mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Compare commits
253 Commits
v3.6.2
...
bugfix/han
Author | SHA1 | Date | |
---|---|---|---|
b3abc7252d | |||
9986fce1a6 | |||
228f1d7f62 | |||
01a6378dc1 | |||
e01769294f | |||
16aa261e28 | |||
1dabf18d14 | |||
115d92b1ae | |||
f0d4c71960 | |||
3e48edda6f | |||
716b584f03 | |||
d43b843c23 | |||
f36b5990ed | |||
5706237ec7 | |||
163b22a7b3 | |||
c5aeb36230 | |||
5e77f0d93b | |||
d3acb81743 | |||
e0f2404c00 | |||
5ed7972e5f | |||
792131be01 | |||
fc278c5cb1 | |||
d7f6af1f07 | |||
ff9bd040cc | |||
17d5f7bebd | |||
30dae0f5aa | |||
161000cde6 | |||
de832f6862 | |||
21ba3c63de | |||
a948bd1310 | |||
2071972a8c | |||
5ed2f6e6c1 | |||
b77f6bd0ad | |||
34cc26a4ed | |||
9d6e4ff1fb | |||
85bbf65967 | |||
3726293258 | |||
8bd65be8c8 | |||
783442c40d | |||
8a147bd6e6 | |||
273994b742 | |||
3339ad4df8 | |||
c3b2a8cb27 | |||
daa780940b | |||
2289680ae1 | |||
cda85a0637 | |||
1d9801e7be | |||
3ecb1e580f | |||
6301e58a2e | |||
5dd552effa | |||
25ce505628 | |||
1dd07fb1eb | |||
e82c21b5ba | |||
50b93992cf | |||
f8e566d62a | |||
f588b95c7f | |||
67daf1751c | |||
7d80261d47 | |||
67cbfeb33d | |||
f7998b4be0 | |||
675c73c94f | |||
0a27b0379f | |||
0ef18b6477 | |||
6539ef7c9f | |||
14c9a1e4f3 | |||
64b0feca31 | |||
0be9a2d906 | |||
d925f721b9 | |||
4e5be1891a | |||
156d4ec3b2 | |||
c45a43519a | |||
763816ca0c | |||
83a7c9059f | |||
c5f069a255 | |||
cd169ee082 | |||
66b106f107 | |||
b10d745dae | |||
d20f98fb4f | |||
c9c150f850 | |||
a60e2b7c77 | |||
da6e5b2ba1 | |||
c65d497cbc | |||
a68d8fe203 | |||
5de2288cfa | |||
2ce70b4457 | |||
6c5f743e2b | |||
bb242c4e1e | |||
c9e246ed1b | |||
2175fe3823 | |||
f64fc2c8b7 | |||
3d1b5c57ea | |||
31b9538976 | |||
97c1545cca | |||
6a8a3b50bc | |||
5a816818dc | |||
1cb866d1fc | |||
29bcc4b595 | |||
ca2bb6f0cc | |||
1c8fc908b2 | |||
d397beaa47 | |||
60eea09629 | |||
5b7b1122cb | |||
dfc8d1bb10 | |||
f9fa62164e | |||
d47905d2fb | |||
03b1cde97d | |||
7162ff04df | |||
32b1e974ca | |||
82c3c7fc38 | |||
3dcbb79ef7 | |||
3b41104427 | |||
35bf7ee66d | |||
430e17a5d2 | |||
400d66fa5d | |||
800c481515 | |||
79ae9c4e64 | |||
0dc6cb0535 | |||
810fc19e43 | |||
e0e106367d | |||
14472dc09d | |||
e8095b73ae | |||
c979cf5ecc | |||
1b4dbd283e | |||
fb50a221f8 | |||
52e07db06b | |||
6643b5cec4 | |||
e8bf9ea058 | |||
ce3d37e829 | |||
8a61063e84 | |||
87ff96553a | |||
209bf105bc | |||
804dbeba34 | |||
067cd4dc2e | |||
feb4a3f242 | |||
4a886c0a4a | |||
8e500283b6 | |||
3205371654 | |||
d713620d9e | |||
c1300fa8b1 | |||
0976ddba23 | |||
3ebb806410 | |||
9f274c79dc | |||
88c08bbfc7 | |||
c2af124622 | |||
f972fe9836 | |||
dcfc883ab3 | |||
1d2bd6b8f7 | |||
f2777f5096 | |||
d3320dc4ee | |||
72db2ee352 | |||
60c3a4ad5e | |||
cf7a7928af | |||
1057314508 | |||
73a077956b | |||
5e1e50bd47 | |||
413fe566b8 | |||
c9b5f06c42 | |||
b53e432b0f | |||
88164447e9 | |||
1ac85fd049 | |||
ee6fc4ab1d | |||
9f793bdae8 | |||
a0eecaecd0 | |||
d532073f5b | |||
198e8c9d55 | |||
30367deeca | |||
e73298aea2 | |||
59279851a3 | |||
2965357d99 | |||
8bd32ee142 | |||
a4f892dcfb | |||
e675983e20 | |||
e9558f97c4 | |||
a1a611f8cb | |||
182dc859a0 | |||
c0240a8568 | |||
02bcff29e8 | |||
d4ed64df7d | |||
701f14c1e3 | |||
45bf2c7da6 | |||
67ada70a26 | |||
06bcc07f65 | |||
4410ecf62c | |||
9f6b9d4d23 | |||
b24e8dd829 | |||
25291a2e01 | |||
332f3930a5 | |||
ed466a99ec | |||
f68f8898c0 | |||
a0996b1c0a | |||
522ff4a042 | |||
a769f93be0 | |||
2c5ef92979 | |||
5d773dc94c | |||
088e3420e6 | |||
14efc95707 | |||
f48a2c5fd2 | |||
74ae4d7774 | |||
191203ea0c | |||
6aceae5c22 | |||
8c6b3efd39 | |||
4602efd598 | |||
f70c0936ca | |||
0d4de4cc63 | |||
1e855f8290 | |||
bb2787584d | |||
a04981b418 | |||
d7f16b7c87 | |||
4477e04d59 | |||
30e11b4b42 | |||
b93695b78f | |||
b01311813b | |||
5ae80fab87 | |||
c4291f2136 | |||
287d3c2b04 | |||
7fde19730e | |||
13575642d8 | |||
3f5370b284 | |||
d048eb5b20 | |||
dd7031a472 | |||
4160d5ef26 | |||
51bdf2fd19 | |||
6a44697911 | |||
7a1d0ec228 | |||
b5928fd411 | |||
2f345d1976 | |||
f5d0721fa8 | |||
c3b36cb61d | |||
189c430e46 | |||
b922ee566a | |||
89da69f647 | |||
138caa34de | |||
26c3378ede | |||
aa134a2db8 | |||
d0391cb430 | |||
c955ea9de0 | |||
fc29a5d439 | |||
7e9942dbab | |||
c003967eaa | |||
b28fcc6be5 | |||
418cdbabb7 | |||
18e61e92d9 | |||
de20711637 | |||
55e91b97be | |||
f79bbd2d6e | |||
e1c2c3905d | |||
03ac93bfc7 | |||
89da976949 | |||
e160cbb1e9 | |||
68232e642f | |||
b94f6a4a29 | |||
4caf63d53d | |||
6057229ceb |
98
.github/ISSUE_TEMPLATE/BUG_REPORT.yml
vendored
98
.github/ISSUE_TEMPLATE/BUG_REPORT.yml
vendored
@ -6,10 +6,6 @@ title: '[bug]: '
|
||||
|
||||
labels: ['bug']
|
||||
|
||||
# assignees:
|
||||
# - moderator_bot
|
||||
# - lstein
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
@ -18,10 +14,9 @@ body:
|
||||
|
||||
- type: checkboxes
|
||||
attributes:
|
||||
label: Is there an existing issue for this?
|
||||
label: Is there an existing issue for this problem?
|
||||
description: |
|
||||
Please use the [search function](https://github.com/invoke-ai/InvokeAI/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
|
||||
irst to see if an issue already exists for the bug you encountered.
|
||||
Please [search](https://github.com/invoke-ai/InvokeAI/issues) first to see if an issue already exists for the problem.
