||||
def InputField(
|
def InputField(
|
||||||
# copied from pydantic's Field
|
# copied from pydantic's Field
|
||||||
# TODO: Can we support default_factory?
|
|
||||||
default: Any = _Unset,
|
default: Any = _Unset,
|
||||||
default_factory: Callable[[], Any] | None = _Unset,
|
default_factory: Callable[[], Any] | None = _Unset,
|
||||||
title: str | None = _Unset,
|
title: str | None = _Unset,
|
||||||
@ -258,11 +266,12 @@ def InputField(
|
|||||||
ui_hidden: bool = False,
|
ui_hidden: bool = False,
|
||||||
ui_order: Optional[int] = None,
|
ui_order: Optional[int] = None,
|
||||||
ui_choice_labels: Optional[dict[str, str]] = None,
|
ui_choice_labels: Optional[dict[str, str]] = None,
|
||||||
|
item_default: Optional[Any] = None,
|
||||||
) -> Any:
|
) -> Any:
|
||||||
"""
|
"""
|
||||||
Creates an input field for an invocation.
|
Creates an input field for an invocation.
|
||||||
|
|
||||||
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/latest/api/fields/#pydantic.fields.Field) \
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
||||||
that adds a few extra parameters to support graph execution and the node editor UI.
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
||||||
|
|
||||||
:param Input input: [Input.Any] The kind of input this field requires. \
|
:param Input input: [Input.Any] The kind of input this field requires. \
|
||||||
@ -282,102 +291,108 @@ def InputField(
|
|||||||
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
|
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
|
||||||
For this case, you could provide `UIComponent.Textarea`.
|
For this case, you could provide `UIComponent.Textarea`.
|
||||||
|
|
||||||
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
|
||||||
|
|
||||||
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI.
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
||||||
|
|
||||||
:param dict[str, str] ui_choice_labels: [None] Specifies the labels to use for the choices in an enum field.
|
: param bool item_default: [None] Specifies the default item value, if this is a collection input. \
|
||||||
|
Ignored for non-collection fields.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
json_schema_extra_ = InputFieldJSONSchemaExtra(
|
json_schema_extra_: dict[str, Any] = dict(
|
||||||
input=input,
|
input=input,
|
||||||
ui_type=ui_type,
|
ui_type=ui_type,
|
||||||
ui_component=ui_component,
|
ui_component=ui_component,
|
||||||
ui_hidden=ui_hidden,
|
ui_hidden=ui_hidden,
|
||||||
ui_order=ui_order,
|
ui_order=ui_order,
|
||||||
|
item_default=item_default,
|
||||||
ui_choice_labels=ui_choice_labels,
|
ui_choice_labels=ui_choice_labels,
|
||||||
field_kind=FieldKind.Input,
|
_field_kind="input",
|
||||||
orig_required=True,
|
)
|
||||||
|
|
||||||
|
field_args = dict(
|
||||||
|
default=default,
|
||||||
|
default_factory=default_factory,
|
||||||
|
title=title,
|
||||||
|
description=description,
|
||||||
|
pattern=pattern,
|
||||||
|
strict=strict,
|
||||||
|
gt=gt,
|
||||||
|
ge=ge,
|
||||||
|
lt=lt,
|
||||||
|
le=le,
|
||||||
|
multiple_of=multiple_of,
|
||||||
|
allow_inf_nan=allow_inf_nan,
|
||||||
|
max_digits=max_digits,
|
||||||
|
decimal_places=decimal_places,
|
||||||
|
min_length=min_length,
|
||||||
|
max_length=max_length,
|
||||||
)
|
)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
There is a conflict between the typing of invocation definitions and the typing of an invocation's
|
Invocation definitions have their fields typed correctly for their `invoke()` functions.
|
||||||
`invoke()` function.
|
This typing is often more specific than the actual invocation definition requires, because
|
||||||
|
fields may have values provided only by connections.
|
||||||
On instantiation of a node, the invocation definition is used to create the python class. At this time,
|
|
||||||
any number of fields may be optional, because they may be provided by connections.
|
|
||||||
|
|
||||||
On calling of `invoke()`, however, those fields may be required.
|
|
||||||
|
|
||||||
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
|
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
|
||||||
|
|
||||||
`image` is required during the call to `invoke()`, but when the python class is instantiated,
|
`image` is required during the call to `invoke()`, but when the python class is instantiated,
|
||||||
the field may not be present. This is fine, because that image field will be provided by a
|
the field may not be present. This is fine, because that image field will be provided by a
|
||||||
connection from an ancestor node, which outputs an image.
|
an ancestor node that outputs the image.
|
||||||
|
|
||||||
This means we want to type the `image` field as optional for the node class definition, but required
|
So we'd like to type that `image` field as `Optional[ImageField]`. If we do that, however, then
|
||||||
for the `invoke()` function.
|
we need to handle a lot of extra logic in the `invoke()` function to check if the field has a
|
||||||
|
value or not. This is very tedious.
|
||||||
|
|
||||||
If we use `typing.Optional` in the node class definition, the field will be typed as optional in the
|
Ideally, the invocation definition would be able to specify that the field is required during
|
||||||
`invoke()` method, and we'll have to do a lot of runtime checks to ensure the field is present - or
|
invocation, but optional during instantiation. So the field would be typed as `image: ImageField`,
|
||||||
any static type analysis tools will complain.
|
but when calling the `invoke()` function, we raise an error if the field is not present.
|
||||||
|
|
||||||
To get around this, in node class definitions, we type all fields correctly for the `invoke()` function,
|
To do this, we need to do a bit of fanagling to make the pydantic field optional, and then do
|
||||||
but secretly make them optional in `InputField()`. We also store the original required bool and/or default
|
extra validation when calling `invoke()`.
|
||||||
value. When we call `invoke()`, we use this stored information to do an additional check on the class.
|
|
||||||
|
There is some additional logic here to cleaning create the pydantic field via the wrapper.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if default_factory is not _Unset and default_factory is not None:
|
# Filter out field args not provided
|
||||||
default = default_factory()
|
|
||||||
logger.warn('"default_factory" is not supported, calling it now to set "default"')
|
|
||||||
|
|
||||||
# These are the args we may wish pass to the pydantic `Field()` function
|
|
||||||
field_args = {
|
|
||||||
"default": default,
|
|
||||||
"title": title,
|
|
||||||
"description": description,
|
|
||||||
"pattern": pattern,
|
|
||||||
"strict": strict,
|
|
||||||
"gt": gt,
|
|
||||||
"ge": ge,
|
|
||||||
"lt": lt,
|
|
||||||
"le": le,
|
|
||||||
"multiple_of": multiple_of,
|
|
||||||
"allow_inf_nan": allow_inf_nan,
|
|
||||||
"max_digits": max_digits,
|
|
||||||
"decimal_places": decimal_places,
|
|
||||||
"min_length": min_length,
|
|
||||||
"max_length": max_length,
|
|
||||||
}
|
|
||||||
|
|
||||||
# We only want to pass the args that were provided, otherwise the `Field()`` function won't work as expected
|
|
||||||
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
|
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
|
||||||
|
|
||||||
# Because we are manually making fields optional, we need to store the original required bool for reference later
|
if (default is not PydanticUndefined) and (default_factory is not PydanticUndefined):
|
||||||
json_schema_extra_.orig_required = default is PydanticUndefined
|
raise ValueError("Cannot specify both default and default_factory")
|
||||||
|
|
||||||
# Make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
|
# because we are manually making fields optional, we need to store the original required bool for reference later
|
||||||
if input is Input.Any or input is Input.Connection:
|
if default is PydanticUndefined and default_factory is PydanticUndefined:
|
||||||
|
json_schema_extra_.update(dict(orig_required=True))
|
||||||
|
else:
|
||||||
|
json_schema_extra_.update(dict(orig_required=False))
|
||||||
|
|
||||||
|
# make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
|
||||||
|
if (input is Input.Any or input is Input.Connection) and default_factory is PydanticUndefined:
|
||||||
default_ = None if default is PydanticUndefined else default
|
default_ = None if default is PydanticUndefined else default
|
||||||
provided_args.update({"default": default_})
|
provided_args.update(dict(default=default_))
|
||||||
if default is not PydanticUndefined:
|
if default is not PydanticUndefined:
|
||||||
# Before invoking, we'll check for the original default value and set it on the field if the field has no value
|
# before invoking, we'll grab the original default value and set it on the field if the field wasn't provided a value
|
||||||
json_schema_extra_.default = default
|
json_schema_extra_.update(dict(default=default))
|
||||||
json_schema_extra_.orig_default = default
|
json_schema_extra_.update(dict(orig_default=default))
|
||||||
elif default is not PydanticUndefined:
|
elif default is not PydanticUndefined and default_factory is PydanticUndefined:
|
||||||
default_ = default
|
default_ = default
|
||||||
provided_args.update({"default": default_})
|
provided_args.update(dict(default=default_))
|
||||||
json_schema_extra_.orig_default = default_
|
json_schema_extra_.update(dict(orig_default=default_))
|
||||||
|
elif default_factory is not PydanticUndefined:
|
||||||
|
provided_args.update(dict(default_factory=default_factory))
|
||||||
|
# TODO: cannot serialize default_factory...
|
||||||
|
# json_schema_extra_.update(dict(orig_default_factory=default_factory))
|
||||||
|
|
||||||
return Field(
|
return Field(
|
||||||
**provided_args,
|
**provided_args,
|
||||||
json_schema_extra=json_schema_extra_.model_dump(exclude_none=True),
|
json_schema_extra=json_schema_extra_,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def OutputField(
|
def OutputField(
|
||||||
# copied from pydantic's Field
|
# copied from pydantic's Field
|
||||||
default: Any = _Unset,
|
default: Any = _Unset,
|
||||||
|
default_factory: Callable[[], Any] | None = _Unset,
|
||||||
title: str | None = _Unset,
|
title: str | None = _Unset,
|
||||||
description: str | None = _Unset,
|
description: str | None = _Unset,
|
||||||
pattern: str | None = _Unset,
|
pattern: str | None = _Unset,
|
||||||
@ -410,12 +425,13 @@ def OutputField(
|
|||||||
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
||||||
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
||||||
|
|
||||||
:param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
|
||||||
|
|
||||||
:param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
||||||
"""
|
"""
|
||||||
return Field(
|
return Field(
|
||||||
default=default,
|
default=default,
|
||||||
|
default_factory=default_factory,
|
||||||
title=title,
|
title=title,
|
||||||
description=description,
|
description=description,
|
||||||
pattern=pattern,
|
pattern=pattern,
|
||||||
@ -430,12 +446,12 @@ def OutputField(
|
|||||||
decimal_places=decimal_places,
|
decimal_places=decimal_places,
|
||||||
min_length=min_length,
|
min_length=min_length,
|
||||||
max_length=max_length,
|
max_length=max_length,
|
||||||
json_schema_extra=OutputFieldJSONSchemaExtra(
|
json_schema_extra=dict(
|
||||||
ui_type=ui_type,
|
ui_type=ui_type,
|
||||||
ui_hidden=ui_hidden,
|
ui_hidden=ui_hidden,
|
||||||
ui_order=ui_order,
|
ui_order=ui_order,
|
||||||
field_kind=FieldKind.Output,
|
_field_kind="output",
|
||||||
).model_dump(exclude_none=True),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -448,11 +464,10 @@ class UIConfigBase(BaseModel):
|
|||||||
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
||||||
title: Optional[str] = Field(default=None, description="The node's display name")
|
title: Optional[str] = Field(default=None, description="The node's display name")
|
||||||
category: Optional[str] = Field(default=None, description="The node's category")
|
category: Optional[str] = Field(default=None, description="The node's category")
|
||||||
version: str = Field(
|
version: Optional[str] = Field(
|
||||||
|
default=None,
|
||||||
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
|
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
|
||||||
)
|
)
|
||||||
node_pack: Optional[str] = Field(default=None, description="Whether or not this is a custom node")
|
|
||||||
classification: Classification = Field(default=Classification.Stable, description="The node's classification")
|
|
||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
validate_assignment=True,
|
validate_assignment=True,
|
||||||
@ -468,7 +483,6 @@ class InvocationContext:
|
|||||||
queue_id: str
|
queue_id: str
|
||||||
queue_item_id: int
|
queue_item_id: int
|
||||||
queue_batch_id: str
|
queue_batch_id: str
|
||||||
workflow: Optional[WorkflowWithoutID]
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -477,14 +491,12 @@ class InvocationContext:
|
|||||||
queue_item_id: int,
|
queue_item_id: int,
|
||||||
queue_batch_id: str,
|
queue_batch_id: str,
|
||||||
graph_execution_state_id: str,
|
graph_execution_state_id: str,
|
||||||
workflow: Optional[WorkflowWithoutID],
|
|
||||||
):
|
):
|
||||||
self.services = services
|
self.services = services
|
||||||
self.graph_execution_state_id = graph_execution_state_id
|
self.graph_execution_state_id = graph_execution_state_id
|
||||||
self.queue_id = queue_id
|
self.queue_id = queue_id
|
||||||
self.queue_item_id = queue_item_id
|
self.queue_item_id = queue_item_id
|
||||||
self.queue_batch_id = queue_batch_id
|
self.queue_batch_id = queue_batch_id
|
||||||
self.workflow = workflow
|
|
||||||
|
|
||||||
|
|
||||||
class BaseInvocationOutput(BaseModel):
|
class BaseInvocationOutput(BaseModel):
|
||||||
@ -498,39 +510,29 @@ class BaseInvocationOutput(BaseModel):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def register_output(cls, output: BaseInvocationOutput) -> None:
|
def register_output(cls, output: BaseInvocationOutput) -> None:
|
||||||
"""Registers an invocation output."""
|
|
||||||
cls._output_classes.add(output)
|
cls._output_classes.add(output)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
||||||
"""Gets all invocation outputs."""
|
|
||||||
return cls._output_classes
|
return cls._output_classes
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_outputs_union(cls) -> UnionType:
|
def get_outputs_union(cls) -> UnionType:
|
||||||
"""Gets a union of all invocation outputs."""
|
|
||||||
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
|
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
|
||||||
return outputs_union # type: ignore [return-value]
|
return outputs_union # type: ignore [return-value]
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_output_types(cls) -> Iterable[str]:
|
def get_output_types(cls) -> Iterable[str]:
|
||||||
"""Gets all invocation output types."""