|
||||
options:
|
||||
- label: I have searched the existing issues
|
||||
required: true
|
||||
@ -33,80 +28,119 @@ body:
|
||||
- type: dropdown
|
||||
id: os_dropdown
|
||||
attributes:
|
||||
label: OS
|
||||
description: Which operating System did you use when the bug occured
|
||||
label: Operating system
|
||||
description: Your computer's operating system.
|
||||
multiple: false
|
||||
options:
|
||||
- 'Linux'
|
||||
- 'Windows'
|
||||
- 'macOS'
|
||||
- 'other'
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: dropdown
|
||||
id: gpu_dropdown
|
||||
attributes:
|
||||
label: GPU
|
||||
description: Which kind of Graphic-Adapter is your System using
|
||||
label: GPU vendor
|
||||
description: Your GPU's vendor.
|
||||
multiple: false
|
||||
options:
|
||||
- 'cuda'
|
||||
- 'amd'
|
||||
- 'mps'
|
||||
- 'cpu'
|
||||
- 'Nvidia (CUDA)'
|
||||
- 'AMD (ROCm)'
|
||||
- 'Apple Silicon (MPS)'
|
||||
- 'None (CPU)'
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: input
|
||||
id: gpu_model
|
||||
attributes:
|
||||
label: GPU model
|
||||
description: Your GPU's model. If on Apple Silicon, this is your Mac's chip. Leave blank if on CPU.
|
||||
placeholder: ex. RTX 2080 Ti, Mac M1 Pro
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: input
|
||||
id: vram
|
||||
attributes:
|
||||
label: VRAM
|
||||
description: Size of the VRAM if known
|
||||
label: GPU VRAM
|
||||
description: Your GPU's VRAM. If on Apple Silicon, this is your Mac's unified memory. Leave blank if on CPU.
|
||||
placeholder: 8GB
|
||||
validations:
|
||||
required: false
|
||||
|
||||
|
||||
- type: input
|
||||
id: version-number
|
||||
attributes:
|
||||
label: What version did you experience this issue on?
|
||||
label: Version number
|
||||
description: |
|
||||
Please share the version of Invoke AI that you experienced the issue on. If this is not the latest version, please update first to confirm the issue still exists. If you are testing main, please include the commit hash instead.
|
||||
placeholder: X.X.X
|
||||
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
|
||||
placeholder: ex. 3.6.1
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: input
|
||||
id: browser-version
|
||||
attributes:
|
||||
label: Browser
|
||||
description: Your web browser and version.
|
||||
placeholder: ex. Firefox 123.0b3
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: python-deps
|
||||
attributes:
|
||||
label: Python dependencies
|
||||
description: |
|
||||
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
label: What happened
|
||||
description: |
|
||||
Briefly describe what happened, what you expected to happen and how to reproduce this bug.
|
||||
placeholder: When using the webinterface and right-clicking on button X instead of the popup-menu there error Y appears
|
||||
Describe what happened. Include any relevant error messages, stack traces and screenshots here.
|
||||
placeholder: I clicked button X and then Y happened.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: what-you-expected
|
||||
attributes:
|
||||
label: Screenshots
|
||||
description: If applicable, add screenshots to help explain your problem
|
||||
placeholder: this is what the result looked like <screenshot>
|
||||
label: What you expected to happen
|
||||
description: Describe what you expected to happen.
|
||||
placeholder: I expected Z to happen.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: how-to-repro
|
||||
attributes:
|
||||
label: How to reproduce the problem
|
||||
description: List steps to reproduce the problem.
|
||||
placeholder: Start the app, generate an image with these settings, then click button X.
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here
|
||||
description: Any other context that might help us to understand the problem.
|
||||
placeholder: Only happens when there is full moon and Friday the 13th on Christmas Eve 🎅🏻
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: input
|
||||
id: contact
|
||||
id: discord-username
|
||||
attributes:
|
||||
label: Contact Details
|
||||
description: __OPTIONAL__ How can we get in touch with you if we need more info (besides this issue)?
|
||||
placeholder: ex. email@example.com, discordname, twitter, ...
|
||||
label: Discord username
|
||||
description: If you are on the Invoke discord and would prefer to be contacted there, please provide your username.
|
||||
placeholder: supercoolusername123
|
||||
validations:
|
||||
required: false
|
||||
|
59
.github/pr_labels.yml
vendored
Normal file
59
.github/pr_labels.yml
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
Root:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: '*'
|
||||
|
||||
PythonDeps:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'pyproject.toml'
|
||||
|
||||
Python:
|
||||
- changed-files:
|
||||
- all-globs-to-any-file:
|
||||
- 'invokeai/**'
|
||||
- '!invokeai/frontend/web/**'
|
||||
|
||||
PythonTests:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'tests/**'
|
||||
|
||||
CICD:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: .github/**
|
||||
|
||||
Docker:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: docker/**
|
||||
|
||||
Installer:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: installer/**
|
||||
|
||||
Documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: docs/**
|
||||
|
||||
Invocations:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'invokeai/app/invocations/**'
|
||||
|
||||
Backend:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'invokeai/backend/**'
|
||||
|
||||
Api:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'invokeai/app/api/**'
|
||||
|
||||
Services:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'invokeai/app/services/**'
|
||||
|
||||
FrontendDeps:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- '**/*/package.json'
|
||||
- '**/*/pnpm-lock.yaml'
|
||||
|
||||
Frontend:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: 'invokeai/frontend/web/**'
|
16
.github/workflows/label-pr.yml
vendored
Normal file
16
.github/workflows/label-pr.yml
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
name: "Pull Request Labeler"
|
||||
on:
|
||||
- pull_request_target
|
||||
|
||||
jobs:
|
||||
labeler:
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- uses: actions/labeler@v5
|
||||
with:
|
||||
configuration-path: .github/pr_labels.yml
|
@ -169,7 +169,7 @@ the command `npm install -g pnpm` if needed)
|
||||
_For Linux with an AMD GPU:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
_For non-GPU systems:_
|
||||
|
@ -18,8 +18,8 @@ ENV INVOKEAI_SRC=/opt/invokeai
|
||||
ENV VIRTUAL_ENV=/opt/venv/invokeai
|
||||
|
||||
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
|
||||
ARG TORCH_VERSION=2.1.0
|
||||
ARG TORCHVISION_VERSION=0.16
|
||||
ARG TORCH_VERSION=2.1.2
|
||||
ARG TORCHVISION_VERSION=0.16.2
|
||||
ARG GPU_DRIVER=cuda
|
||||
ARG TARGETPLATFORM="linux/amd64"
|
||||
# unused but available
|
||||
@ -35,7 +35,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ] || [ "$GPU_DRIVER" = "cpu" ]; then \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cpu"; \
|
||||
elif [ "$GPU_DRIVER" = "rocm" ]; then \
|
||||
extra_index_url_arg="--index-url https://download.pytorch.org/whl/rocm5.6"; \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.6"; \
|
||||
else \
|
||||
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \
|
||||
fi &&\
|
||||
@ -54,7 +54,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
if [ "$GPU_DRIVER" = "cuda" ] && [ "$TARGETPLATFORM" = "linux/amd64" ]; then \
|
||||
pip install -e ".[xformers]"; \
|
||||
else \
|
||||
pip install -e "."; \
|
||||
pip install $extra_index_url_arg -e "."; \
|
||||
fi
|
||||
|
||||
# #### Build the Web UI ------------------------------------
|
||||
|
@ -28,7 +28,7 @@ This is done via Docker Desktop preferences
|
||||
|
||||
### Configure Invoke environment
|
||||
|
||||
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
1. Make a copy of `.env.sample` and name it `.env` (`cp .env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. Execute `run.sh`
|
||||
|
@ -21,7 +21,7 @@ run() {
|
||||
printf "%s\n" "$build_args"
|
||||
fi
|
||||
|
||||
docker compose build $build_args
|
||||
docker compose build $build_args $service_name
|
||||
unset build_args
|
||||
|
||||
printf "%s\n" "starting service $service_name"
|
||||
|
@ -94,6 +94,8 @@ A model that helps generate creative QR codes that still scan. Can also be used
|
||||
**Openpose**:
|
||||
The OpenPose control model allows for the identification of the general pose of a character by pre-processing an existing image with a clear human structure. With advanced options, Openpose can also detect the face or hands in the image.
|
||||
|
||||
*Note:* The DWPose Processor has replaced the OpenPose processor in Invoke. Workflows and generations that relied on the OpenPose Processor will need to be updated to use the DWPose Processor instead.
|
||||
|
||||
**Mediapipe Face**:
|
||||
|
||||
The MediaPipe Face identification processor is able to clearly identify facial features in order to capture vivid expressions of human faces.
|
||||
|
BIN
docs/img/favicon.ico
Normal file
BIN
docs/img/favicon.ico
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.2 KiB |
@ -117,6 +117,11 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
|
||||
|
||||
## :octicons-gift-24: InvokeAI Features
|
||||
|
||||
### Installation
|
||||
- [Automated Installer](installation/010_INSTALL_AUTOMATED.md)
|
||||
- [Manual Installation](installation/020_INSTALL_MANUAL.md)
|
||||
- [Docker Installation](installation/040_INSTALL_DOCKER.md)
|
||||
|
||||
### The InvokeAI Web Interface
|
||||
- [WebUI overview](features/WEB.md)
|
||||
- [WebUI hotkey reference guide](features/WEBUIHOTKEYS.md)
|
||||
|
@ -477,7 +477,7 @@ Then type the following commands:
|
||||
|
||||
=== "AMD System"
|
||||
```bash
|
||||
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
|
||||
pip install torch torchvision --force-reinstall --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
### Corrupted configuration file
|
||||
|
@ -154,7 +154,7 @@ manager, please follow these steps:
|
||||
=== "ROCm (AMD)"
|
||||
|
||||
```bash
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
=== "CPU (Intel Macs & non-GPU systems)"
|
||||
@ -230,13 +230,13 @@ manager, please follow these steps:
|
||||
=== "local Webserver"
|
||||
|
||||
```bash
|
||||
invokeai --web
|
||||
invokeai-web
|
||||
```
|
||||
|
||||
=== "Public Webserver"
|
||||
|
||||
```bash
|
||||
invokeai --web --host 0.0.0.0
|
||||
invokeai-web --host 0.0.0.0
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
@ -313,7 +313,7 @@ code for InvokeAI. For this to work, you will need to install the
|
||||
on your system, please see the [Git Installation
|
||||
Guide](https://github.com/git-guides/install-git)
|
||||
|
||||
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
|
||||
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md).
|
||||
|
||||
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
|
||||
|
||||
@ -345,7 +345,7 @@ installation protocol (important!)
|
||||
|
||||
=== "ROCm (AMD)"
|
||||
```bash
|
||||
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
|
||||
pip install -e . --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
=== "CPU (Intel Macs & non-GPU systems)"
|
||||
@ -361,7 +361,7 @@ installation protocol (important!)
|
||||
Be sure to pass `-e` (for an editable install) and don't forget the
|
||||
dot ("."). It is part of the command.
|
||||
|
||||
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
|
||||
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/frontend/web/README.md) and do a production build of the UI as described.
|
||||
|
||||
6. You can now run `invokeai` and its related commands. The code will be
|
||||
read from the repository, so that you can edit the .py source files
|
||||
@ -402,4 +402,4 @@ environment variable INVOKEAI_ROOT to point to the installation directory.
|
||||
Note that if you run into problems with the Conda installation, the InvokeAI
|
||||
staff will **not** be able to help you out. Caveat Emptor!
|
||||
|
||||
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
|
||||
[dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
|
||||
|
@ -134,7 +134,7 @@ recipes are available
|
||||
|
||||
When installing torch and torchvision manually with `pip`, remember to provide
|
||||
the argument `--extra-index-url
|
||||
https://download.pytorch.org/whl/rocm5.4.2` as described in the [Manual
|
||||
https://download.pytorch.org/whl/rocm5.6` as described in the [Manual
|
||||
Installation Guide](020_INSTALL_MANUAL.md).
|
||||
|
||||
This will be done automatically for you if you use the installer
|
||||
|
@ -69,7 +69,7 @@ a token and copy it, since you will need in for the next step.
|
||||
|
||||
### Setup
|
||||
|
||||
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary.
|
||||
Set up your environmnent variables. In the `docker` directory, make a copy of `.env.sample` and name it `.env`. Make changes as necessary.
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail.
|
||||
|
||||
|
@ -18,13 +18,18 @@ either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm
|
||||
driver).
|
||||
|
||||
|
||||
## **[Automated Installer](010_INSTALL_AUTOMATED.md)**
|
||||
✅ This is the recommended installation method for first-time users.
|
||||
## **[Automated Installer (Recommended)](010_INSTALL_AUTOMATED.md)**
|
||||
✅ This is the recommended installation method for first-time users.
|
||||
|
||||
This is a script that will install all of InvokeAI's essential
|
||||
third party libraries and InvokeAI itself. It includes access to a
|
||||
"developer console" which will help us debug problems with you and
|
||||
give you to access experimental features.
|
||||
third party libraries and InvokeAI itself.
|
||||
|
||||
🖥️ **Download the latest installer .zip file here** : https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
|
||||
- *Look for the file labelled "InvokeAI-installer-v3.X.X.zip" at the bottom of the page*
|
||||
- If you experience issues, read through the full [installation instructions](010_INSTALL_AUTOMATED.md) to make sure you have met all of the installation requirements. If you need more help, join the [Discord](discord.gg/invoke-ai) or create an issue on [Github](https://github.com/invoke-ai/InvokeAI).
|
||||
|
||||
|
||||
|
||||
## **[Manual Installation](020_INSTALL_MANUAL.md)**
|
||||
This method is recommended for experienced users and developers.
|
||||
|
@ -14,6 +14,7 @@ To use a community workflow, download the the `.json` node graph file and load i
|
||||
|
||||
- Community Nodes
|
||||
+ [Adapters-Linked](#adapters-linked-nodes)
|
||||
+ [Autostereogram](#autostereogram-nodes)
|
||||
+ [Average Images](#average-images)
|
||||
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
|
||||
+ [Close Color Mask](#close-color-mask)
|
||||
@ -25,11 +26,13 @@ To use a community workflow, download the the `.json` node graph file and load i
|
||||
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
|
||||
+ [Grid to Gif](#grid-to-gif)
|
||||
+ [Halftone](#halftone)
|
||||
+ [Hand Refiner with MeshGraphormer](#hand-refiner-with-meshgraphormer)
|
||||
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
|
||||
+ [Image Dominant Color](#image-dominant-color)
|
||||
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
|
||||
+ [Image Picker](#image-picker)
|
||||
+ [Image Resize Plus](#image-resize-plus)
|
||||
+ [Latent Upscale](#latent-upscale)
|
||||
+ [Load Video Frame](#load-video-frame)
|
||||
+ [Make 3D](#make-3d)
|
||||
+ [Mask Operations](#mask-operations)
|
||||
@ -40,6 +43,7 @@ To use a community workflow, download the the `.json` node graph file and load i
|
||||
+ [Oobabooga](#oobabooga)
|
||||
+ [Prompt Tools](#prompt-tools)
|
||||
+ [Remote Image](#remote-image)
|
||||
+ [BriaAI Background Remove](#briaai-remove-background)
|
||||
+ [Remove Background](#remove-background)
|
||||
+ [Retroize](#retroize)
|
||||
+ [Size Stepper Nodes](#size-stepper-nodes)
|
||||
@ -66,6 +70,17 @@ Note: These are inherited from the core nodes so any update to the core nodes sh
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
|
||||
|
||||
--------------------------------
|
||||
### Autostereogram Nodes
|
||||
|
||||
**Description:** Generate autostereogram images from a depth map. This is not a very practically useful node but more a 90s nostalgic indulgence as I used to love these images as a kid.