|
return map(lambda i: get_type(i), BaseInvocationOutput.get_outputs())
|
||||||
return (i.get_type() for i in BaseInvocationOutput.get_outputs())
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||||
"""Adds various UI-facing attributes to the invocation output's OpenAPI schema."""
|
|
||||||
# Because we use a pydantic Literal field with default value for the invocation type,
|
# Because we use a pydantic Literal field with default value for the invocation type,
|
||||||
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
||||||
if "required" not in schema or not isinstance(schema["required"], list):
|
if "required" not in schema or not isinstance(schema["required"], list):
|
||||||
schema["required"] = []
|
schema["required"] = list()
|
||||||
schema["required"].extend(["type"])
|
schema["required"].extend(["type"])
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def get_type(cls) -> str:
|
|
||||||
"""Gets the invocation output's type, as provided by the `@invocation_output` decorator."""
|
|
||||||
return cls.model_fields["type"].default
|
|
||||||
|
|
||||||
model_config = ConfigDict(
|
model_config = ConfigDict(
|
||||||
protected_namespaces=(),
|
protected_namespaces=(),
|
||||||
validate_assignment=True,
|
validate_assignment=True,
|
||||||
@ -560,29 +562,21 @@ class BaseInvocation(ABC, BaseModel):
|
|||||||
|
|
||||||
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def get_type(cls) -> str:
|
|
||||||
"""Gets the invocation's type, as provided by the `@invocation` decorator."""
|
|
||||||
return cls.model_fields["type"].default
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
||||||
"""Registers an invocation."""
|
|
||||||
cls._invocation_classes.add(invocation)
|
cls._invocation_classes.add(invocation)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_invocations_union(cls) -> UnionType:
|
def get_invocations_union(cls) -> UnionType:
|
||||||
"""Gets a union of all invocation types."""
|
|
||||||
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
|
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
|
||||||
return invocations_union # type: ignore [return-value]
|
return invocations_union # type: ignore [return-value]
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_invocations(cls) -> Iterable[BaseInvocation]:
|
def get_invocations(cls) -> Iterable[BaseInvocation]:
|
||||||
"""Gets all invocations, respecting the allowlist and denylist."""
|
|
||||||
app_config = InvokeAIAppConfig.get_config()
|
app_config = InvokeAIAppConfig.get_config()
|
||||||
allowed_invocations: set[BaseInvocation] = set()
|
allowed_invocations: set[BaseInvocation] = set()
|
||||||
for sc in cls._invocation_classes:
|
for sc in cls._invocation_classes:
|
||||||
invocation_type = sc.get_type()
|
invocation_type = get_type(sc)
|
||||||
is_in_allowlist = (
|
is_in_allowlist = (
|
||||||
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
|
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
|
||||||
)
|
)
|
||||||
@ -595,36 +589,36 @@ class BaseInvocation(ABC, BaseModel):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
|
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
|
||||||
"""Gets a map of all invocation types to their invocation classes."""
|
# Get the type strings out of the literals and into a dictionary
|
||||||
return {i.get_type(): i for i in BaseInvocation.get_invocations()}
|
return dict(
|
||||||
|
map(
|
||||||
|
lambda i: (get_type(i), i),
|
||||||
|
BaseInvocation.get_invocations(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_invocation_types(cls) -> Iterable[str]:
|
def get_invocation_types(cls) -> Iterable[str]:
|
||||||
"""Gets all invocation types."""
|
return map(lambda i: get_type(i), BaseInvocation.get_invocations())
|
||||||
return (i.get_type() for i in BaseInvocation.get_invocations())
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_output_annotation(cls) -> BaseInvocationOutput:
|
def get_output_type(cls) -> BaseInvocationOutput:
|
||||||
"""Gets the invocation's output annotation (i.e. the return annotation of its `invoke()` method)."""
|
|
||||||
return signature(cls.invoke).return_annotation
|
return signature(cls.invoke).return_annotation
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel], *args, **kwargs) -> None:
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||||
"""Adds various UI-facing attributes to the invocation's OpenAPI schema."""
|
# Add the various UI-facing attributes to the schema. These are used to build the invocation templates.
|
||||||
uiconfig = cast(UIConfigBase | None, getattr(model_class, "UIConfig", None))
|
uiconfig = getattr(model_class, "UIConfig", None)
|
||||||
if uiconfig is not None:
|
if uiconfig and hasattr(uiconfig, "title"):
|
||||||
if uiconfig.title is not None:
|
schema["title"] = uiconfig.title
|
||||||
schema["title"] = uiconfig.title
|
if uiconfig and hasattr(uiconfig, "tags"):
|
||||||
if uiconfig.tags is not None:
|
schema["tags"] = uiconfig.tags
|
||||||
schema["tags"] = uiconfig.tags
|
if uiconfig and hasattr(uiconfig, "category"):
|
||||||
if uiconfig.category is not None:
|
schema["category"] = uiconfig.category
|
||||||
schema["category"] = uiconfig.category
|
if uiconfig and hasattr(uiconfig, "version"):
|
||||||
if uiconfig.node_pack is not None:
|
|
||||||
schema["node_pack"] = uiconfig.node_pack
|
|
||||||
schema["classification"] = uiconfig.classification
|
|
||||||
schema["version"] = uiconfig.version
|
schema["version"] = uiconfig.version
|
||||||
if "required" not in schema or not isinstance(schema["required"], list):
|
if "required" not in schema or not isinstance(schema["required"], list):
|
||||||
schema["required"] = []
|
schema["required"] = list()
|
||||||
schema["required"].extend(["type", "id"])
|
schema["required"].extend(["type", "id"])
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
@ -633,10 +627,6 @@ class BaseInvocation(ABC, BaseModel):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
|
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
|
||||||
"""
|
|
||||||
Internal invoke method, calls `invoke()` after some prep.
|
|
||||||
Handles optional fields that are required to call `invoke()` and invocation cache.
|
|
||||||
"""
|
|
||||||
for field_name, field in self.model_fields.items():
|
for field_name, field in self.model_fields.items():
|
||||||
if not field.json_schema_extra or callable(field.json_schema_extra):
|
if not field.json_schema_extra or callable(field.json_schema_extra):
|
||||||
# something has gone terribly awry, we should always have this and it should be a dict
|
# something has gone terribly awry, we should always have this and it should be a dict
|
||||||
@ -676,20 +666,21 @@ class BaseInvocation(ABC, BaseModel):
|
|||||||
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
||||||
return self.invoke(context)
|
return self.invoke(context)
|
||||||
|
|
||||||
|
def get_type(self) -> str:
|
||||||
|
return self.model_fields["type"].default
|
||||||
|
|
||||||
id: str = Field(
|
id: str = Field(
|
||||||
default_factory=uuid_string,
|
default_factory=uuid_string,
|
||||||
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
|
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
|
||||||
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
|
json_schema_extra=dict(_field_kind="internal"),
|
||||||
)
|
)
|
||||||
is_intermediate: bool = Field(
|
is_intermediate: bool = Field(
|
||||||
default=False,
|
default=False,
|
||||||
description="Whether or not this is an intermediate invocation.",
|
description="Whether or not this is an intermediate invocation.",
|
||||||
json_schema_extra={"ui_type": "IsIntermediate", "field_kind": FieldKind.NodeAttribute},
|
json_schema_extra=dict(ui_type=UIType.IsIntermediate, _field_kind="internal"),
|
||||||
)
|
)
|
||||||
use_cache: bool = Field(
|
use_cache: bool = Field(
|
||||||
default=True,
|
default=True, description="Whether or not to use the cache", json_schema_extra=dict(_field_kind="internal")
|
||||||
description="Whether or not to use the cache",
|
|
||||||
json_schema_extra={"field_kind": FieldKind.NodeAttribute},
|
|
||||||
)
|
)
|
||||||
|
|
||||||
UIConfig: ClassVar[Type[UIConfigBase]]
|
UIConfig: ClassVar[Type[UIConfigBase]]
|
||||||
@ -706,15 +697,12 @@ class BaseInvocation(ABC, BaseModel):
|
|||||||
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
|
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
|
||||||
|
|
||||||
|
|
||||||
RESERVED_NODE_ATTRIBUTE_FIELD_NAMES = {
|
RESERVED_INPUT_FIELD_NAMES = {
|
||||||
"id",
|
"id",
|
||||||
"is_intermediate",
|
"is_intermediate",
|
||||||
"use_cache",
|
"use_cache",
|
||||||
"type",
|
"type",
|
||||||
"workflow",
|
"workflow",
|
||||||
}
|
|
||||||
|
|
||||||
RESERVED_INPUT_FIELD_NAMES = {
|
|
||||||
"metadata",
|
"metadata",
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -725,68 +713,49 @@ class _Model(BaseModel):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
# Get all pydantic model attrs, methods, etc
|
||||||
warnings.simplefilter("ignore", category=DeprecationWarning)
|
RESERVED_PYDANTIC_FIELD_NAMES = set(map(lambda m: m[0], inspect.getmembers(_Model())))
|
||||||
# Get all pydantic model attrs, methods, etc
|
|
||||||
RESERVED_PYDANTIC_FIELD_NAMES = {m[0] for m in inspect.getmembers(_Model())}
|
|
||||||
|
|
||||||
|
|
||||||
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
|
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
|
||||||
"""
|
"""
|
||||||
Validates the fields of an invocation or invocation output:
|
Validates the fields of an invocation or invocation output:
|
||||||
- Must not override any pydantic reserved fields
|
- must not override any pydantic reserved fields
|
||||||
- Must have a type annotation
|
- must be created via `InputField`, `OutputField`, or be an internal field defined in this file
|
||||||
- Must have a json_schema_extra dict
|
|
||||||
- Must have field_kind in json_schema_extra
|
|
||||||
- Field name must not be reserved, according to its field_kind
|
|
||||||
"""
|
"""
|
||||||
for name, field in model_fields.items():
|
for name, field in model_fields.items():
|
||||||
if name in RESERVED_PYDANTIC_FIELD_NAMES:
|
if name in RESERVED_PYDANTIC_FIELD_NAMES:
|
||||||
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved by pydantic)')
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved by pydantic)')
|
||||||
|
|
||||||
if not field.annotation:
|
field_kind = (
|
||||||
raise InvalidFieldError(f'Invalid field type "{name}" on "{model_type}" (missing annotation)')
|
# _field_kind is defined via InputField(), OutputField() or by one of the internal fields defined in this file
|
||||||
|
field.json_schema_extra.get("_field_kind", None)
|
||||||
if not isinstance(field.json_schema_extra, dict):
|
if field.json_schema_extra
|
||||||
raise InvalidFieldError(
|
else None
|
||||||
f'Invalid field definition for "{name}" on "{model_type}" (missing json_schema_extra dict)'
|
)
|
||||||
)
|
|
||||||
|
|
||||||
field_kind = field.json_schema_extra.get("field_kind", None)
|
|
||||||
|
|
||||||
# must have a field_kind
|
# must have a field_kind
|
||||||
if not isinstance(field_kind, FieldKind):
|
if field_kind is None or field_kind not in {"input", "output", "internal"}:
|
||||||
raise InvalidFieldError(
|
raise InvalidFieldError(
|
||||||
f'Invalid field definition for "{name}" on "{model_type}" (maybe it\'s not an InputField or OutputField?)'
|
f'Invalid field definition for "{name}" on "{model_type}" (maybe it\'s not an InputField or OutputField?)'
|
||||||
)
|
)
|
||||||
|
|
||||||
if field_kind is FieldKind.Input and (
|
if field_kind == "input" and name in RESERVED_INPUT_FIELD_NAMES:
|
||||||
name in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES or name in RESERVED_INPUT_FIELD_NAMES
|
|
||||||
):
|
|
||||||
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved input field name)')
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved input field name)')
|
||||||
|
|
||||||
if field_kind is FieldKind.Output and name in RESERVED_OUTPUT_FIELD_NAMES:
|
if field_kind == "output" and name in RESERVED_OUTPUT_FIELD_NAMES:
|
||||||
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved output field name)')
|
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved output field name)')
|
||||||
|
|
||||||
if (field_kind is FieldKind.Internal) and name not in RESERVED_INPUT_FIELD_NAMES:
|
# internal fields *must* be in the reserved list
|
||||||
|
if (
|
||||||
|
field_kind == "internal"
|
||||||
|
and name not in RESERVED_INPUT_FIELD_NAMES
|
||||||
|
and name not in RESERVED_OUTPUT_FIELD_NAMES
|
||||||
|
):
|
||||||
raise InvalidFieldError(
|
raise InvalidFieldError(
|
||||||
f'Invalid field name "{name}" on "{model_type}" (internal field without reserved name)'
|
f'Invalid field name "{name}" on "{model_type}" (internal field without reserved name)'
|
||||||
)
|
)
|
||||||
|
|
||||||
# node attribute fields *must* be in the reserved list
|
|
||||||
if (
|
|
||||||
field_kind is FieldKind.NodeAttribute
|
|
||||||
and name not in RESERVED_NODE_ATTRIBUTE_FIELD_NAMES
|
|
||||||
and name not in RESERVED_OUTPUT_FIELD_NAMES
|
|
||||||
):
|
|
||||||
raise InvalidFieldError(
|
|
||||||
f'Invalid field name "{name}" on "{model_type}" (node attribute field without reserved name)'
|
|
||||||
)
|
|
||||||
|
|
||||||
ui_type = field.json_schema_extra.get("ui_type", None)
|
|
||||||
if isinstance(ui_type, str) and ui_type.startswith("DEPRECATED_"):
|
|
||||||
logger.warn(f"\"UIType.{ui_type.split('_')[-1]}\" is deprecated, ignoring")
|
|
||||||
field.json_schema_extra.pop("ui_type")
|
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
@ -797,7 +766,6 @@ def invocation(
|
|||||||
category: Optional[str] = None,
|
category: Optional[str] = None,
|
||||||
version: Optional[str] = None,
|
version: Optional[str] = None,
|
||||||
use_cache: Optional[bool] = True,
|
use_cache: Optional[bool] = True,
|
||||||
classification: Classification = Classification.Stable,
|
|
||||||
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
|
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
|
||||||
"""
|
"""
|
||||||
Registers an invocation.
|
Registers an invocation.
|
||||||
@ -808,7 +776,6 @@ def invocation(
|
|||||||
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
||||||
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
||||||
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
||||||
:param Classification classification: The classification of the invocation. Defaults to FeatureClassification.Stable. Use Beta or Prototype if the invocation is unstable.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
|
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
|
||||||
@ -823,31 +790,21 @@ def invocation(
|
|||||||
validate_fields(cls.model_fields, invocation_type)
|
validate_fields(cls.model_fields, invocation_type)
|
||||||
|
|
||||||
# Add OpenAPI schema extras
|
# Add OpenAPI schema extras
|
||||||
uiconfig_name = cls.__qualname__ + ".UIConfig"
|
uiconf_name = cls.__qualname__ + ".UIConfig"
|
||||||
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconfig_name:
|
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
|
||||||
cls.UIConfig = type(uiconfig_name, (UIConfigBase,), {})
|
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
|
||||||
cls.UIConfig.title = title
|
if title is not None:
|
||||||
cls.UIConfig.tags = tags
|
cls.UIConfig.title = title
|
||||||
cls.UIConfig.category = category
|
if tags is not None:
|
||||||
cls.UIConfig.classification = classification
|
cls.UIConfig.tags = tags
|
||||||
|
if category is not None:
|
||||||
# Grab the node pack's name from the module name, if it's a custom node
|
cls.UIConfig.category = category
|
||||||
is_custom_node = cls.__module__.rsplit(".", 1)[0] == "invokeai.app.invocations"
|
|
||||||
if is_custom_node:
|
|
||||||
cls.UIConfig.node_pack = cls.__module__.split(".")[0]
|
|
||||||
else:
|
|
||||||
cls.UIConfig.node_pack = None
|
|
||||||
|
|
||||||
if version is not None:
|
if version is not None:
|
||||||
try:
|
try:
|
||||||
semver.Version.parse(version)
|
semver.Version.parse(version)
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
||||||
cls.UIConfig.version = version
|
cls.UIConfig.version = version
|
||||||
else:
|
|
||||||
logger.warn(f'No version specified for node "{invocation_type}", using "1.0.0"')
|
|
||||||
cls.UIConfig.version = "1.0.0"
|
|
||||||
|
|
||||||
if use_cache is not None:
|
if use_cache is not None:
|
||||||
cls.model_fields["use_cache"].default = use_cache
|
cls.model_fields["use_cache"].default = use_cache
|
||||||
|
|
||||||
@ -862,7 +819,7 @@ def invocation(
|
|||||||
|
|
||||||
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
||||||
invocation_type_field = Field(
|
invocation_type_field = Field(
|
||||||
title="type", default=invocation_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
|
title="type", default=invocation_type, json_schema_extra=dict(_field_kind="internal")
|
||||||
)
|
)
|
||||||
|
|
||||||
docstring = cls.__doc__
|
docstring = cls.__doc__
|
||||||
@ -908,9 +865,7 @@ def invocation_output(
|
|||||||
# Add the output type to the model.
|
# Add the output type to the model.
|
||||||
|
|
||||||
output_type_annotation = Literal[output_type] # type: ignore
|
output_type_annotation = Literal[output_type] # type: ignore
|
||||||
output_type_field = Field(
|
output_type_field = Field(title="type", default=output_type, json_schema_extra=dict(_field_kind="internal"))
|
||||||
title="type", default=output_type, json_schema_extra={"field_kind": FieldKind.NodeAttribute}
|
|
||||||
)
|
|
||||||
|
|
||||||
docstring = cls.__doc__
|
docstring = cls.__doc__
|
||||||
cls = create_model(
|
cls = create_model(
|
||||||
@ -928,6 +883,24 @@ def invocation_output(
|
|||||||
return wrapper
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
class WorkflowField(RootModel):
|
||||||
|
"""
|
||||||
|
Pydantic model for workflows with custom root of type dict[str, Any].
|
||||||
|
Workflows are stored without a strict schema.
|
||||||
|
"""
|
||||||
|
|
||||||
|
root: dict[str, Any] = Field(description="The workflow")
|
||||||
|
|
||||||
|
|
||||||
|
WorkflowFieldValidator = TypeAdapter(WorkflowField)
|
||||||
|
|
||||||
|
|
||||||
|
class WithWorkflow(BaseModel):
|
||||||
|
workflow: Optional[WorkflowField] = Field(
|
||||||
|
default=None, description=FieldDescriptions.workflow, json_schema_extra=dict(_field_kind="internal")
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class MetadataField(RootModel):
|
class MetadataField(RootModel):
|
||||||
"""
|
"""
|
||||||
Pydantic model for metadata with custom root of type dict[str, Any].
|
Pydantic model for metadata with custom root of type dict[str, Any].
|
||||||
@ -942,21 +915,5 @@ MetadataFieldValidator = TypeAdapter(MetadataField)
|
|||||||
|
|
||||||
class WithMetadata(BaseModel):
|
class WithMetadata(BaseModel):
|
||||||
metadata: Optional[MetadataField] = Field(
|
metadata: Optional[MetadataField] = Field(
|
||||||
default=None,
|
default=None, description=FieldDescriptions.metadata, json_schema_extra=dict(_field_kind="internal")
|
||||||
description=FieldDescriptions.metadata,
|
|
||||||
json_schema_extra=InputFieldJSONSchemaExtra(
|
|
||||||
field_kind=FieldKind.Internal,
|
|
||||||
input=Input.Connection,
|
|
||||||
orig_required=False,
|
|
||||||
).model_dump(exclude_none=True),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class WithWorkflow:
|
|
||||||
workflow = None
|
|
||||||
|
|
||||||
def __init_subclass__(cls) -> None:
|
|
||||||
logger.warn(
|
|
||||||
f"{cls.__module__.split('.')[0]}.{cls.__name__}: WithWorkflow is deprecated. Use `context.workflow` to access the workflow."
|
|
||||||
)
|
|
||||||
super().__init_subclass__()
|
|
||||||
|
@ -5,7 +5,7 @@ import numpy as np
|
|||||||
from pydantic import ValidationInfo, field_validator
|
from pydantic import ValidationInfo, field_validator
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
from invokeai.app.invocations.primitives import IntegerCollectionOutput
|
||||||
from invokeai.app.util.misc import SEED_MAX
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||||
|
|
||||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||||||
|
|
||||||
@ -55,7 +55,7 @@ class RangeOfSizeInvocation(BaseInvocation):
|
|||||||
title="Random Range",
|
title="Random Range",
|
||||||
tags=["range", "integer", "random", "collection"],
|
tags=["range", "integer", "random", "collection"],
|
||||||
category="collections",
|
category="collections",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
use_cache=False,
|
use_cache=False,
|
||||||
)
|
)
|
||||||
class RandomRangeInvocation(BaseInvocation):
|
class RandomRangeInvocation(BaseInvocation):
|
||||||
@ -65,10 +65,10 @@ class RandomRangeInvocation(BaseInvocation):
|
|||||||
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
|
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
|
||||||
size: int = InputField(default=1, description="The number of values to generate")
|
size: int = InputField(default=1, description="The number of values to generate")
|
||||||
seed: int = InputField(
|
seed: int = InputField(
|
||||||
default=0,
|
|
||||||
ge=0,
|
ge=0,
|
||||||
le=SEED_MAX,
|
le=SEED_MAX,
|
||||||
description="The seed for the RNG (omit for random)",
|
description="The seed for the RNG (omit for random)",
|
||||||
|
default_factory=get_random_seed,
|
||||||
)
|
)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import re
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import List, Optional, Union
|
from typing import List, Optional, Union
|
||||||
|
|
||||||
@ -6,7 +7,6 @@ from compel import Compel, ReturnedEmbeddingsType
|
|||||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
|
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||||
BasicConditioningInfo,
|
BasicConditioningInfo,
|
||||||
ExtraConditioningInfo,
|
ExtraConditioningInfo,
|
||||||
@ -16,10 +16,10 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
|||||||
from ...backend.model_management.lora import ModelPatcher
|
from ...backend.model_management.lora import ModelPatcher
|
||||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
||||||
from ...backend.util.devices import torch_dtype
|
from ...backend.util.devices import torch_dtype
|
||||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
@ -87,7 +87,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
ti_list = []
|
ti_list = []
|
||||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
||||||
name = trigger[1:-1]
|
name = trigger[1:-1]
|
||||||
try:
|
try:
|
||||||
ti_list.append(
|
ti_list.append(
|
||||||
@ -112,11 +112,10 @@ class CompelInvocation(BaseInvocation):
|
|||||||
tokenizer,
|
tokenizer,
|
||||||
ti_manager,
|
ti_manager,
|
||||||
),
|
),
|
||||||
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
|
||||||
):
|
):
|
||||||
compel = Compel(
|
compel = Compel(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
@ -210,7 +209,7 @@ class SDXLPromptInvocationBase:
|
|||||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
ti_list = []
|
ti_list = []
|
||||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||||
name = trigger[1:-1]
|
name = trigger[1:-1]
|
||||||
try:
|
try:
|
||||||
ti_list.append(
|
ti_list.append(
|
||||||
@ -235,11 +234,10 @@ class SDXLPromptInvocationBase:
|
|||||||
tokenizer,
|
tokenizer,
|
||||||
ti_manager,
|
ti_manager,
|
||||||
),
|
),
|
||||||
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
|
||||||
):
|
):
|
||||||
compel = Compel(
|
compel = Compel(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
|
@ -24,23 +24,22 @@ from controlnet_aux import (
|
|||||||
)
|
)
|
||||||
from controlnet_aux.util import HWC3, ade_palette
|
from controlnet_aux.util import HWC3, ade_palette
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
|
||||||
|
|
||||||
from ...backend.model_management import BaseModelType
|
from ...backend.model_management import BaseModelType
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
WithMetadata,
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
@ -77,16 +76,17 @@ class ControlField(BaseModel):
|
|||||||
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
||||||
|
|
||||||
@field_validator("control_weight")
|
@field_validator("control_weight")
|
||||||
@classmethod
|
|
||||||
def validate_control_weight(cls, v):
|
def validate_control_weight(cls, v):
|
||||||
validate_weights(v)
|
"""Validate that all control weights in the valid range"""
|
||||||
|
if isinstance(v, list):
|
||||||
|
for i in v:
|
||||||
|
if i < -1 or i > 2:
|
||||||
|
raise ValueError("Control weights must be within -1 to 2 range")
|
||||||
|
else:
|
||||||
|
if v < -1 or v > 2:
|
||||||
|
raise ValueError("Control weights must be within -1 to 2 range")
|
||||||
return v
|
return v
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def validate_begin_end_step_percent(self):
|
|
||||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
||||||
return self
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("control_output")
|
@invocation_output("control_output")
|
||||||
class ControlOutput(BaseInvocationOutput):
|
class ControlOutput(BaseInvocationOutput):
|
||||||
@ -96,17 +96,17 @@ class ControlOutput(BaseInvocationOutput):
|
|||||||
control: ControlField = OutputField(description=FieldDescriptions.control)
|
control: ControlField = OutputField(description=FieldDescriptions.control)
|
||||||
|
|
||||||
|
|
||||||
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1")
|
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.0.0")
|
||||||
class ControlNetInvocation(BaseInvocation):
|
class ControlNetInvocation(BaseInvocation):
|
||||||
"""Collects ControlNet info to pass to other nodes"""
|
"""Collects ControlNet info to pass to other nodes"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The control image")
|
image: ImageField = InputField(description="The control image")
|
||||||
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
|
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
|
||||||
control_weight: Union[float, List[float]] = InputField(
|
control_weight: Union[float, List[float]] = InputField(
|
||||||
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
|
default=1.0, description="The weight given to the ControlNet"
|
||||||
)
|
)
|
||||||
begin_step_percent: float = InputField(
|
begin_step_percent: float = InputField(
|
||||||
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
|
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
|
||||||
)
|
)
|
||||||
end_step_percent: float = InputField(
|
end_step_percent: float = InputField(
|
||||||
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
||||||
@ -114,17 +114,6 @@ class ControlNetInvocation(BaseInvocation):
|
|||||||
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
||||||
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
||||||
|
|
||||||
@field_validator("control_weight")
|
|
||||||
@classmethod
|
|
||||||
def validate_control_weight(cls, v):
|
|
||||||
validate_weights(v)
|
|
||||||
return v
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
|
|
||||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ControlOutput:
|
def invoke(self, context: InvocationContext) -> ControlOutput:
|
||||||
return ControlOutput(
|
return ControlOutput(
|
||||||
control=ControlField(
|
control=ControlField(
|
||||||
@ -140,7 +129,7 @@ class ControlNetInvocation(BaseInvocation):