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/autostereogram_nodes
|
||||
|
||||
**Example Usage:**
|
||||
</br>
|
||||
<img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/blob/main/images/spider-depth.png" width="200" /> -> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-dots.png" width="200" /> <img src="https://github.com/skunkworxdark/autostereogram_nodes/raw/main/images/spider-pattern.png" width="200" />
|
||||
|
||||
--------------------------------
|
||||
### Average Images
|
||||
|
||||
@ -196,6 +211,18 @@ CMYK Halftone Output:
|
||||
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" />
|
||||
|
||||
--------------------------------
|
||||
|
||||
### Hand Refiner with MeshGraphormer
|
||||
|
||||
**Description**: Hand Refiner takes in your image and automatically generates a fixed depth map for the hands along with a mask of the hands region that will conveniently allow you to use them along with ControlNet to fix the wonky hands generated by Stable Diffusion
|
||||
|
||||
**Node Link:** https://github.com/blessedcoolant/invoke_meshgraphormer
|
||||
|
||||
**View**
|
||||
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_meshgraphormer/main/assets/preview.jpg" />
|
||||
|
||||
--------------------------------
|
||||
|
||||
### Image and Mask Composition Pack
|
||||
|
||||
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
|
||||
@ -264,6 +291,13 @@ View:
|
||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/image-resize-plus-node/master/.readme/node.png" width="500" />
|
||||
|
||||
|
||||
--------------------------------
|
||||
### Latent Upscale
|
||||
|
||||
**Description:** This node uses a small (~2.4mb) model to upscale the latents used in a Stable Diffusion 1.5 or Stable Diffusion XL image generation, rather than the typical interpolation method, avoiding the traditional downsides of the latent upscale technique.
|
||||
|
||||
**Node Link:** [https://github.com/gogurtenjoyer/latent-upscale](https://github.com/gogurtenjoyer/latent-upscale)
|
||||
|
||||
--------------------------------
|
||||
### Load Video Frame
|
||||
|
||||
@ -409,6 +443,17 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
|
||||
|
||||
**Node Link:** https://github.com/fieldOfView/InvokeAI-remote_image
|
||||
|
||||
--------------------------------
|
||||
|
||||
### BriaAI Remove Background
|
||||
|
||||
**Description**: Implements one click background removal with BriaAI's new version 1.4 model which seems to be be producing better results than any other previous background removal tool.
|
||||
|
||||
**Node Link:** https://github.com/blessedcoolant/invoke_bria_rmbg
|
||||
|
||||
**View**
|
||||
<img src="https://raw.githubusercontent.com/blessedcoolant/invoke_bria_rmbg/main/assets/preview.jpg" />
|
||||
|
||||
--------------------------------
|
||||
### Remove Background
|
||||
|
||||
|
@ -81,7 +81,7 @@ their descriptions.
|
||||
| ONNX Text to Latents | Generates latents from conditionings. |
|
||||
| ONNX Model Loader | Loads a main model, outputting its submodels. |
|
||||
| OpenCV Inpaint | Simple inpaint using opencv. |
|
||||
| Openpose Processor | Applies Openpose processing to image |
|
||||
| DW Openpose Processor | Applies Openpose processing to image |
|
||||
| PIDI Processor | Applies PIDI processing to image |
|
||||
| Prompts from File | Loads prompts from a text file |
|
||||
| Random Integer | Outputs a single random integer. |
|
||||
|
@ -13,46 +13,69 @@ We thank them for all of their time and hard work.
|
||||
|
||||
- [Lincoln D. Stein](mailto:lincoln.stein@gmail.com)
|
||||
|
||||
## **Current core team**
|
||||
## **Current Core Team**
|
||||
|
||||
* @lstein (Lincoln Stein) - Co-maintainer
|
||||
* @blessedcoolant - Co-maintainer
|
||||
* @hipsterusername (Kent Keirsey) - Co-maintainer, CEO, Positive Vibes
|
||||
* @psychedelicious (Spencer Mabrito) - Web Team Leader
|
||||
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
|
||||
* @damian0815 - Attention Systems and Compel Maintainer
|
||||
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
|
||||
* @genomancer (Gregg Helt) - Controlnet support
|
||||
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
|
||||
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
|
||||
* @josh is toast (Josh Corbett) - Web Development
|
||||
* @cheerio (Mary Rogers) - Lead Engineer & Web App Development
|
||||
* @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
|
||||
* @sunija - Standalone version
|
||||
* @genomancer (Gregg Helt) - Controlnet support
|
||||
* @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
|
||||
* @ryanjdick (Ryan Dick) - Machine Learning & Training
|
||||
* @millu (Millun Atluri) - Community Manager, Documentation, Node-wrangler
|
||||
* @chainchompa (Jennifer Player) - Web Development & Chain-Chomping
|
||||
* @JPPhoto - Core image generation nodes
|
||||
* @dunkeroni - Image generation backend
|
||||
* @SkunkWorxDark - Image generation backend
|
||||
* @keturn (Kevin Turner) - Diffusers
|
||||
* @millu (Millun Atluri) - Community Wizard, Documentation, Node-wrangler,
|
||||
* @glimmerleaf (Devon Hopkins) - Community Wizard
|
||||
* @gogurt enjoyer - Discord moderator and end user support
|
||||
* @whosawhatsis - Discord moderator and end user support
|
||||
* @dwinrger - Discord moderator and end user support
|
||||
* @526christian - Discord moderator and end user support
|
||||
* @harvester62 - Discord moderator and end user support
|
||||
|
||||
|
||||
## **Honored Team Alumni**
|
||||
|
||||
* @StAlKeR7779 (Sergey Borisov) - Torch stack, ONNX, model management, optimization
|
||||
* @damian0815 - Attention Systems and Compel Maintainer
|
||||
* @netsvetaev (Artur) - Localization support
|
||||
* @Kyle0654 (Kyle Schouviller) - Node Architect and General Backend Wizard
|
||||
* @tildebyte - Installation and configuration
|
||||
* @mauwii (Matthias Wilde) - Installation, release, continuous integration
|
||||
|
||||
|
||||
## **Full List of Contributors by Commit Name**
|
||||
|
||||
- 이승석
|
||||
- AbdBarho
|
||||
- ablattmann
|
||||
- AdamOStark
|
||||
- Adam Rice
|
||||
- Airton Silva
|
||||
- Aldo Hoeben
|
||||
- Alexander Eichhorn
|
||||
- Alexandre D. Roberge
|
||||
- Alexandre Macabies
|
||||
- Alfie John
|
||||
- Andreas Rozek
|
||||
- Andre LaBranche
|
||||
- Andy Bearman
|
||||
- Andy Luhrs
|
||||
- Andy Pilate
|
||||
- Anonymous
|
||||
- Anthony Monthe
|
||||
- Any-Winter-4079
|
||||
- apolinario
|
||||
- Ar7ific1al
|
||||
- ArDiouscuros
|
||||
- Armando C. Santisbon
|
||||
- Arnold Cordewiner
|
||||
- Arthur Holstvoogd
|
||||
- artmen1516
|
||||
- Artur
|
||||
@ -64,13 +87,16 @@ We thank them for all of their time and hard work.
|
||||
- blhook
|
||||
- BlueAmulet
|
||||
- Bouncyknighter
|
||||
- Brandon
|
||||
- Brandon Rising
|
||||
- Brent Ozar
|
||||
- Brian Racer
|
||||
- bsilvereagle
|
||||
- c67e708d
|
||||
- camenduru
|
||||
- CapableWeb
|
||||
- Carson Katri
|
||||
- chainchompa
|
||||
- Chloe
|
||||
- Chris Dawson
|
||||
- Chris Hayes
|
||||
@ -86,30 +112,45 @@ We thank them for all of their time and hard work.
|
||||
- cpacker
|
||||
- Cragin Godley
|
||||
- creachec
|
||||
- CrypticWit
|
||||
- d8ahazard
|
||||
- damian
|
||||
- damian0815
|
||||
- Damian at mba
|
||||
- Damian Stewart
|
||||
- Daniel Manzke
|
||||
- Danny Beer
|
||||
- Dan Sully
|
||||
- Darren Ringer
|
||||
- David Burnett
|
||||
- David Ford
|
||||
- David Regla
|
||||
- David Sisco
|
||||
- David Wager
|
||||
- Daya Adianto
|
||||
- db3000
|
||||
- DekitaRPG
|
||||
- Denis Olshin
|
||||
- Dennis
|
||||
- dependabot[bot]
|
||||
- Dmitry Parnas
|
||||
- Dobrynia100
|
||||
- Dominic Letz
|
||||
- DrGunnarMallon
|
||||
- Drun555
|
||||
- dunkeroni
|
||||
- Edward Johan
|
||||
- elliotsayes
|
||||
- Elrik
|
||||
- ElrikUnderlake
|
||||
- Eric Khun
|
||||
- Eric Wolf
|
||||
- Eugene
|
||||
- Eugene Brodsky
|
||||
- ExperimentalCyborg
|
||||
- Fabian Bahl
|
||||
- Fabio 'MrWHO' Torchetti
|
||||
- Fattire
|
||||
- fattire
|
||||
- Felipe Nogueira
|
||||
- Félix Sanz
|
||||
@ -118,8 +159,12 @@ We thank them for all of their time and hard work.