|
|||||||
|
|
||||||
|
|
||||||
# This invocation exists for other invocations to subclass it - do not register with @invocation!
|
# This invocation exists for other invocations to subclass it - do not register with @invocation!
|
||||||
class ImageProcessorInvocation(BaseInvocation, WithMetadata):
|
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
"""Base class for invocations that preprocess images for ControlNet"""
|
"""Base class for invocations that preprocess images for ControlNet"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to process")
|
image: ImageField = InputField(description="The image to process")
|
||||||
@ -164,7 +153,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
"""Builds an ImageOutput and its ImageField"""
|
"""Builds an ImageOutput and its ImageField"""
|
||||||
@ -184,7 +173,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata):
|
|||||||
title="Canny Processor",
|
title="Canny Processor",
|
||||||
tags=["controlnet", "canny"],
|
tags=["controlnet", "canny"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Canny edge detection for ControlNet"""
|
"""Canny edge detection for ControlNet"""
|
||||||
@ -207,7 +196,7 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="HED (softedge) Processor",
|
title="HED (softedge) Processor",
|
||||||
tags=["controlnet", "hed", "softedge"],
|
tags=["controlnet", "hed", "softedge"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class HedImageProcessorInvocation(ImageProcessorInvocation):
|
class HedImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies HED edge detection to image"""
|
"""Applies HED edge detection to image"""
|
||||||
@ -236,7 +225,7 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Lineart Processor",
|
title="Lineart Processor",
|
||||||
tags=["controlnet", "lineart"],
|
tags=["controlnet", "lineart"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies line art processing to image"""
|
"""Applies line art processing to image"""
|
||||||
@ -258,7 +247,7 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Lineart Anime Processor",
|
title="Lineart Anime Processor",
|
||||||
tags=["controlnet", "lineart", "anime"],
|
tags=["controlnet", "lineart", "anime"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies line art anime processing to image"""
|
"""Applies line art anime processing to image"""
|
||||||
@ -281,7 +270,7 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Openpose Processor",
|
title="Openpose Processor",
|
||||||
tags=["controlnet", "openpose", "pose"],
|
tags=["controlnet", "openpose", "pose"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies Openpose processing to image"""
|
"""Applies Openpose processing to image"""
|
||||||
@ -306,7 +295,7 @@ class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Midas Depth Processor",
|
title="Midas Depth Processor",
|
||||||
tags=["controlnet", "midas"],
|
tags=["controlnet", "midas"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies Midas depth processing to image"""
|
"""Applies Midas depth processing to image"""
|
||||||
@ -333,7 +322,7 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Normal BAE Processor",
|
title="Normal BAE Processor",
|
||||||
tags=["controlnet"],
|
tags=["controlnet"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies NormalBae processing to image"""
|
"""Applies NormalBae processing to image"""
|
||||||
@ -350,7 +339,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.0"
|
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.0.0"
|
||||||
)
|
)
|
||||||
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies MLSD processing to image"""
|
"""Applies MLSD processing to image"""
|
||||||
@ -373,7 +362,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.0"
|
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.0.0"
|
||||||
)
|
)
|
||||||
class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies PIDI processing to image"""
|
"""Applies PIDI processing to image"""
|
||||||
@ -400,7 +389,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Content Shuffle Processor",
|
title="Content Shuffle Processor",
|
||||||
tags=["controlnet", "contentshuffle"],
|
tags=["controlnet", "contentshuffle"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies content shuffle processing to image"""
|
"""Applies content shuffle processing to image"""
|
||||||
@ -430,7 +419,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Zoe (Depth) Processor",
|
title="Zoe (Depth) Processor",
|
||||||
tags=["controlnet", "zoe", "depth"],
|
tags=["controlnet", "zoe", "depth"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies Zoe depth processing to image"""
|
"""Applies Zoe depth processing to image"""
|
||||||
@ -446,7 +435,7 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Mediapipe Face Processor",
|
title="Mediapipe Face Processor",
|
||||||
tags=["controlnet", "mediapipe", "face"],
|
tags=["controlnet", "mediapipe", "face"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies mediapipe face processing to image"""
|
"""Applies mediapipe face processing to image"""
|
||||||
@ -469,7 +458,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Leres (Depth) Processor",
|
title="Leres (Depth) Processor",
|
||||||
tags=["controlnet", "leres", "depth"],
|
tags=["controlnet", "leres", "depth"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies leres processing to image"""
|
"""Applies leres processing to image"""
|
||||||
@ -498,7 +487,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Tile Resample Processor",
|
title="Tile Resample Processor",
|
||||||
tags=["controlnet", "tile"],
|
tags=["controlnet", "tile"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Tile resampler processor"""
|
"""Tile resampler processor"""
|
||||||
@ -538,7 +527,7 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
|
|||||||
title="Segment Anything Processor",
|
title="Segment Anything Processor",
|
||||||
tags=["controlnet", "segmentanything"],
|
tags=["controlnet", "segmentanything"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Applies segment anything processing to image"""
|
"""Applies segment anything processing to image"""
|
||||||
@ -580,7 +569,7 @@ class SamDetectorReproducibleColors(SamDetector):
|
|||||||
title="Color Map Processor",
|
title="Color Map Processor",
|
||||||
tags=["controlnet"],
|
tags=["controlnet"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Generates a color map from the provided image"""
|
"""Generates a color map from the provided image"""
|
||||||
@ -603,33 +592,3 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
|
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
|
||||||
color_map = Image.fromarray(color_map)
|
color_map = Image.fromarray(color_map)
|
||||||
return color_map
|
return color_map
|
||||||
|
|
||||||
|
|
||||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
|
||||||
"depth_anything_image_processor",
|
|
||||||
title="Depth Anything Processor",
|
|
||||||
tags=["controlnet", "depth", "depth anything"],
|
|
||||||
category="controlnet",
|
|
||||||
version="1.0.0",
|
|
||||||
)
|
|
||||||
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
|
||||||
"""Generates a depth map based on the Depth Anything algorithm"""
|
|
||||||
|
|
||||||
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
|
|
||||||
default="small", description="The size of the depth model to use"
|
|
||||||
)
|
|
||||||
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
|
|
||||||
offload: bool = InputField(default=False)
|
|
||||||
|
|
||||||
def run_processor(self, image):
|
|
||||||
depth_anything_detector = DepthAnythingDetector()
|
|
||||||
depth_anything_detector.load_model(model_size=self.model_size)
|
|
||||||
|
|
||||||
if image.mode == "RGBA":
|
|
||||||
image = image.convert("RGB")
|
|
||||||
|
|
||||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
|
|
||||||
return processed_image
|
|
||||||
|
@ -32,15 +32,13 @@ for d in Path(__file__).parent.iterdir():
|
|||||||
if module_name in globals():
|
if module_name in globals():
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# load the module, appending adding a suffix to identify it as a custom node pack
|
# we have a legit module to import
|
||||||
spec = spec_from_file_location(module_name, init.absolute())
|
spec = spec_from_file_location(module_name, init.absolute())
|
||||||
|
|
||||||
if spec is None or spec.loader is None:
|
if spec is None or spec.loader is None:
|
||||||
logger.warn(f"Could not load {init}")
|
logger.warn(f"Could not load {init}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
logger.info(f"Loading node pack {module_name}")
|
|
||||||
|
|
||||||
module = module_from_spec(spec)
|
module = module_from_spec(spec)
|
||||||
sys.modules[spec.name] = module
|
sys.modules[spec.name] = module
|
||||||
spec.loader.exec_module(module)
|
spec.loader.exec_module(module)
|
||||||
@ -49,5 +47,5 @@ for d in Path(__file__).parent.iterdir():
|
|||||||
|
|
||||||
del init, module_name
|
del init, module_name
|
||||||
|
|
||||||
if loaded_count > 0:
|
|
||||||
logger.info(f"Loaded {loaded_count} node packs from {Path(__file__).parent}")
|
logger.info(f"Loaded {loaded_count} modules from {Path(__file__).parent}")
|
||||||
|
@ -8,11 +8,11 @@ from PIL import Image, ImageOps
|
|||||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
|
|
||||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
|
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
|
||||||
|
|
||||||
|
|
||||||
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.2.0")
|
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.0.0")
|
||||||
class CvInpaintInvocation(BaseInvocation, WithMetadata):
|
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
"""Simple inpaint using opencv."""
|
"""Simple inpaint using opencv."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to inpaint")
|
image: ImageField = InputField(description="The image to inpaint")
|
||||||
@ -41,7 +41,7 @@ class CvInpaintInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
|
@ -17,6 +17,7 @@ from invokeai.app.invocations.baseinvocation import (
|
|||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
WithMetadata,
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
@ -130,7 +131,7 @@ def prepare_faces_list(
|
|||||||
deduped_faces: list[FaceResultData] = []
|
deduped_faces: list[FaceResultData] = []
|
||||||
|
|
||||||
if len(face_result_list) == 0:
|
if len(face_result_list) == 0:
|
||||||
return []
|
return list()
|
||||||
|
|
||||||
for candidate in face_result_list:
|
for candidate in face_result_list:
|
||||||
should_add = True
|
should_add = True
|
||||||
@ -209,7 +210,7 @@ def generate_face_box_mask(
|
|||||||
# Check if any face is detected.
|
# Check if any face is detected.
|
||||||
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
|
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
|
||||||
# Search for the face_id in the detected faces.
|
# Search for the face_id in the detected faces.
|
||||||
for _face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
|
for face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
|
||||||
# Get the bounding box of the face mesh.
|
# Get the bounding box of the face mesh.
|
||||||
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
|
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
|
||||||
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
|
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
|
||||||
@ -437,8 +438,8 @@ def get_faces_list(
|
|||||||
return all_faces
|
return all_faces
|
||||||
|
|
||||||
|
|
||||||
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.0")
|
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.2")
|
||||||
class FaceOffInvocation(BaseInvocation, WithMetadata):
|
class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
|
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="Image for face detection")
|
image: ImageField = InputField(description="Image for face detection")
|
||||||
@ -507,7 +508,7 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
mask_dto = context.services.images.create(
|
mask_dto = context.services.images.create(
|
||||||
@ -531,8 +532,8 @@ class FaceOffInvocation(BaseInvocation, WithMetadata):
|
|||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.0")
|
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.2")
|
||||||
class FaceMaskInvocation(BaseInvocation, WithMetadata):
|
class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Face mask creation using mediapipe face detection"""
|
"""Face mask creation using mediapipe face detection"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="Image to face detect")
|
image: ImageField = InputField(description="Image to face detect")
|
||||||
@ -626,7 +627,7 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
mask_dto = context.services.images.create(
|
mask_dto = context.services.images.create(
|
||||||
@ -649,9 +650,9 @@ class FaceMaskInvocation(BaseInvocation, WithMetadata):
|
|||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.0"
|
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.2"
|
||||||
)
|
)
|
||||||
class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
|
class FaceIdentifierInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
|
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="Image to face detect")
|
image: ImageField = InputField(description="Image to face detect")
|
||||||
@ -715,7 +716,7 @@ class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
|
@ -8,18 +8,18 @@ import numpy
|
|||||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
|
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||||
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
Classification,
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
WithMetadata,
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
invocation,
|
invocation,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -44,14 +44,8 @@ class ShowImageInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
|
||||||
"blank_image",
|
class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
title="Blank Image",
|
|
||||||
tags=["image"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class BlankImageInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Creates a blank image and forwards it to the pipeline"""
|
"""Creates a blank image and forwards it to the pipeline"""
|
||||||
|
|
||||||
width: int = InputField(default=512, description="The width of the image")
|
width: int = InputField(default=512, description="The width of the image")
|
||||||
@ -70,7 +64,7 @@ class BlankImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -80,14 +74,8 @@ class BlankImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
|
||||||
"img_crop",
|
class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Crop Image",
|
|
||||||
tags=["image", "crop"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageCropInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Crops an image to a specified box. The box can be outside of the image."""
|
"""Crops an image to a specified box. The box can be outside of the image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to crop")
|
image: ImageField = InputField(description="The image to crop")
|
||||||
@ -110,7 +98,7 @@ class ImageCropInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -120,69 +108,8 @@ class ImageCropInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
|
||||||
invocation_type="img_pad_crop",
|
class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Center Pad or Crop Image",
|
|
||||||
category="image",
|
|
||||||
tags=["image", "pad", "crop"],
|
|
||||||
version="1.0.0",
|
|
||||||
)
|
|
||||||
class CenterPadCropInvocation(BaseInvocation):
|
|
||||||
"""Pad or crop an image's sides from the center by specified pixels. Positive values are outside of the image."""
|
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to crop")
|
|
||||||
left: int = InputField(
|
|
||||||
default=0,
|
|
||||||
description="Number of pixels to pad/crop from the left (negative values crop inwards, positive values pad outwards)",
|
|
||||||
)
|
|
||||||
right: int = InputField(
|
|
||||||
default=0,
|
|
||||||
description="Number of pixels to pad/crop from the right (negative values crop inwards, positive values pad outwards)",
|
|
||||||
)
|
|
||||||
top: int = InputField(
|
|
||||||
default=0,
|
|
||||||
description="Number of pixels to pad/crop from the top (negative values crop inwards, positive values pad outwards)",
|
|
||||||
)
|
|
||||||
bottom: int = InputField(
|
|
||||||
default=0,
|
|
||||||
description="Number of pixels to pad/crop from the bottom (negative values crop inwards, positive values pad outwards)",
|
|
||||||
)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
||||||
image = context.services.images.get_pil_image(self.image.image_name)
|
|
||||||
|
|
||||||
# Calculate and create new image dimensions
|
|
||||||
new_width = image.width + self.right + self.left
|
|
||||||
new_height = image.height + self.top + self.bottom
|
|
||||||
image_crop = Image.new(mode="RGBA", size=(new_width, new_height), color=(0, 0, 0, 0))
|
|
||||||
|
|
||||||
# Paste new image onto input
|
|
||||||
image_crop.paste(image, (self.left, self.top))
|
|
||||||
|
|
||||||
image_dto = context.services.images.create(
|
|
||||||
image=image_crop,
|
|
||||||
image_origin=ResourceOrigin.INTERNAL,
|
|
||||||
image_category=ImageCategory.GENERAL,
|
|
||||||
node_id=self.id,
|
|
||||||
session_id=context.graph_execution_state_id,
|
|
||||||
is_intermediate=self.is_intermediate,
|
|
||||||
)
|
|
||||||
|
|
||||||
return ImageOutput(
|
|
||||||
image=ImageField(image_name=image_dto.image_name),
|
|
||||||
width=image_dto.width,
|
|
||||||
height=image_dto.height,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
|
||||||
"img_paste",
|
|
||||||
title="Paste Image",
|
|
||||||
tags=["image", "paste"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImagePasteInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Pastes an image into another image."""
|
"""Pastes an image into another image."""
|
||||||
|
|
||||||
base_image: ImageField = InputField(description="The base image")
|
base_image: ImageField = InputField(description="The base image")
|
||||||
@ -225,7 +152,7 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -235,14 +162,8 @@ class ImagePasteInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
|
||||||
"tomask",
|
class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Mask from Alpha",
|
|
||||||
tags=["image", "mask"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Extracts the alpha channel of an image as a mask."""
|
"""Extracts the alpha channel of an image as a mask."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to create the mask from")
|
image: ImageField = InputField(description="The image to create the mask from")
|
||||||
@ -263,7 +184,7 @@ class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -273,14 +194,8 @@ class MaskFromAlphaInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
|
||||||
"img_mul",
|
class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Multiply Images",
|
|
||||||
tags=["image", "multiply"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
|
||||||
|
|
||||||
image1: ImageField = InputField(description="The first image to multiply")
|
image1: ImageField = InputField(description="The first image to multiply")
|
||||||
@ -300,7 +215,7 @@ class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -313,14 +228,8 @@ class ImageMultiplyInvocation(BaseInvocation, WithMetadata):
|
|||||||
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
|
||||||
"img_chan",
|
class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Extract Image Channel",
|
|
||||||
tags=["image", "channel"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageChannelInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Gets a channel from an image."""
|
"""Gets a channel from an image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to get the channel from")
|
image: ImageField = InputField(description="The image to get the channel from")
|
||||||
@ -339,7 +248,7 @@ class ImageChannelInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -352,14 +261,8 @@ class ImageChannelInvocation(BaseInvocation, WithMetadata):
|
|||||||
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
|
||||||
"img_conv",
|
class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Convert Image Mode",
|
|
||||||
tags=["image", "convert"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageConvertInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Converts an image to a different mode."""