|
||||
- gabrielrotbart
|
||||
- gallegonovato
|
||||
- Gérald LONLAS
|
||||
- Gille
|
||||
- GitHub Actions Bot
|
||||
- glibesyck
|
||||
- gogurtenjoyer
|
||||
- Gohsuke Shimada
|
||||
- greatwolf
|
||||
- greentext2
|
||||
- Gregg Helt
|
||||
- H4rk
|
||||
@ -131,6 +176,7 @@ We thank them for all of their time and hard work.
|
||||
- Hosted Weblate
|
||||
- Iman Karim
|
||||
- ismail ihsan bülbül
|
||||
- ItzAttila
|
||||
- Ivan Efimov
|
||||
- jakehl
|
||||
- Jakub Kolčář
|
||||
@ -141,6 +187,7 @@ We thank them for all of their time and hard work.
|
||||
- Jason Toffaletti
|
||||
- Jaulustus
|
||||
- Jeff Mahoney
|
||||
- Jennifer Player
|
||||
- jeremy
|
||||
- Jeremy Clark
|
||||
- JigenD
|
||||
@ -148,19 +195,26 @@ We thank them for all of their time and hard work.
|
||||
- Johan Roxendal
|
||||
- Johnathon Selstad
|
||||
- Jonathan
|
||||
- Jordan Hewitt
|
||||
- Joseph Dries III
|
||||
- Josh Corbett
|
||||
- JPPhoto
|
||||
- jspraul
|
||||
- junzi
|
||||
- Justin Wong
|
||||
- Juuso V
|
||||
- Kaspar Emanuel
|
||||
- Katsuyuki-Karasawa
|
||||
- Keerigan45
|
||||
- Kent Keirsey
|
||||
- Kevin Brack
|
||||
- Kevin Coakley
|
||||
- Kevin Gibbons
|
||||
- Kevin Schaul
|
||||
- Kevin Turner
|
||||
- Kieran Klaassen
|
||||
- krummrey
|
||||
- Kyle
|
||||
- Kyle Lacy
|
||||
- Kyle Schouviller
|
||||
- Lawrence Norton
|
||||
@ -171,10 +225,15 @@ We thank them for all of their time and hard work.
|
||||
- Lynne Whitehorn
|
||||
- majick
|
||||
- Marco Labarile
|
||||
- Marta Nahorniuk
|
||||
- Martin Kristiansen
|
||||
- Mary Hipp
|
||||
- maryhipp
|
||||
- Mary Hipp Rogers
|
||||
- mastercaster
|
||||
- mastercaster9000
|
||||
- Matthias Wild
|
||||
- mauwii
|
||||
- michaelk71
|
||||
- mickr777
|
||||
- Mihai
|
||||
@ -182,11 +241,15 @@ We thank them for all of their time and hard work.
|
||||
- Mikhail Tishin
|
||||
- Millun Atluri
|
||||
- Minjune Song
|
||||
- Mitchell Allain
|
||||
- mitien
|
||||
- mofuzz
|
||||
- Muhammad Usama
|
||||
- Name
|
||||
- _nderscore
|
||||
- Neil Wang
|
||||
- nekowaiz
|
||||
- nemuruibai
|
||||
- Netzer R
|
||||
- Nicholas Koh
|
||||
- Nicholas Körfer
|
||||
@ -197,9 +260,11 @@ We thank them for all of their time and hard work.
|
||||
- ofirkris
|
||||
- Olivier Louvignes
|
||||
- owenvincent
|
||||
- pand4z31
|
||||
- Patrick Esser
|
||||
- Patrick Tien
|
||||
- Patrick von Platen
|
||||
- Paul Curry
|
||||
- Paul Sajna
|
||||
- pejotr
|
||||
- Peter Baylies
|
||||
@ -207,6 +272,7 @@ We thank them for all of their time and hard work.
|
||||
- plucked
|
||||
- prixt
|
||||
- psychedelicious
|
||||
- psychedelicious@windows
|
||||
- Rainer Bernhardt
|
||||
- Riccardo Giovanetti
|
||||
- Rich Jones
|
||||
@ -215,17 +281,22 @@ We thank them for all of their time and hard work.
|
||||
- Robert Bolender
|
||||
- Robin Rombach
|
||||
- Rohan Barar
|
||||
- rohinish404
|
||||
- Rohinish
|
||||
- rpagliuca
|
||||
- rromb
|
||||
- Rupesh Sreeraman
|
||||
- Ryan
|
||||
- Ryan Cao
|
||||
- Ryan Dick
|
||||
- Saifeddine
|
||||
- Saifeddine ALOUI
|
||||
- Sam
|
||||
- SammCheese
|
||||
- Sam McLeod
|
||||
- Sammy
|
||||
- sammyf
|
||||
- Samuel Husso
|
||||
- Saurav Maheshkar
|
||||
- Scott Lahteine
|
||||
- Sean McLellan
|
||||
- Sebastian Aigner
|
||||
@ -233,16 +304,21 @@ We thank them for all of their time and hard work.
|
||||
- Sergey Krashevich
|
||||
- Shapor Naghibzadeh
|
||||
- Shawn Zhong
|
||||
- Simona Liliac
|
||||
- Simon Vans-Colina
|
||||
- skunkworxdark
|
||||
- slashtechno
|
||||
- SoheilRezaei
|
||||
- Song, Pengcheng
|
||||
- spezialspezial
|
||||
- ssantos
|
||||
- StAlKeR7779
|
||||
- Stefan Tobler
|
||||
- Stephan Koglin-Fischer
|
||||
- SteveCaruso
|
||||
- Steve Martinelli
|
||||
- Steven Frank
|
||||
- Surisen
|
||||
- System X - Files
|
||||
- Taylor Kems
|
||||
- techicode
|
||||
@ -261,26 +337,34 @@ We thank them for all of their time and hard work.
|
||||
- tyler
|
||||
- unknown
|
||||
- user1
|
||||
- vedant-3010
|
||||
- Vedant Madane
|
||||
- veprogames
|
||||
- wa.code
|
||||
- wfng92
|
||||
- whjms
|
||||
- whosawhatsis
|
||||
- Will
|
||||
- William Becher
|
||||
- William Chong
|
||||
- Wilson E. Alvarez
|
||||
- woweenie
|
||||
- Wubbbi
|
||||
- xra
|
||||
- Yeung Yiu Hung
|
||||
- ymgenesis
|
||||
- Yorzaren
|
||||
- Yosuke Shinya
|
||||
- yun saki
|
||||
- ZachNagengast
|
||||
- Zadagu
|
||||
- zeptofine
|
||||
- Zerdoumi
|
||||
- Васянатор
|
||||
- 冯不游
|
||||
- 唐澤 克幸
|
||||
|
||||
## **Original CompVis Authors**
|
||||
## **Original CompVis (Stable Diffusion) Authors**
|
||||
|
||||
- [Robin Rombach](https://github.com/rromb)
|
||||
- [Patrick von Platen](https://github.com/patrickvonplaten)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -14,11 +14,19 @@ function is_bin_in_path {
|
||||
}
|
||||
|
||||
function git_show {
|
||||
git show -s --format='%h %s' $1
|
||||
git show -s --format=oneline --abbrev-commit "$1" | cat
|
||||
}
|
||||
|
||||
if [[ -v "VIRTUAL_ENV" ]]; then
|
||||
# we can't just call 'deactivate' because this function is not exported
|
||||
# to the environment of this script from the bash process that runs the script
|
||||
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
cd "$(dirname "$0")"
|
||||
|
||||
echo
|
||||
echo -e "${BYELLOW}This script must be run from the installer directory!${RESET}"
|
||||
echo "The current working directory is $(pwd)"
|
||||
read -p "If that looks right, press any key to proceed, or CTRL-C to exit..."
|
||||
@ -32,13 +40,6 @@ if ! is_bin_in_path python && is_bin_in_path python3; then
|
||||
}
|
||||
fi
|
||||
|
||||
if [[ -v "VIRTUAL_ENV" ]]; then
|
||||
# we can't just call 'deactivate' because this function is not exported
|
||||
# to the environment of this script from the bash process that runs the script
|
||||
echo -e "${BRED}A virtual environment is activated. Please deactivate it before proceeding.${RESET}"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
VERSION=$(
|
||||
cd ..
|
||||
python -c "from invokeai.version import __version__ as version; print(version)"
|
||||
@ -47,38 +48,9 @@ PATCH=""
|
||||
VERSION="v${VERSION}${PATCH}"
|
||||
|
||||
echo -e "${BGREEN}HEAD${RESET}:"
|
||||
git_show
|
||||
git_show HEAD
|
||||
echo
|
||||
|
||||
# ---------------------- FRONTEND ----------------------
|
||||
|
||||
pushd ../invokeai/frontend/web >/dev/null
|
||||
echo
|
||||
echo "Installing frontend dependencies..."
|
||||
echo
|
||||
pnpm i --frozen-lockfile
|
||||
echo
|
||||
echo "Building frontend..."
|
||||
echo
|
||||
pnpm build
|
||||
popd
|
||||
|
||||
# ---------------------- BACKEND ----------------------
|
||||
|
||||
echo
|
||||
echo "Building wheel..."
|
||||
echo
|
||||
|
||||
# install the 'build' package in the user site packages, if needed
|
||||
# could be improved by using a temporary venv, but it's tiny and harmless
|
||||
if [[ $(python -c 'from importlib.util import find_spec; print(find_spec("build") is None)') == "True" ]]; then
|
||||
pip install --user build
|
||||
fi
|
||||
|
||||
rm -rf ../build
|
||||
|
||||
python -m build --wheel --outdir dist/ ../.
|
||||
|
||||
# ----------------------
|
||||
|
||||
echo
|
||||
@ -97,16 +69,13 @@ done
|
||||
mkdir InvokeAI-Installer/lib
|
||||
cp lib/*.py InvokeAI-Installer/lib
|
||||
|
||||
# Move the wheel
|
||||
mv dist/*.whl InvokeAI-Installer/lib/
|
||||
|
||||
# Install scripts
|
||||
# Mac/Linux
|
||||
cp install.sh.in InvokeAI-Installer/install.sh
|
||||
chmod a+x InvokeAI-Installer/install.sh
|
||||
|
||||
# Windows
|
||||
perl -p -e "s/^set INVOKEAI_VERSION=.*/set INVOKEAI_VERSION=$VERSION/" install.bat.in >InvokeAI-Installer/install.bat
|
||||
cp install.bat.in InvokeAI-Installer/install.bat
|
||||
cp WinLongPathsEnabled.reg InvokeAI-Installer/
|
||||
|
||||
# Zip everything up
|
||||
|
@ -15,7 +15,6 @@ if "%1" == "use-cache" (
|
||||
@rem Config
|
||||
@rem The version in the next line is replaced by an up to date release number
|
||||
@rem when create_installer.sh is run. Change the release number there.
|
||||
set INVOKEAI_VERSION=latest
|
||||
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
|
||||
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
|
||||
set PYTHON_URL=https://www.python.org/downloads/windows/
|
||||
|
@ -11,7 +11,7 @@ import sys
|
||||
import venv
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Union
|
||||
from typing import Optional, Tuple
|
||||
|
||||
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100"
|
||||
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
|
||||
@ -21,40 +21,20 @@ OS = platform.uname().system
|
||||
ARCH = platform.uname().machine
|
||||
VERSION = "latest"
|
||||
|
||||
### Feature flags
|
||||
# Install the virtualenv into the runtime dir
|
||||
FF_VENV_IN_RUNTIME = True
|
||||
|
||||
# Install the wheel packaged with the installer
|
||||
FF_USE_LOCAL_WHEEL = True
|
||||
|
||||
|
||||
class Installer:
|
||||
"""
|
||||
Deploys an InvokeAI installation into a given path
|
||||
"""
|
||||
|
||||
reqs: list[str] = INSTALLER_REQS
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.reqs = INSTALLER_REQS
|
||||
self.preflight()
|
||||
if os.getenv("VIRTUAL_ENV") is not None:
|
||||
print("A virtual environment is already activated. Please 'deactivate' before installation.")
|
||||
sys.exit(-1)
|
||||
self.bootstrap()
|
||||
|
||||
def preflight(self) -> None:
|
||||
"""
|
||||
Preflight checks
|
||||
"""
|
||||
|
||||
# TODO
|
||||
# verify python version
|
||||
# on macOS verify XCode tools are present
|
||||
# verify libmesa, libglx on linux
|
||||
# check that the system arch is not i386 (?)
|
||||
# check that the system has a GPU, and the type of GPU
|
||||
|
||||
pass
|
||||
self.available_releases = get_github_releases()
|
||||
|
||||
def mktemp_venv(self) -> TemporaryDirectory:
|
||||
"""
|
||||
@ -78,12 +58,9 @@ class Installer:
|
||||
|
||||
return venv_dir
|
||||
|
||||
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory:
|
||||
def bootstrap(self, verbose: bool = False) -> TemporaryDirectory | None:
|
||||
"""
|
||||
Bootstrap the installer venv with packages required at install time
|
||||
|
||||
:return: path to the virtual environment directory that was bootstrapped
|
||||
:rtype: TemporaryDirectory
|
||||
"""
|
||||
|
||||
print("Initializing the installer. This may take a minute - please wait...")
|
||||
@ -95,39 +72,27 @@ class Installer:
|
||||
cmd.extend(self.reqs)
|
||||
|
||||
try:
|
||||
res = subprocess.check_output(cmd).decode()
|
||||
# upgrade pip to the latest version to avoid a confusing message
|
||||
res = upgrade_pip(Path(venv_dir.name))
|
||||
if verbose:
|
||||
print(res)
|
||||
|
||||
# run the install prerequisites installation
|
||||
res = subprocess.check_output(cmd).decode()
|
||||
|
||||
if verbose:
|
||||
print(res)
|
||||
|
||||
return venv_dir
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(e)
|
||||
|
||||
def app_venv(self, path: str = None):
|
||||
def app_venv(self, venv_parent) -> Path:
|
||||
"""
|
||||
Create a virtualenv for the InvokeAI installation
|
||||
"""
|
||||
|
||||
# explicit venv location
|
||||
# currently unused in normal operation
|
||||
# useful for testing or special cases
|
||||
if path is not None:
|
||||
venv_dir = Path(path)
|
||||
|
||||
# experimental / testing
|
||||
elif not FF_VENV_IN_RUNTIME:
|
||||
if OS == "Windows":
|
||||
venv_dir_parent = os.getenv("APPDATA", "~/AppData/Roaming")
|
||||
elif OS == "Darwin":
|
||||
# there is no environment variable on macOS to find this
|
||||
# TODO: confirm this is working as expected
|
||||
venv_dir_parent = "~/Library/Application Support"
|
||||
elif OS == "Linux":
|
||||
venv_dir_parent = os.getenv("XDG_DATA_DIR", "~/.local/share")
|
||||
venv_dir = Path(venv_dir_parent).expanduser().resolve() / f"InvokeAI/{VERSION}/venv"
|
||||
|
||||
# stable / current
|
||||
else:
|
||||
venv_dir = self.dest / ".venv"
|
||||
venv_dir = venv_parent / ".venv"
|
||||
|
||||
# Prefer to copy python executables
|
||||
# so that updates to system python don't break InvokeAI
|
||||
@ -141,7 +106,7 @@ class Installer:
|
||||
return venv_dir
|
||||
|
||||
def install(
|
||||
self, root: str = "~/invokeai", version: str = "latest", yes_to_all=False, find_links: Path = None
|
||||
self, version=None, root: str = "~/invokeai", yes_to_all=False, find_links: Optional[Path] = None
|
||||
) -> None:
|
||||
"""
|
||||
Install the InvokeAI application into the given runtime path
|
||||
@ -158,15 +123,20 @@ class Installer:
|
||||
|
||||
import messages
|
||||
|
||||
messages.welcome()
|
||||
messages.welcome(self.available_releases)
|
||||
|
||||
default_path = os.environ.get("INVOKEAI_ROOT") or Path(root).expanduser().resolve()
|
||||
self.dest = default_path if yes_to_all else messages.dest_path(root)
|
||||
version = messages.choose_version(self.available_releases)
|
||||
|
||||
auto_dest = Path(os.environ.get("INVOKEAI_ROOT", root)).expanduser().resolve()
|
||||
destination = auto_dest if yes_to_all else messages.dest_path(root)
|
||||
if destination is None:
|
||||
print("Could not find or create the destination directory. Installation cancelled.")