|
"""Converts an image to a different mode."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to convert")
|
image: ImageField = InputField(description="The image to convert")
|
||||||
@ -378,7 +281,7 @@ class ImageConvertInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -388,14 +291,8 @@ class ImageConvertInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
|
||||||
"img_blur",
|
class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Blur Image",
|
|
||||||
tags=["image", "blur"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageBlurInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Blurs an image"""
|
"""Blurs an image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to blur")
|
image: ImageField = InputField(description="The image to blur")
|
||||||
@ -419,7 +316,7 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -429,64 +326,6 @@ class ImageBlurInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
|
||||||
"unsharp_mask",
|
|
||||||
title="Unsharp Mask",
|
|
||||||
tags=["image", "unsharp_mask"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
classification=Classification.Beta,
|
|
||||||
)
|
|
||||||
class UnsharpMaskInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Applies an unsharp mask filter to an image"""
|
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to use")
|
|
||||||
radius: float = InputField(gt=0, description="Unsharp mask radius", default=2)
|
|
||||||
strength: float = InputField(ge=0, description="Unsharp mask strength", default=50)
|
|
||||||
|
|
||||||
def pil_from_array(self, arr):
|
|
||||||
return Image.fromarray((arr * 255).astype("uint8"))
|
|
||||||
|
|
||||||
def array_from_pil(self, img):
|
|
||||||
return numpy.array(img) / 255
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
||||||
image = context.services.images.get_pil_image(self.image.image_name)
|
|
||||||
mode = image.mode
|
|
||||||
|
|
||||||
alpha_channel = image.getchannel("A") if mode == "RGBA" else None
|
|
||||||
image = image.convert("RGB")
|
|
||||||
image_blurred = self.array_from_pil(image.filter(ImageFilter.GaussianBlur(radius=self.radius)))
|
|
||||||
|
|
||||||
image = self.array_from_pil(image)
|
|
||||||
image += (image - image_blurred) * (self.strength / 100.0)
|
|
||||||
image = numpy.clip(image, 0, 1)
|
|
||||||
image = self.pil_from_array(image)
|
|
||||||
|
|
||||||
image = image.convert(mode)
|
|
||||||
|
|
||||||
# Make the image RGBA if we had a source alpha channel
|
|
||||||
if alpha_channel is not None:
|
|
||||||
image.putalpha(alpha_channel)
|
|
||||||
|
|
||||||
image_dto = context.services.images.create(
|
|
||||||
image=image,
|
|
||||||
image_origin=ResourceOrigin.INTERNAL,
|
|
||||||
image_category=ImageCategory.GENERAL,
|
|
||||||
node_id=self.id,
|
|
||||||
session_id=context.graph_execution_state_id,
|
|
||||||
is_intermediate=self.is_intermediate,
|
|
||||||
metadata=self.metadata,
|
|
||||||
workflow=context.workflow,
|
|
||||||
)
|
|
||||||
|
|
||||||
return ImageOutput(
|
|
||||||
image=ImageField(image_name=image_dto.image_name),
|
|
||||||
width=image.width,
|
|
||||||
height=image.height,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
PIL_RESAMPLING_MODES = Literal[
|
PIL_RESAMPLING_MODES = Literal[
|
||||||
"nearest",
|
"nearest",
|
||||||
"box",
|
"box",
|
||||||
@ -507,14 +346,8 @@ PIL_RESAMPLING_MAP = {
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
|
||||||
"img_resize",
|
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
title="Resize Image",
|
|
||||||
tags=["image", "resize"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageResizeInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Resizes an image to specific dimensions"""
|
"""Resizes an image to specific dimensions"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to resize")
|
image: ImageField = InputField(description="The image to resize")
|
||||||
@ -540,7 +373,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -550,14 +383,8 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
|
||||||
"img_scale",
|
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
title="Scale Image",
|
|
||||||
tags=["image", "scale"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageScaleInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Scales an image by a factor"""
|
"""Scales an image by a factor"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to scale")
|
image: ImageField = InputField(description="The image to scale")
|
||||||
@ -588,7 +415,7 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -598,14 +425,8 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
|
||||||
"img_lerp",
|
class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Lerp Image",
|
|
||||||
tags=["image", "lerp"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageLerpInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Linear interpolation of all pixels of an image"""
|
"""Linear interpolation of all pixels of an image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to lerp")
|
image: ImageField = InputField(description="The image to lerp")
|
||||||
@ -628,7 +449,7 @@ class ImageLerpInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -638,14 +459,8 @@ class ImageLerpInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
|
||||||
"img_ilerp",
|
class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Inverse Lerp Image",
|
|
||||||
tags=["image", "ilerp"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Inverse linear interpolation of all pixels of an image"""
|
"""Inverse linear interpolation of all pixels of an image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to lerp")
|
image: ImageField = InputField(description="The image to lerp")
|
||||||
@ -668,7 +483,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -678,14 +493,8 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
|
||||||
"img_nsfw",
|
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
title="Blur NSFW Image",
|
|
||||||
tags=["image", "nsfw"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Add blur to NSFW-flagged images"""
|
"""Add blur to NSFW-flagged images"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to check")
|
image: ImageField = InputField(description="The image to check")
|
||||||
@ -710,7 +519,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -731,9 +540,9 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata):
|
|||||||
title="Add Invisible Watermark",
|
title="Add Invisible Watermark",
|
||||||
tags=["image", "watermark"],
|
tags=["image", "watermark"],
|
||||||
category="image",
|
category="image",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
|
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
"""Add an invisible watermark to an image"""
|
"""Add an invisible watermark to an image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to check")
|
image: ImageField = InputField(description="The image to check")
|
||||||
@ -750,7 +559,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -760,14 +569,8 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
|
||||||
"mask_edge",
|
class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Mask Edge",
|
|
||||||
tags=["image", "mask", "inpaint"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class MaskEdgeInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Applies an edge mask to an image"""
|
"""Applies an edge mask to an image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to apply the mask to")
|
image: ImageField = InputField(description="The image to apply the mask to")
|
||||||
@ -802,7 +605,7 @@ class MaskEdgeInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -817,9 +620,9 @@ class MaskEdgeInvocation(BaseInvocation, WithMetadata):
|
|||||||
title="Combine Masks",
|
title="Combine Masks",
|
||||||
tags=["image", "mask", "multiply"],
|
tags=["image", "mask", "multiply"],
|
||||||
category="image",
|
category="image",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class MaskCombineInvocation(BaseInvocation, WithMetadata):
|
class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
|
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
|
||||||
|
|
||||||
mask1: ImageField = InputField(description="The first mask to combine")
|
mask1: ImageField = InputField(description="The first mask to combine")
|
||||||
@ -839,7 +642,7 @@ class MaskCombineInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -849,14 +652,8 @@ class MaskCombineInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
|
||||||
"color_correct",
|
class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Color Correct",
|
|
||||||
tags=["image", "color"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ColorCorrectInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""
|
"""
|
||||||
Shifts the colors of a target image to match the reference image, optionally
|
Shifts the colors of a target image to match the reference image, optionally
|
||||||
using a mask to only color-correct certain regions of the target image.
|
using a mask to only color-correct certain regions of the target image.
|
||||||
@ -956,7 +753,7 @@ class ColorCorrectInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -966,14 +763,8 @@ class ColorCorrectInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
|
||||||
"img_hue_adjust",
|
class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
title="Adjust Image Hue",
|
|
||||||
tags=["image", "hue"],
|
|
||||||
category="image",
|
|
||||||
version="1.2.0",
|
|
||||||
)
|
|
||||||
class ImageHueAdjustmentInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Adjusts the Hue of an image."""
|
"""Adjusts the Hue of an image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to adjust")
|
image: ImageField = InputField(description="The image to adjust")
|
||||||
@ -1002,7 +793,7 @@ class ImageHueAdjustmentInvocation(BaseInvocation, WithMetadata):
|
|||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -1075,9 +866,9 @@ CHANNEL_FORMATS = {
|
|||||||
"value",
|
"value",
|
||||||
],
|
],
|
||||||
category="image",
|
category="image",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
|
class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Add or subtract a value from a specific color channel of an image."""
|
"""Add or subtract a value from a specific color channel of an image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to adjust")
|
image: ImageField = InputField(description="The image to adjust")
|
||||||
@ -1112,7 +903,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
|
|||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -1146,9 +937,9 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithMetadata):
|
|||||||
"value",
|
"value",
|
||||||
],
|
],
|
||||||
category="image",
|
category="image",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
|
class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Scale a specific color channel of an image."""
|
"""Scale a specific color channel of an image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to adjust")
|
image: ImageField = InputField(description="The image to adjust")
|
||||||
@ -1187,7 +978,7 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
|
|||||||
node_id=self.id,
|
node_id=self.id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1205,10 +996,10 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithMetadata):
|
|||||||
title="Save Image",
|
title="Save Image",
|
||||||
tags=["primitives", "image"],
|
tags=["primitives", "image"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.2.0",
|
version="1.0.1",
|
||||||
use_cache=False,
|
use_cache=False,
|
||||||
)
|
)
|
||||||
class SaveImageInvocation(BaseInvocation, WithMetadata):
|
class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
|
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
|
||||||
|
|
||||||
image: ImageField = InputField(description=FieldDescriptions.image)
|
image: ImageField = InputField(description=FieldDescriptions.image)
|
||||||
@ -1226,7 +1017,7 @@ class SaveImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -1234,35 +1025,3 @@ class SaveImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
width=image_dto.width,
|
width=image_dto.width,
|
||||||
height=image_dto.height,
|
height=image_dto.height,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
|
||||||
"linear_ui_output",
|
|
||||||
title="Linear UI Image Output",
|
|
||||||
tags=["primitives", "image"],
|
|
||||||
category="primitives",
|
|
||||||
version="1.0.1",
|
|
||||||
use_cache=False,
|
|
||||||
)
|
|
||||||
class LinearUIOutputInvocation(BaseInvocation, WithMetadata):
|
|
||||||
"""Handles Linear UI Image Outputting tasks."""
|
|
||||||
|
|
||||||
image: ImageField = InputField(description=FieldDescriptions.image)
|
|
||||||
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
||||||
image_dto = context.services.images.get_dto(self.image.image_name)
|
|
||||||
|
|
||||||
if self.board:
|
|
||||||
context.services.board_images.add_image_to_board(self.board.board_id, self.image.image_name)
|
|
||||||
|
|
||||||
if image_dto.is_intermediate != self.is_intermediate:
|
|
||||||
context.services.images.update(
|
|
||||||
self.image.image_name, changes=ImageRecordChanges(is_intermediate=self.is_intermediate)
|
|
||||||
)
|
|
||||||
|
|
||||||
return ImageOutput(
|
|
||||||
image=ImageField(image_name=self.image.image_name),
|
|
||||||
width=image_dto.width,
|
|
||||||
height=image_dto.height,
|
|
||||||
)
|
|
||||||
|
@ -8,12 +8,12 @@ from PIL import Image, ImageOps
|
|||||||
|
|
||||||
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
|
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.util.misc import SEED_MAX
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||||
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
|
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
|
||||||
from invokeai.backend.image_util.lama import LaMA
|
from invokeai.backend.image_util.lama import LaMA
|
||||||
from invokeai.backend.image_util.patchmatch import PatchMatch
|
from invokeai.backend.image_util.patchmatch import PatchMatch
|
||||||
|
|
||||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, invocation
|
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation
|
||||||
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
||||||
|
|
||||||
|
|
||||||
@ -118,8 +118,8 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
|
|||||||
return si
|
return si
|
||||||
|
|
||||||
|
|
||||||
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
|
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
|
||||||
class InfillColorInvocation(BaseInvocation, WithMetadata):
|
class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Infills transparent areas of an image with a solid color"""
|
"""Infills transparent areas of an image with a solid color"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to infill")
|
image: ImageField = InputField(description="The image to infill")
|
||||||
@ -144,7 +144,7 @@ class InfillColorInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -154,17 +154,17 @@ class InfillColorInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.1")
|
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
|
||||||
class InfillTileInvocation(BaseInvocation, WithMetadata):
|
class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Infills transparent areas of an image with tiles of the image"""
|
"""Infills transparent areas of an image with tiles of the image"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to infill")
|
image: ImageField = InputField(description="The image to infill")
|
||||||
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
|
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
|
||||||
seed: int = InputField(
|
seed: int = InputField(
|
||||||
default=0,
|
|
||||||
ge=0,
|
ge=0,
|
||||||
le=SEED_MAX,
|
le=SEED_MAX,
|
||||||
description="The seed to use for tile generation (omit for random)",
|
description="The seed to use for tile generation (omit for random)",
|
||||||
|
default_factory=get_random_seed,
|
||||||
)
|
)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||||
@ -181,7 +181,7 @@ class InfillTileInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -192,9 +192,9 @@ class InfillTileInvocation(BaseInvocation, WithMetadata):
|
|||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0"
|
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0"
|
||||||
)
|
)
|
||||||
class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
|
class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Infills transparent areas of an image using the PatchMatch algorithm"""
|
"""Infills transparent areas of an image using the PatchMatch algorithm"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to infill")
|
image: ImageField = InputField(description="The image to infill")
|
||||||
@ -235,7 +235,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -245,8 +245,8 @@ class InfillPatchMatchInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
|
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
|
||||||
class LaMaInfillInvocation(BaseInvocation, WithMetadata):
|
class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Infills transparent areas of an image using the LaMa model"""
|
"""Infills transparent areas of an image using the LaMa model"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to infill")
|
image: ImageField = InputField(description="The image to infill")
|
||||||
@ -264,7 +264,7 @@ class LaMaInfillInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -274,8 +274,8 @@ class LaMaInfillInvocation(BaseInvocation, WithMetadata):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.0")
|
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
|
||||||
class CV2InfillInvocation(BaseInvocation, WithMetadata):
|
class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
|
||||||
"""Infills transparent areas of an image using OpenCV Inpainting"""
|
"""Infills transparent areas of an image using OpenCV Inpainting"""
|
||||||
|
|
||||||
image: ImageField = InputField(description="The image to infill")
|
image: ImageField = InputField(description="The image to infill")
|
||||||
@ -293,7 +293,7 @@ class CV2InfillInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
|
@ -2,21 +2,21 @@ import os
|
|||||||
from builtins import float
|
from builtins import float
|
||||||
from typing import List, Union
|
from typing import List, Union
|
||||||
|
|
||||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
from pydantic import BaseModel, ConfigDict, Field
|
||||||
|
|
||||||
from invokeai.app.invocations.baseinvocation import (
|
from invokeai.app.invocations.baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
|
UIType,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from invokeai.app.invocations.primitives import ImageField
|
||||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
|
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
|
||||||
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
||||||
|
|
||||||
@ -40,6 +40,7 @@ class IPAdapterField(BaseModel):
|
|||||||
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
|
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
|
||||||
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
|
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
|
||||||
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
||||||
|
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
|
||||||
begin_step_percent: float = Field(
|
begin_step_percent: float = Field(
|
||||||
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
||||||
)
|
)
|
||||||
@ -47,17 +48,6 @@ class IPAdapterField(BaseModel):
|
|||||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||||
)
|
)
|
||||||
|
|
||||||
@field_validator("weight")
|
|
||||||
@classmethod
|
|
||||||
def validate_ip_adapter_weight(cls, v):
|
|
||||||
validate_weights(v)
|
|
||||||
return v
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def validate_begin_end_step_percent(self):
|
|
||||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
||||||
return self
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("ip_adapter_output")
|
@invocation_output("ip_adapter_output")
|
||||||
class IPAdapterOutput(BaseInvocationOutput):
|
class IPAdapterOutput(BaseInvocationOutput):
|
||||||
@ -65,7 +55,7 @@ class IPAdapterOutput(BaseInvocationOutput):
|
|||||||
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
|
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
|
||||||
|
|
||||||
|
|
||||||
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1")
|
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0")
|
||||||
class IPAdapterInvocation(BaseInvocation):
|
class IPAdapterInvocation(BaseInvocation):
|
||||||
"""Collects IP-Adapter info to pass to other nodes."""