|
||||
sys.exit(0)
|
||||
|
||||
# create the venv for the app
|
||||
self.venv = self.app_venv()
|
||||
self.venv = self.app_venv(venv_parent=destination)
|
||||
|
||||
self.instance = InvokeAiInstance(runtime=self.dest, venv=self.venv, version=version)
|
||||
self.instance = InvokeAiInstance(runtime=destination, venv=self.venv, version=version)
|
||||
|
||||
# install dependencies and the InvokeAI application
|
||||
(extra_index_url, optional_modules) = get_torch_source() if not yes_to_all else (None, None)
|
||||
@ -190,7 +160,7 @@ class InvokeAiInstance:
|
||||
A single runtime directory *may* be shared by multiple virtual environments, though this isn't currently tested or supported.
|
||||
"""
|
||||
|
||||
def __init__(self, runtime: Path, venv: Path, version: str) -> None:
|
||||
def __init__(self, runtime: Path, venv: Path, version: str = "stable") -> None:
|
||||
self.runtime = runtime
|
||||
self.venv = venv
|
||||
self.pip = get_pip_from_venv(venv)
|
||||
@ -199,6 +169,7 @@ class InvokeAiInstance:
|
||||
set_sys_path(venv)
|
||||
os.environ["INVOKEAI_ROOT"] = str(self.runtime.expanduser().resolve())
|
||||
os.environ["VIRTUAL_ENV"] = str(self.venv.expanduser().resolve())
|
||||
upgrade_pip(venv)
|
||||
|
||||
def get(self) -> tuple[Path, Path]:
|
||||
"""
|
||||
@ -212,54 +183,7 @@ class InvokeAiInstance:
|
||||
|
||||
def install(self, extra_index_url=None, optional_modules=None, find_links=None):
|
||||
"""
|
||||
Install this instance, including dependencies and the app itself
|
||||
|
||||
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
|
||||
:type extra_index_url: str
|
||||
"""
|
||||
|
||||
import messages
|
||||
|
||||
# install torch first to ensure the correct version gets installed.
|
||||
# works with either source or wheel install with negligible impact on installation times.
|
||||
messages.simple_banner("Installing PyTorch :fire:")
|
||||
self.install_torch(extra_index_url, find_links)
|
||||
|
||||
messages.simple_banner("Installing the InvokeAI Application :art:")
|
||||
self.install_app(extra_index_url, optional_modules, find_links)
|
||||
|
||||
def install_torch(self, extra_index_url=None, find_links=None):
|
||||
"""
|
||||
Install PyTorch
|
||||
"""
|
||||
|
||||
from plumbum import FG, local
|
||||
|
||||
pip = local[self.pip]
|
||||
|
||||
(
|
||||
pip[
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"numpy==1.26.3", # choose versions that won't be uninstalled during phase 2
|
||||
"urllib3~=1.26.0",
|
||||
"requests~=2.28.0",
|
||||
"torch==2.1.2",
|
||||
"torchmetrics==0.11.4",
|
||||
"torchvision==0.16.2",
|
||||
"--force-reinstall",
|
||||
"--find-links" if find_links is not None else None,
|
||||
find_links,
|
||||
"--extra-index-url" if extra_index_url is not None else None,
|
||||
extra_index_url,
|
||||
]
|
||||
& FG
|
||||
)
|
||||
|
||||
def install_app(self, extra_index_url=None, optional_modules=None, find_links=None):
|
||||
"""
|
||||
Install the application with pip.
|
||||
Supports installation from PyPi or from a local source directory.
|
||||
Install the package from PyPi.
|
||||
|
||||
:param extra_index_url: the "--extra-index-url ..." line for pip to look in extra indexes.
|
||||
:type extra_index_url: str
|
||||
@ -271,53 +195,52 @@ class InvokeAiInstance:
|
||||
:type find_links: Path
|
||||
"""
|
||||
|
||||
## this only applies to pypi installs; TODO actually use this
|
||||
if self.version == "pre":
|
||||
import messages
|
||||
|
||||
# not currently used, but may be useful for "install most recent version" option
|
||||
if self.version == "prerelease":
|
||||
version = None
|
||||
pre = "--pre"
|
||||
pre_flag = "--pre"
|
||||
elif self.version == "stable":
|
||||
version = None
|
||||
pre_flag = None
|
||||
else:
|
||||
version = self.version
|
||||
pre = None
|
||||
pre_flag = None
|
||||
|
||||
## TODO: only local wheel will be installed as of now; support for --version arg is TODO
|
||||
if FF_USE_LOCAL_WHEEL:
|
||||
# if no wheel, try to do a source install before giving up
|
||||
try:
|
||||
src = str(next(Path(__file__).parent.glob("InvokeAI-*.whl")))
|
||||
except StopIteration:
|
||||
try:
|
||||
src = Path(__file__).parents[1].expanduser().resolve()
|
||||
# if the above directory contains one of these files, we'll do a source install
|
||||
next(src.glob("pyproject.toml"))
|
||||
next(src.glob("invokeai"))
|
||||
except StopIteration:
|
||||
print("Unable to find a wheel or perform a source install. Giving up.")
|
||||
src = "invokeai"
|
||||
if optional_modules:
|
||||
src += optional_modules
|
||||
if version:
|
||||
src += f"=={version}"
|
||||
|
||||
elif version == "source":
|
||||
# this makes an assumption about the location of the installer package in the source tree
|
||||
src = Path(__file__).parents[1].expanduser().resolve()
|
||||
else:
|
||||
# will install from PyPi
|
||||
src = f"invokeai=={version}" if version is not None else "invokeai"
|
||||
messages.simple_banner("Installing the InvokeAI Application :art:")
|
||||
|
||||
from plumbum import FG, local
|
||||
from plumbum import FG, ProcessExecutionError, local # type: ignore
|
||||
|
||||
pip = local[self.pip]
|
||||
|
||||
(
|
||||
pip[
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"--use-pep517",
|
||||
str(src) + (optional_modules if optional_modules else ""),
|
||||
"--find-links" if find_links is not None else None,
|
||||
find_links,
|
||||
"--extra-index-url" if extra_index_url is not None else None,
|
||||
extra_index_url,
|
||||
pre,
|
||||
]
|
||||
& FG
|
||||
)
|
||||
pipeline = pip[
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"--force-reinstall",
|
||||
"--use-pep517",
|
||||
str(src),
|
||||
"--find-links" if find_links is not None else None,
|
||||
find_links,
|
||||
"--extra-index-url" if extra_index_url is not None else None,
|
||||
extra_index_url,
|
||||
pre_flag,
|
||||
]
|
||||
|
||||
try:
|
||||
_ = pipeline & FG
|
||||
except ProcessExecutionError as e:
|
||||
print(f"Error: {e}")
|
||||
print(
|
||||
"Could not install InvokeAI. Please try downloading the latest version of the installer and install again."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
def configure(self):
|
||||
"""
|
||||
@ -373,7 +296,6 @@ class InvokeAiInstance:
|
||||
|
||||
ext = "bat" if OS == "Windows" else "sh"
|
||||
|
||||
# scripts = ['invoke', 'update']
|
||||
scripts = ["invoke"]
|
||||
|
||||
for script in scripts:
|
||||
@ -408,6 +330,23 @@ def get_pip_from_venv(venv_path: Path) -> str:
|
||||
return str(venv_path.expanduser().resolve() / pip)
|
||||
|
||||
|
||||
def upgrade_pip(venv_path: Path) -> str | None:
|
||||
"""
|
||||
Upgrade the pip executable in the given virtual environment
|
||||
"""
|
||||
|
||||
python = "Scripts\\python.exe" if OS == "Windows" else "bin/python"
|
||||
python = str(venv_path.expanduser().resolve() / python)
|
||||
|
||||
try:
|
||||
result = subprocess.check_output([python, "-m", "pip", "install", "--upgrade", "pip"]).decode()
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(e)
|
||||
result = None
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def set_sys_path(venv_path: Path) -> None:
|
||||
"""
|
||||
Given a path to a virtual environment, set the sys.path, in a cross-platform fashion,
|
||||
@ -431,7 +370,43 @@ def set_sys_path(venv_path: Path) -> None:
|
||||
sys.path.append(str(Path(venv_path, lib, "site-packages").expanduser().resolve()))
|
||||
|
||||
|
||||
def get_torch_source() -> (Union[str, None], str):
|
||||
def get_github_releases() -> tuple[list, list] | None:
|
||||
"""
|
||||
Query Github for published (pre-)release versions.