|
"""Collects IP-Adapter info to pass to other nodes."""
|
||||||
|
|
||||||
@ -75,27 +65,18 @@ class IPAdapterInvocation(BaseInvocation):
|
|||||||
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
|
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
|
||||||
weight: Union[float, List[float]] = InputField(
|
weight: Union[float, List[float]] = InputField(
|
||||||
default=1, description="The weight given to the IP-Adapter", title="Weight"
|
default=1, ge=-1, description="The weight given to the IP-Adapter", ui_type=UIType.Float, title="Weight"
|
||||||
)
|
)
|
||||||
|
|
||||||
begin_step_percent: float = InputField(
|
begin_step_percent: float = InputField(
|
||||||
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
|
||||||
)
|
)
|
||||||
end_step_percent: float = InputField(
|
end_step_percent: float = InputField(
|
||||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||||
)
|
)
|
||||||
|
|
||||||
@field_validator("weight")
|
|
||||||
@classmethod
|
|
||||||
def validate_ip_adapter_weight(cls, v):
|
|
||||||
validate_weights(v)
|
|
||||||
return v
|
|
||||||
|
|
||||||
@model_validator(mode="after")
|
|
||||||
def validate_begin_end_step_percent(self):
|
|
||||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
|
||||||
return self
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
||||||
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
||||||
ip_adapter_info = context.services.model_manager.model_info(
|
ip_adapter_info = context.services.model_manager.model_info(
|
||||||
|
@ -1,6 +1,5 @@
|
|||||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||||
|
|
||||||
import math
|
|
||||||
from contextlib import ExitStack
|
from contextlib import ExitStack
|
||||||
from functools import singledispatchmethod
|
from functools import singledispatchmethod
|
||||||
from typing import List, Literal, Optional, Union
|
from typing import List, Literal, Optional, Union
|
||||||
@ -11,7 +10,7 @@ import torch
|
|||||||
import torchvision.transforms as T
|
import torchvision.transforms as T
|
||||||
from diffusers import AutoencoderKL, AutoencoderTiny
|
from diffusers import AutoencoderKL, AutoencoderTiny
|
||||||
from diffusers.image_processor import VaeImageProcessor
|
from diffusers.image_processor import VaeImageProcessor
|
||||||
from diffusers.models.adapter import T2IAdapter
|
from diffusers.models.adapter import FullAdapterXL, T2IAdapter
|
||||||
from diffusers.models.attention_processor import (
|
from diffusers.models.attention_processor import (
|
||||||
AttnProcessor2_0,
|
AttnProcessor2_0,
|
||||||
LoRAAttnProcessor2_0,
|
LoRAAttnProcessor2_0,
|
||||||
@ -35,7 +34,6 @@ from invokeai.app.invocations.primitives import (
|
|||||||
)
|
)
|
||||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||||
@ -59,12 +57,14 @@ from ...backend.util.devices import choose_precision, choose_torch_device
|
|||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
UIType,
|
UIType,
|
||||||
WithMetadata,
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
@ -77,13 +77,7 @@ if choose_torch_device() == torch.device("mps"):
|
|||||||
|
|
||||||
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||||
|
|
||||||
SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
|
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
|
||||||
|
|
||||||
# HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to
|
|
||||||
# be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale
|
|
||||||
# factor is hard-coded to a literal '8' rather than using this constant.
|
|
||||||
# The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1.
|
|
||||||
LATENT_SCALE_FACTOR = 8
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("scheduler_output")
|
@invocation_output("scheduler_output")
|
||||||
@ -221,7 +215,7 @@ def get_scheduler(
|
|||||||
title="Denoise Latents",
|
title="Denoise Latents",
|
||||||
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
||||||
category="latents",
|
category="latents",
|
||||||
version="1.5.1",
|
version="1.4.0",
|
||||||
)
|
)
|
||||||
class DenoiseLatentsInvocation(BaseInvocation):
|
class DenoiseLatentsInvocation(BaseInvocation):
|
||||||
"""Denoises noisy latents to decodable images"""
|
"""Denoises noisy latents to decodable images"""
|
||||||
@ -279,14 +273,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
input=Input.Connection,
|
input=Input.Connection,
|
||||||
ui_order=7,
|
ui_order=7,
|
||||||
)
|
)
|
||||||
cfg_rescale_multiplier: float = InputField(
|
|
||||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
|
||||||
)
|
|
||||||
latents: Optional[LatentsField] = InputField(
|
latents: Optional[LatentsField] = InputField(
|
||||||
default=None,
|
default=None, description=FieldDescriptions.latents, input=Input.Connection
|
||||||
description=FieldDescriptions.latents,
|
|
||||||
input=Input.Connection,
|
|
||||||
ui_order=4,
|
|
||||||
)
|
)
|
||||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||||
default=None,
|
default=None,
|
||||||
@ -341,7 +329,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
unconditioned_embeddings=uc,
|
unconditioned_embeddings=uc,
|
||||||
text_embeddings=c,
|
text_embeddings=c,
|
||||||
guidance_scale=self.cfg_scale,
|
guidance_scale=self.cfg_scale,
|
||||||
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
|
|
||||||
extra=extra_conditioning_info,
|
extra=extra_conditioning_info,
|
||||||
postprocessing_settings=PostprocessingSettings(
|
postprocessing_settings=PostprocessingSettings(
|
||||||
threshold=0.0, # threshold,
|
threshold=0.0, # threshold,
|
||||||
@ -400,9 +387,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
exit_stack: ExitStack,
|
exit_stack: ExitStack,
|
||||||
do_classifier_free_guidance: bool = True,
|
do_classifier_free_guidance: bool = True,
|
||||||
) -> List[ControlNetData]:
|
) -> List[ControlNetData]:
|
||||||
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
|
# assuming fixed dimensional scaling of 8:1 for image:latents
|
||||||
control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR
|
control_height_resize = latents_shape[2] * 8
|
||||||
control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR
|
control_width_resize = latents_shape[3] * 8
|
||||||
if control_input is None:
|
if control_input is None:
|
||||||
control_list = None
|
control_list = None
|
||||||
elif isinstance(control_input, list) and len(control_input) == 0:
|
elif isinstance(control_input, list) and len(control_input) == 0:
|
||||||
@ -575,6 +562,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
t2i_adapter_model: T2IAdapter
|
t2i_adapter_model: T2IAdapter
|
||||||
with t2i_adapter_model_info as t2i_adapter_model:
|
with t2i_adapter_model_info as t2i_adapter_model:
|
||||||
total_downscale_factor = t2i_adapter_model.total_downscale_factor
|
total_downscale_factor = t2i_adapter_model.total_downscale_factor
|
||||||
|
if isinstance(t2i_adapter_model.adapter, FullAdapterXL):
|
||||||
|
# HACK(ryand): Work around a bug in FullAdapterXL. This is being addressed upstream in diffusers by
|
||||||
|
# this PR: https://github.com/huggingface/diffusers/pull/5134.
|
||||||
|
total_downscale_factor = total_downscale_factor // 2
|
||||||
|
|
||||||
# Resize the T2I-Adapter input image.
|
# Resize the T2I-Adapter input image.
|
||||||
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
|
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
|
||||||
@ -719,7 +710,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
with (
|
with (
|
||||||
ExitStack() as exit_stack,
|
ExitStack() as exit_stack,
|
||||||
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
|
|
||||||
set_seamless(unet_info.context.model, self.unet.seamless_axes),
|
set_seamless(unet_info.context.model, self.unet.seamless_axes),
|
||||||
unet_info as unet,
|
unet_info as unet,
|
||||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||||
@ -802,9 +792,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
title="Latents to Image",
|
title="Latents to Image",
|
||||||
tags=["latents", "image", "vae", "l2i"],
|
tags=["latents", "image", "vae", "l2i"],
|
||||||
category="latents",
|
category="latents",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class LatentsToImageInvocation(BaseInvocation, WithMetadata):
|
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
"""Generates an image from latents."""
|
"""Generates an image from latents."""
|
||||||
|
|
||||||
latents: LatentsField = InputField(
|
latents: LatentsField = InputField(
|
||||||
@ -886,7 +876,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
@ -915,12 +905,12 @@ class ResizeLatentsInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
width: int = InputField(
|
width: int = InputField(
|
||||||
ge=64,
|
ge=64,
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
multiple_of=8,
|
||||||
description=FieldDescriptions.width,
|
description=FieldDescriptions.width,
|
||||||
)
|
)
|
||||||
height: int = InputField(
|
height: int = InputField(
|
||||||
ge=64,
|
ge=64,
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
multiple_of=8,
|
||||||
description=FieldDescriptions.width,
|
description=FieldDescriptions.width,
|
||||||
)
|
)
|
||||||
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
|
||||||
@ -934,7 +924,7 @@ class ResizeLatentsInvocation(BaseInvocation):
|
|||||||
|
|
||||||
resized_latents = torch.nn.functional.interpolate(
|
resized_latents = torch.nn.functional.interpolate(
|
||||||
latents.to(device),
|
latents.to(device),
|
||||||
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
|
size=(self.height // 8, self.width // 8),
|
||||||
mode=self.mode,
|
mode=self.mode,
|
||||||
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
|
||||||
)
|
)
|
||||||
@ -1117,7 +1107,7 @@ class BlendLatentsInvocation(BaseInvocation):
|
|||||||
latents_b = context.services.latents.get(self.latents_b.latents_name)
|
latents_b = context.services.latents.get(self.latents_b.latents_name)
|
||||||
|
|
||||||
if latents_a.shape != latents_b.shape:
|
if latents_a.shape != latents_b.shape:
|
||||||
raise Exception("Latents to blend must be the same size.")
|
raise "Latents to blend must be the same size."
|
||||||
|
|
||||||
# TODO:
|
# TODO:
|
||||||
device = choose_torch_device()
|
device = choose_torch_device()
|
||||||
@ -1172,114 +1162,3 @@ class BlendLatentsInvocation(BaseInvocation):
|
|||||||
# context.services.latents.set(name, resized_latents)
|
# context.services.latents.set(name, resized_latents)
|
||||||
context.services.latents.save(name, blended_latents)
|
context.services.latents.save(name, blended_latents)
|
||||||
return build_latents_output(latents_name=name, latents=blended_latents)
|
return build_latents_output(latents_name=name, latents=blended_latents)
|
||||||
|
|
||||||
|
|
||||||
# The Crop Latents node was copied from @skunkworxdark's implementation here:
|
|
||||||
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
|
|
||||||
@invocation(
|
|
||||||
"crop_latents",
|
|
||||||
title="Crop Latents",
|
|
||||||
tags=["latents", "crop"],
|
|
||||||
category="latents",
|
|
||||||
version="1.0.0",
|
|
||||||
)
|
|
||||||
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
|
|
||||||
# Currently, if the class names conflict then 'GET /openapi.json' fails.
|
|
||||||
class CropLatentsCoreInvocation(BaseInvocation):
|
|
||||||
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
|
|
||||||
divisible by the latent scale factor of 8.
|
|
||||||
"""
|
|
||||||
|
|
||||||
latents: LatentsField = InputField(
|
|
||||||
description=FieldDescriptions.latents,
|
|
||||||
input=Input.Connection,
|
|
||||||
)
|
|
||||||
x: int = InputField(
|
|
||||||
ge=0,
|
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
|
||||||
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
|
||||||
)
|
|
||||||
y: int = InputField(
|
|
||||||
ge=0,
|
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
|
||||||
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
|
||||||
)
|
|
||||||
width: int = InputField(
|
|
||||||
ge=1,
|
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
|
||||||
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
|
||||||
)
|
|
||||||
height: int = InputField(
|
|
||||||
ge=1,
|
|
||||||
multiple_of=LATENT_SCALE_FACTOR,
|
|
||||||
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
|
|
||||||
)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
||||||
latents = context.services.latents.get(self.latents.latents_name)
|
|
||||||
|
|
||||||
x1 = self.x // LATENT_SCALE_FACTOR
|
|
||||||
y1 = self.y // LATENT_SCALE_FACTOR
|
|
||||||
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
|
|
||||||
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
|
|
||||||
|
|
||||||
cropped_latents = latents[..., y1:y2, x1:x2]
|
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
||||||
context.services.latents.save(name, cropped_latents)
|
|
||||||
|
|
||||||
return build_latents_output(latents_name=name, latents=cropped_latents)
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("ideal_size_output")
|
|
||||||
class IdealSizeOutput(BaseInvocationOutput):
|
|
||||||
"""Base class for invocations that output an image"""
|
|
||||||
|
|
||||||
width: int = OutputField(description="The ideal width of the image (in pixels)")
|
|
||||||
height: int = OutputField(description="The ideal height of the image (in pixels)")
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
|
||||||
"ideal_size",
|
|
||||||
title="Ideal Size",
|
|
||||||
tags=["latents", "math", "ideal_size"],
|
|
||||||
version="1.0.2",
|
|
||||||
)
|
|
||||||
class IdealSizeInvocation(BaseInvocation):
|
|
||||||
"""Calculates the ideal size for generation to avoid duplication"""
|
|
||||||
|
|
||||||
width: int = InputField(default=1024, description="Final image width")
|
|
||||||
height: int = InputField(default=576, description="Final image height")
|
|
||||||
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
|
|
||||||
multiplier: float = InputField(
|
|
||||||
default=1.0,
|
|
||||||
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)",
|
|
||||||
)
|
|
||||||
|
|
||||||
def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR):
|
|
||||||
return tuple((x - x % multiple_of) for x in args)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
|
|
||||||
aspect = self.width / self.height
|
|
||||||
dimension = 512
|
|
||||||
if self.unet.unet.base_model == BaseModelType.StableDiffusion2:
|
|
||||||
dimension = 768
|
|
||||||
elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL:
|
|
||||||
dimension = 1024
|
|
||||||
dimension = dimension * self.multiplier
|
|
||||||
min_dimension = math.floor(dimension * 0.5)
|
|
||||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
|
||||||
|
|
||||||
if aspect > 1.0:
|
|
||||||
init_height = max(min_dimension, math.sqrt(model_area / aspect))
|
|
||||||
init_width = init_height * aspect
|
|
||||||
else:
|
|
||||||
init_width = max(min_dimension, math.sqrt(model_area * aspect))
|
|
||||||
init_height = init_width / aspect
|
|
||||||
|
|
||||||
scaled_width, scaled_height = self.trim_to_multiple_of(
|
|
||||||
math.floor(init_width),
|
|
||||||
math.floor(init_height),
|
|
||||||
)
|
|
||||||
|
|
||||||
return IdealSizeOutput(width=scaled_width, height=scaled_height)
|
|
||||||
|
@ -6,9 +6,8 @@ import numpy as np
|
|||||||
from pydantic import ValidationInfo, field_validator
|
from pydantic import ValidationInfo, field_validator
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
|
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
|
|
||||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
||||||
|
|
||||||
|
|
||||||
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")
|
@invocation("add", title="Add Integers", tags=["math", "add"], category="math", version="1.0.0")
|
||||||
@ -145,17 +144,17 @@ INTEGER_OPERATIONS = Literal[
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
INTEGER_OPERATIONS_LABELS = {
|
INTEGER_OPERATIONS_LABELS = dict(
|
||||||
"ADD": "Add A+B",
|
ADD="Add A+B",
|
||||||
"SUB": "Subtract A-B",
|
SUB="Subtract A-B",
|
||||||
"MUL": "Multiply A*B",
|
MUL="Multiply A*B",
|
||||||
"DIV": "Divide A/B",
|
DIV="Divide A/B",
|
||||||
"EXP": "Exponentiate A^B",
|
EXP="Exponentiate A^B",
|
||||||
"MOD": "Modulus A%B",
|
MOD="Modulus A%B",
|
||||||
"ABS": "Absolute Value of A",
|
ABS="Absolute Value of A",
|
||||||
"MIN": "Minimum(A,B)",
|
MIN="Minimum(A,B)",
|
||||||
"MAX": "Maximum(A,B)",
|
MAX="Maximum(A,B)",
|
||||||
}
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -183,8 +182,8 @@ class IntegerMathInvocation(BaseInvocation):
|
|||||||
operation: INTEGER_OPERATIONS = InputField(
|
operation: INTEGER_OPERATIONS = InputField(
|
||||||
default="ADD", description="The operation to perform", ui_choice_labels=INTEGER_OPERATIONS_LABELS
|
default="ADD", description="The operation to perform", ui_choice_labels=INTEGER_OPERATIONS_LABELS
|
||||||
)
|
)
|
||||||
a: int = InputField(default=1, description=FieldDescriptions.num_1)
|
a: int = InputField(default=0, description=FieldDescriptions.num_1)
|
||||||
b: int = InputField(default=1, description=FieldDescriptions.num_2)
|
b: int = InputField(default=0, description=FieldDescriptions.num_2)
|
||||||
|
|
||||||
@field_validator("b")
|
@field_validator("b")
|
||||||
def no_unrepresentable_results(cls, v: int, info: ValidationInfo):
|
def no_unrepresentable_results(cls, v: int, info: ValidationInfo):
|
||||||
@ -231,17 +230,17 @@ FLOAT_OPERATIONS = Literal[
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
FLOAT_OPERATIONS_LABELS = {
|
FLOAT_OPERATIONS_LABELS = dict(
|
||||||
"ADD": "Add A+B",
|
ADD="Add A+B",
|
||||||
"SUB": "Subtract A-B",
|
SUB="Subtract A-B",
|
||||||
"MUL": "Multiply A*B",
|
MUL="Multiply A*B",
|
||||||
"DIV": "Divide A/B",
|
DIV="Divide A/B",
|
||||||
"EXP": "Exponentiate A^B",
|
EXP="Exponentiate A^B",
|
||||||
"ABS": "Absolute Value of A",
|
ABS="Absolute Value of A",
|
||||||
"SQRT": "Square Root of A",
|
SQRT="Square Root of A",
|
||||||
"MIN": "Minimum(A,B)",
|
MIN="Minimum(A,B)",
|
||||||
"MAX": "Maximum(A,B)",
|
MAX="Maximum(A,B)",
|
||||||
}
|
)
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -257,8 +256,8 @@ class FloatMathInvocation(BaseInvocation):
|
|||||||
operation: FLOAT_OPERATIONS = InputField(
|
operation: FLOAT_OPERATIONS = InputField(
|
||||||
default="ADD", description="The operation to perform", ui_choice_labels=FLOAT_OPERATIONS_LABELS
|
default="ADD", description="The operation to perform", ui_choice_labels=FLOAT_OPERATIONS_LABELS
|
||||||
)
|
)
|
||||||
a: float = InputField(default=1, description=FieldDescriptions.num_1)
|
a: float = InputField(default=0, description=FieldDescriptions.num_1)
|
||||||
b: float = InputField(default=1, description=FieldDescriptions.num_2)
|
b: float = InputField(default=0, description=FieldDescriptions.num_2)
|
||||||
|
|
||||||
@field_validator("b")
|
@field_validator("b")
|
||||||
def no_unrepresentable_results(cls, v: float, info: ValidationInfo):
|
def no_unrepresentable_results(cls, v: float, info: ValidationInfo):
|
||||||
@ -266,7 +265,7 @@ class FloatMathInvocation(BaseInvocation):
|
|||||||
raise ValueError("Cannot divide by zero")
|
raise ValueError("Cannot divide by zero")
|
||||||
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0:
|
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0:
|
||||||
raise ValueError("Cannot raise zero to a negative power")
|
raise ValueError("Cannot raise zero to a negative power")
|
||||||
elif info.data["operation"] == "EXP" and isinstance(info.data["a"] ** v, complex):
|
elif info.data["operation"] == "EXP" and type(info.data["a"] ** v) is complex:
|
||||||
raise ValueError("Root operation resulted in a complex number")
|
raise ValueError("Root operation resulted in a complex number")
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
@ -5,6 +5,7 @@ from pydantic import BaseModel, ConfigDict, Field
|
|||||||
from invokeai.app.invocations.baseinvocation import (
|
from invokeai.app.invocations.baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
MetadataField,
|
MetadataField,
|
||||||
@ -18,7 +19,6 @@ from invokeai.app.invocations.ip_adapter import IPAdapterModelField
|
|||||||
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
|
||||||
from invokeai.app.invocations.primitives import ImageField
|
from invokeai.app.invocations.primitives import ImageField
|
||||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
|
|
||||||
from ...version import __version__
|
from ...version import __version__
|
||||||
|
|
||||||
@ -112,7 +112,7 @@ GENERATION_MODES = Literal[
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.1")
|
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.0")
|
||||||
class CoreMetadataInvocation(BaseInvocation):
|
class CoreMetadataInvocation(BaseInvocation):
|
||||||
"""Collects core generation metadata into a MetadataField"""
|
"""Collects core generation metadata into a MetadataField"""
|
||||||
|
|
||||||
@ -127,9 +127,6 @@ class CoreMetadataInvocation(BaseInvocation):
|
|||||||
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
|
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
|
||||||
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
|
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
|
||||||
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
|
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
|
||||||
cfg_rescale_multiplier: Optional[float] = InputField(
|
|
||||||
default=None, description=FieldDescriptions.cfg_rescale_multiplier
|
|
||||||
)
|
|
||||||
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
|
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
|
||||||
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
|
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
|
||||||
seamless_x: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the X axis")
|
seamless_x: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the X axis")
|
||||||
@ -163,14 +160,13 @@ class CoreMetadataInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# High resolution fix metadata.
|
# High resolution fix metadata.
|
||||||
hrf_enabled: Optional[bool] = InputField(
|
hrf_width: Optional[int] = InputField(
|
||||||
default=None,
|
default=None,
|
||||||
description="Whether or not high resolution fix was enabled.",
|
description="The high resolution fix height and width multipler.",
|
||||||
)
|
)
|
||||||
# TODO: should this be stricter or do we just let the UI handle it?
|
hrf_height: Optional[int] = InputField(
|
||||||
hrf_method: Optional[str] = InputField(
|
|
||||||
default=None,
|
default=None,
|
||||||
description="The high resolution fix upscale method.",
|
description="The high resolution fix height and width multipler.",
|
||||||
)
|
)
|
||||||
hrf_strength: Optional[float] = InputField(
|
hrf_strength: Optional[float] = InputField(
|
||||||
default=None,
|
default=None,
|
||||||
|
@ -3,17 +3,16 @@ from typing import List, Optional
|
|||||||
|
|
||||||
from pydantic import BaseModel, ConfigDict, Field
|
from pydantic import BaseModel, ConfigDict, Field
|
||||||
|
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.app.shared.models import FreeUConfig
|
|
||||||
|
|
||||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
|
UIType,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
@ -37,7 +36,6 @@ class UNetField(BaseModel):
|
|||||||
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
|
||||||
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
||||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||||
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
|
|
||||||
|
|
||||||
|
|
||||||
class ClipField(BaseModel):
|
class ClipField(BaseModel):
|
||||||
@ -53,32 +51,13 @@ class VaeField(BaseModel):
|
|||||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("unet_output")
|
|
||||||
class UNetOutput(BaseInvocationOutput):
|
|
||||||
"""Base class for invocations that output a UNet field"""
|
|
||||||
|
|
||||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("vae_output")
|
|
||||||
class VAEOutput(BaseInvocationOutput):
|
|
||||||
"""Base class for invocations that output a VAE field"""
|
|
||||||
|
|
||||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("clip_output")
|
|
||||||
class CLIPOutput(BaseInvocationOutput):
|
|
||||||
"""Base class for invocations that output a CLIP field"""
|
|
||||||
|
|
||||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("model_loader_output")
|
@invocation_output("model_loader_output")
|
||||||
class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
|
class ModelLoaderOutput(BaseInvocationOutput):
|
||||||
"""Model loader output"""
|
"""Model loader output"""
|
||||||
|
|
||||||
pass
|
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||||
|
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||||
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||||
|
|
||||||
|
|
||||||
class MainModelField(BaseModel):
|
class MainModelField(BaseModel):
|
||||||
@ -387,6 +366,13 @@ class VAEModelField(BaseModel):
|
|||||||
model_config = ConfigDict(protected_namespaces=())
|
model_config = ConfigDict(protected_namespaces=())
|
||||||
|
|
||||||
|
|
||||||
|
@invocation_output("vae_loader_output")
|
||||||
|
class VaeLoaderOutput(BaseInvocationOutput):
|
||||||
|
"""VAE output"""
|
||||||
|
|
||||||
|
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||||
|
|
||||||
|
|
||||||
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
|
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
|
||||||
class VaeLoaderInvocation(BaseInvocation):
|
class VaeLoaderInvocation(BaseInvocation):
|
||||||
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
||||||
@ -394,10 +380,11 @@ class VaeLoaderInvocation(BaseInvocation):
|
|||||||
vae_model: VAEModelField = InputField(
|
vae_model: VAEModelField = InputField(
|
||||||
description=FieldDescriptions.vae_model,
|
description=FieldDescriptions.vae_model,
|
||||||
input=Input.Direct,
|
input=Input.Direct,
|
||||||
|
ui_type=UIType.VaeModel,
|
||||||
title="VAE",
|
title="VAE",
|
||||||
)
|
)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> VAEOutput:
|
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
|
||||||
base_model = self.vae_model.base_model
|
base_model = self.vae_model.base_model
|
||||||
model_name = self.vae_model.model_name
|
model_name = self.vae_model.model_name
|
||||||
model_type = ModelType.Vae
|
model_type = ModelType.Vae
|
||||||
@ -408,7 +395,7 @@ class VaeLoaderInvocation(BaseInvocation):
|
|||||||
model_type=model_type,
|
model_type=model_type,
|
||||||
):
|
):
|
||||||
raise Exception(f"Unkown vae name: {model_name}!")
|
raise Exception(f"Unkown vae name: {model_name}!")
|
||||||
return VAEOutput(
|
return VaeLoaderOutput(
|
||||||
vae=VaeField(
|
vae=VaeField(
|
||||||
vae=ModelInfo(
|
vae=ModelInfo(
|
||||||
model_name=model_name,
|
model_name=model_name,
|
||||||
@ -470,24 +457,3 @@ class SeamlessModeInvocation(BaseInvocation):
|
|||||||
vae.seamless_axes = seamless_axes_list
|
vae.seamless_axes = seamless_axes_list
|
||||||
|
|
||||||
return SeamlessModeOutput(unet=unet, vae=vae)
|
return SeamlessModeOutput(unet=unet, vae=vae)
|
||||||
|
|
||||||
|
|
||||||
@invocation("freeu", title="FreeU", tags=["freeu"], category="unet", version="1.0.0")
|
|
||||||
class FreeUInvocation(BaseInvocation):
|
|
||||||
"""
|
|
||||||
Applies FreeU to the UNet. Suggested values (b1/b2/s1/s2):
|
|
||||||
|
|
||||||
SD1.5: 1.2/1.4/0.9/0.2,
|
|
||||||
SD2: 1.1/1.2/0.9/0.2,
|
|
||||||
SDXL: 1.1/1.2/0.6/0.4,
|
|
||||||
"""
|
|
||||||
|
|
||||||
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet")
|
|
||||||
b1: float = InputField(default=1.2, ge=-1, le=3, description=FieldDescriptions.freeu_b1)
|
|
||||||
b2: float = InputField(default=1.4, ge=-1, le=3, description=FieldDescriptions.freeu_b2)
|
|
||||||
s1: float = InputField(default=0.9, ge=-1, le=3, description=FieldDescriptions.freeu_s1)
|
|
||||||
s2: float = InputField(default=0.2, ge=-1, le=3, description=FieldDescriptions.freeu_s2)
|
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> UNetOutput:
|
|
||||||
self.unet.freeu_config = FreeUConfig(s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2)
|
|
||||||
return UNetOutput(unet=self.unet)
|
|
||||||
|
@ -5,13 +5,13 @@ import torch
|
|||||||
from pydantic import field_validator
|
from pydantic import field_validator
|
||||||
|
|
||||||
from invokeai.app.invocations.latent import LatentsField
|
from invokeai.app.invocations.latent import LatentsField
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||||
from invokeai.app.util.misc import SEED_MAX
|
|
||||||
|
|
||||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
OutputField,
|
OutputField,
|
||||||
@ -83,16 +83,16 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
|
|||||||
title="Noise",
|
title="Noise",
|
||||||
tags=["latents", "noise"],
|
tags=["latents", "noise"],
|
||||||
category="latents",
|
category="latents",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class NoiseInvocation(BaseInvocation):
|
class NoiseInvocation(BaseInvocation):
|
||||||
"""Generates latent noise."""
|
"""Generates latent noise."""
|
||||||
|
|
||||||
seed: int = InputField(
|
seed: int = InputField(
|
||||||
default=0,
|
|
||||||
ge=0,
|
ge=0,
|
||||||
le=SEED_MAX,
|
le=SEED_MAX,
|
||||||
description=FieldDescriptions.seed,
|
description=FieldDescriptions.seed,
|
||||||
|
default_factory=get_random_seed,
|
||||||
)
|
)
|
||||||
width: int = InputField(
|
width: int = InputField(
|
||||||
default=512,
|
default=512,
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
|
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
|
||||||
|
|
||||||
import inspect
|
import inspect
|
||||||
|
import re
|
||||||
|
|
||||||
# from contextlib import ExitStack
|
# from contextlib import ExitStack
|
||||||
from typing import List, Literal, Union
|
from typing import List, Literal, Union
|
||||||
@ -13,17 +14,16 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
|
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
|
||||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||||
from invokeai.backend import BaseModelType, ModelType, SubModelType
|
from invokeai.backend import BaseModelType, ModelType, SubModelType
|
||||||
|
|
||||||
from ...backend.model_management import ONNXModelPatcher
|
from ...backend.model_management import ONNXModelPatcher
|
||||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
from ...backend.util import choose_torch_device
|
from ...backend.util import choose_torch_device
|
||||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
@ -31,6 +31,7 @@ from .baseinvocation import (
|
|||||||
UIComponent,
|
UIComponent,
|
||||||
UIType,
|
UIType,
|
||||||
WithMetadata,
|
WithMetadata,
|
||||||
|
WithWorkflow,
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
@ -53,7 +54,7 @@ ORT_TO_NP_TYPE = {
|
|||||||
"tensor(double)": np.float64,
|
"tensor(double)": np.float64,
|
||||||
}
|
}
|
||||||
|
|
||||||
PRECISION_VALUES = Literal[tuple(ORT_TO_NP_TYPE.keys())]
|
PRECISION_VALUES = Literal[tuple(list(ORT_TO_NP_TYPE.keys()))]
|
||||||
|
|
||||||
|
|
||||||
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0")
|
@invocation("prompt_onnx", title="ONNX Prompt (Raw)", tags=["prompt", "onnx"], category="conditioning", version="1.0.0")
|
||||||
@ -78,7 +79,7 @@ class ONNXPromptInvocation(BaseInvocation):
|
|||||||
]
|
]
|
||||||
|
|
||||||
ti_list = []
|
ti_list = []
|
||||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
||||||
name = trigger[1:-1]
|
name = trigger[1:-1]
|
||||||
try:
|
try:
|
||||||
ti_list.append(
|
ti_list.append(
|
||||||
@ -251,7 +252,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
|
|||||||
scheduler.set_timesteps(self.steps)
|
scheduler.set_timesteps(self.steps)
|
||||||
latents = latents * np.float64(scheduler.init_noise_sigma)
|
latents = latents * np.float64(scheduler.init_noise_sigma)
|
||||||
|
|
||||||
extra_step_kwargs = {}
|
extra_step_kwargs = dict()
|
||||||
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||||
extra_step_kwargs.update(
|
extra_step_kwargs.update(
|
||||||
eta=0.0,
|
eta=0.0,
|
||||||
@ -325,9 +326,9 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
|
|||||||
title="ONNX Latents to Image",
|
title="ONNX Latents to Image",
|
||||||
tags=["latents", "image", "vae", "onnx"],
|
tags=["latents", "image", "vae", "onnx"],
|
||||||
category="image",
|
category="image",
|
||||||
version="1.2.0",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
|
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
||||||
"""Generates an image from latents."""
|
"""Generates an image from latents."""
|
||||||
|
|
||||||
latents: LatentsField = InputField(
|
latents: LatentsField = InputField(
|
||||||
@ -377,7 +378,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata):
|
|||||||
session_id=context.graph_execution_state_id,
|
session_id=context.graph_execution_state_id,
|
||||||
is_intermediate=self.is_intermediate,
|
is_intermediate=self.is_intermediate,
|
||||||
metadata=self.metadata,
|
metadata=self.metadata,
|
||||||
workflow=context.workflow,
|
workflow=self.workflow,
|
||||||
)
|
)
|
||||||
|
|
||||||
return ImageOutput(
|
return ImageOutput(
|
||||||
|
@ -100,7 +100,7 @@ EASING_FUNCTIONS_MAP = {
|
|||||||
"BounceInOut": BounceEaseInOut,
|
"BounceInOut": BounceEaseInOut,
|
||||||
}
|
}
|
||||||
|
|
||||||
EASING_FUNCTION_KEYS = Literal[tuple(EASING_FUNCTIONS_MAP.keys())]
|
EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
|
||||||
|
|
||||||
|
|
||||||
# actually I think for now could just use CollectionOutput (which is list[Any]
|
# actually I think for now could just use CollectionOutput (which is list[Any]
|
||||||
@ -161,7 +161,7 @@ class StepParamEasingInvocation(BaseInvocation):
|
|||||||
easing_class = EASING_FUNCTIONS_MAP[self.easing]
|
easing_class = EASING_FUNCTIONS_MAP[self.easing]
|
||||||
if log_diagnostics:
|
if log_diagnostics:
|
||||||
context.services.logger.debug("easing class: " + str(easing_class))
|
context.services.logger.debug("easing class: " + str(easing_class))
|
||||||
easing_list = []
|
easing_list = list()
|
||||||
if self.mirror: # "expected" mirroring
|
if self.mirror: # "expected" mirroring
|
||||||
# if number of steps is even, squeeze duration down to (number_of_steps)/2
|
# if number of steps is even, squeeze duration down to (number_of_steps)/2
|
||||||
# and create reverse copy of list to append
|
# and create reverse copy of list to append
|
||||||
@ -178,7 +178,7 @@ class StepParamEasingInvocation(BaseInvocation):
|
|||||||
end=self.end_value,
|
end=self.end_value,
|
||||||
duration=base_easing_duration - 1,
|
duration=base_easing_duration - 1,
|
||||||
)
|
)
|
||||||
base_easing_vals = []
|
base_easing_vals = list()
|
||||||
for step_index in range(base_easing_duration):
|
for step_index in range(base_easing_duration):
|
||||||
easing_val = easing_function.ease(step_index)
|
easing_val = easing_function.ease(step_index)
|
||||||
base_easing_vals.append(easing_val)
|
base_easing_vals.append(easing_val)
|
||||||
|
@ -5,11 +5,10 @@ from typing import Optional, Tuple
|
|||||||
import torch
|
import torch
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
@ -62,12 +61,12 @@ class BooleanInvocation(BaseInvocation):
|
|||||||
title="Boolean Collection Primitive",
|
title="Boolean Collection Primitive",
|
||||||
tags=["primitives", "boolean", "collection"],
|
tags=["primitives", "boolean", "collection"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class BooleanCollectionInvocation(BaseInvocation):
|
class BooleanCollectionInvocation(BaseInvocation):
|
||||||
"""A collection of boolean primitive values"""
|
"""A collection of boolean primitive values"""
|
||||||
|
|
||||||
collection: list[bool] = InputField(default=[], description="The collection of boolean values")
|
collection: list[bool] = InputField(default_factory=list, description="The collection of boolean values")
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> BooleanCollectionOutput:
|
def invoke(self, context: InvocationContext) -> BooleanCollectionOutput:
|
||||||
return BooleanCollectionOutput(collection=self.collection)
|
return BooleanCollectionOutput(collection=self.collection)
|
||||||
@ -111,12 +110,12 @@ class IntegerInvocation(BaseInvocation):
|
|||||||
title="Integer Collection Primitive",
|
title="Integer Collection Primitive",
|
||||||
tags=["primitives", "integer", "collection"],
|
tags=["primitives", "integer", "collection"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class IntegerCollectionInvocation(BaseInvocation):
|
class IntegerCollectionInvocation(BaseInvocation):
|
||||||
"""A collection of integer primitive values"""
|
"""A collection of integer primitive values"""
|
||||||
|
|
||||||
collection: list[int] = InputField(default=[], description="The collection of integer values")
|
collection: list[int] = InputField(default_factory=list, description="The collection of integer values")
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
def invoke(self, context: InvocationContext) -> IntegerCollectionOutput:
|
||||||
return IntegerCollectionOutput(collection=self.collection)
|
return IntegerCollectionOutput(collection=self.collection)
|
||||||
@ -158,12 +157,12 @@ class FloatInvocation(BaseInvocation):
|
|||||||
title="Float Collection Primitive",
|
title="Float Collection Primitive",
|
||||||
tags=["primitives", "float", "collection"],
|
tags=["primitives", "float", "collection"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class FloatCollectionInvocation(BaseInvocation):
|
class FloatCollectionInvocation(BaseInvocation):
|
||||||
"""A collection of float primitive values"""
|
"""A collection of float primitive values"""
|
||||||
|
|
||||||
collection: list[float] = InputField(default=[], description="The collection of float values")
|
collection: list[float] = InputField(default_factory=list, description="The collection of float values")
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
|
def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
|
||||||
return FloatCollectionOutput(collection=self.collection)
|
return FloatCollectionOutput(collection=self.collection)
|
||||||
@ -205,12 +204,12 @@ class StringInvocation(BaseInvocation):
|
|||||||
title="String Collection Primitive",
|
title="String Collection Primitive",
|
||||||
tags=["primitives", "string", "collection"],
|
tags=["primitives", "string", "collection"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class StringCollectionInvocation(BaseInvocation):
|
class StringCollectionInvocation(BaseInvocation):
|
||||||
"""A collection of string primitive values"""
|
"""A collection of string primitive values"""
|
||||||
|
|
||||||
collection: list[str] = InputField(default=[], description="The collection of string values")
|
collection: list[str] = InputField(default_factory=list, description="The collection of string values")
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
|
def invoke(self, context: InvocationContext) -> StringCollectionOutput:
|
||||||
return StringCollectionOutput(collection=self.collection)
|
return StringCollectionOutput(collection=self.collection)
|
||||||
@ -467,13 +466,13 @@ class ConditioningInvocation(BaseInvocation):
|
|||||||
title="Conditioning Collection Primitive",
|
title="Conditioning Collection Primitive",
|
||||||
tags=["primitives", "conditioning", "collection"],
|
tags=["primitives", "conditioning", "collection"],
|
||||||
category="primitives",
|
category="primitives",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class ConditioningCollectionInvocation(BaseInvocation):
|
class ConditioningCollectionInvocation(BaseInvocation):
|
||||||
"""A collection of conditioning tensor primitive values"""
|
"""A collection of conditioning tensor primitive values"""
|
||||||
|
|
||||||
collection: list[ConditioningField] = InputField(
|
collection: list[ConditioningField] = InputField(
|
||||||
default=[],
|
default_factory=list,
|
||||||
description="The collection of conditioning tensors",
|
description="The collection of conditioning tensors",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ class DynamicPromptInvocation(BaseInvocation):
|
|||||||
title="Prompts from File",
|
title="Prompts from File",
|
||||||
tags=["prompt", "file"],
|
tags=["prompt", "file"],
|
||||||
category="prompt",
|
category="prompt",
|
||||||
version="1.0.1",
|
version="1.0.0",
|
||||||
)
|
)
|
||||||
class PromptsFromFileInvocation(BaseInvocation):
|
class PromptsFromFileInvocation(BaseInvocation):
|
||||||
"""Loads prompts from a text file"""
|
"""Loads prompts from a text file"""
|
||||||
@ -82,7 +82,7 @@ class PromptsFromFileInvocation(BaseInvocation):
|
|||||||
end_line = start_line + max_prompts
|
end_line = start_line + max_prompts
|
||||||
if max_prompts <= 0:
|
if max_prompts <= 0:
|
||||||
end_line = np.iinfo(np.int32).max
|
end_line = np.iinfo(np.int32).max
|
||||||
with open(file_path, encoding="utf-8") as f:
|
with open(file_path) as f:
|
||||||
for i, line in enumerate(f):
|
for i, line in enumerate(f):
|
||||||
if i >= start_line and i < end_line:
|
if i >= start_line and i < end_line:
|
||||||
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
|
prompts.append((pre_prompt or "") + line.strip() + (post_prompt or ""))
|
||||||
|
@ -1,9 +1,8 @@
|
|||||||
from invokeai.app.shared.fields import FieldDescriptions
|
|
||||||
|
|
||||||
from ...backend.model_management import ModelType, SubModelType
|
from ...backend.model_management import ModelType, SubModelType
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
|
FieldDescriptions,
|
||||||
Input,
|
Input,
|
||||||
InputField,
|
InputField,
|
||||||
InvocationContext,
|
InvocationContext,
|
||||||
|