|
||||
Return a tuple where the first element is a list of stable releases and the second element is a list of pre-releases.
|
||||
Return None if the query fails for any reason.
|
||||
"""
|
||||
|
||||
import requests
|
||||
|
||||
## get latest releases using github api
|
||||
url = "https://api.github.com/repos/invoke-ai/InvokeAI/releases"
|
||||
releases, pre_releases = [], []
|
||||
try:
|
||||
res = requests.get(url)
|
||||
res.raise_for_status()
|
||||
tag_info = res.json()
|
||||
for tag in tag_info:
|
||||
if not tag["prerelease"]:
|
||||
releases.append(tag["tag_name"].lstrip("v"))
|
||||
else:
|
||||
pre_releases.append(tag["tag_name"].lstrip("v"))
|
||||
except requests.HTTPError as e:
|
||||
print(f"Error: {e}")
|
||||
print("Could not fetch version information from GitHub. Please check your network connection and try again.")
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
print("An unexpected error occurred while trying to fetch version information from GitHub. Please try again.")
|
||||
return
|
||||
|
||||
releases.sort(reverse=True)
|
||||
pre_releases.sort(reverse=True)
|
||||
|
||||
return releases, pre_releases
|
||||
|
||||
|
||||
def get_torch_source() -> Tuple[str | None, str | None]:
|
||||
"""
|
||||
Determine the extra index URL for pip to use for torch installation.
|
||||
This depends on the OS and the graphics accelerator in use.
|
||||
@ -446,25 +421,26 @@ def get_torch_source() -> (Union[str, None], str):
|
||||
:rtype: list
|
||||
"""
|
||||
|
||||
from messages import graphical_accelerator
|
||||
from messages import select_gpu
|
||||
|
||||
# device can be one of: "cuda", "rocm", "cpu", "idk"
|
||||
device = graphical_accelerator()
|
||||
# device can be one of: "cuda", "rocm", "cpu", "cuda_and_dml, autodetect"
|
||||
device = select_gpu()
|
||||
|
||||
url = None
|
||||
optional_modules = "[onnx]"
|
||||
if OS == "Linux":
|
||||
if device == "rocm":
|
||||
url = "https://download.pytorch.org/whl/rocm5.4.2"
|
||||
elif device == "cpu":
|
||||
if device.value == "rocm":
|
||||
url = "https://download.pytorch.org/whl/rocm5.6"
|
||||
elif device.value == "cpu":
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
|
||||
if device == "cuda":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-cuda]"
|
||||
if device == "cuda_and_dml":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-directml]"
|
||||
elif OS == "Windows":
|
||||
if device.value == "cuda":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-cuda]"
|
||||
if device.value == "cuda_and_dml":
|
||||
url = "https://download.pytorch.org/whl/cu121"
|
||||
optional_modules = "[xformers,onnx-directml]"
|
||||
|
||||
# in all other cases, Torch wheels should be coming from PyPi as of Torch 1.13
|
||||
|
||||
|
@ -5,10 +5,11 @@ Installer user interaction
|
||||
|
||||
import os
|
||||
import platform
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
|
||||
from prompt_toolkit import HTML, prompt
|
||||
from prompt_toolkit.completion import PathCompleter
|
||||
from prompt_toolkit.completion import FuzzyWordCompleter, PathCompleter
|
||||
from prompt_toolkit.validation import Validator
|
||||
from rich import box, print
|
||||
from rich.console import Console, Group, group
|
||||
@ -35,16 +36,26 @@ else:
|
||||
console = Console(style=Style(color="grey74", bgcolor="grey19"))
|
||||
|
||||
|
||||
def welcome():
|
||||
def welcome(available_releases: tuple | None = None) -> None:
|
||||
@group()
|
||||
def text():
|
||||
if (platform_specific := _platform_specific_help()) != "":
|
||||
if (platform_specific := _platform_specific_help()) is not None:
|
||||
yield platform_specific
|
||||
yield ""
|
||||
yield Text.from_markup(
|
||||
"Some of the installation steps take a long time to run. Please be patient. If the script appears to hang for more than 10 minutes, please interrupt with [i]Control-C[/] and retry.",
|
||||
justify="center",
|
||||
)
|
||||
if available_releases is not None:
|
||||
latest_stable = available_releases[0][0]
|
||||
last_pre = available_releases[1][0]
|
||||
yield ""
|
||||
yield Text.from_markup(
|
||||
f"[red3]🠶[/] Latest stable release (recommended): [b bright_white]{latest_stable}", justify="center"
|
||||
)
|
||||
yield Text.from_markup(
|
||||
f"[red3]🠶[/] Last published pre-release version: [b bright_white]{last_pre}", justify="center"
|
||||
)
|
||||
|
||||
console.rule()
|
||||
print(
|
||||
@ -61,19 +72,30 @@ def welcome():
|
||||
console.line()
|
||||
|
||||
|
||||
def confirm_install(dest: Path) -> bool:
|
||||
if dest.exists():
|
||||
print(f":exclamation: Directory {dest} already exists :exclamation:")
|
||||
dest_confirmed = Confirm.ask(
|
||||
":stop_sign: (re)install in this location?",
|
||||
default=False,
|
||||
)
|
||||
else:
|
||||
print(f"InvokeAI will be installed in {dest}")
|
||||
dest_confirmed = Confirm.ask("Use this location?", default=True)
|
||||
def choose_version(available_releases: tuple | None = None) -> str:
|
||||
"""
|
||||
Prompt the user to choose an Invoke version to install
|
||||
"""
|
||||
|
||||
# short circuit if we couldn't get a version list
|
||||
# still try to install the latest stable version
|
||||
if available_releases is None:
|
||||
return "stable"
|
||||
|
||||
console.print(":grey_question: [orange3]Please choose an Invoke version to install.")
|
||||
|
||||
choices = available_releases[0] + available_releases[1]
|
||||
|
||||
response = prompt(
|
||||
message=f" <Enter> to install the recommended release ({choices[0]}). <Tab> or type to pick a version: ",
|
||||
complete_while_typing=True,
|
||||
completer=FuzzyWordCompleter(choices),
|
||||
)
|
||||
console.print(f" Version {choices[0] if response == '' else response} will be installed.")
|
||||
|
||||
console.line()
|
||||
|
||||
return dest_confirmed
|
||||
return "stable" if response == "" else response
|
||||
|
||||
|
||||
def user_wants_auto_configuration() -> bool:
|
||||
@ -109,7 +131,23 @@ def user_wants_auto_configuration() -> bool:
|
||||
return choice.lower().startswith("a")
|
||||
|
||||
|
||||
def dest_path(dest=None) -> Path:
|
||||
def confirm_install(dest: Path) -> bool:
|
||||
if dest.exists():
|
||||
print(f":stop_sign: Directory {dest} already exists!")
|
||||
print(" Is this location correct?")
|
||||
default = False
|
||||
else:
|
||||
print(f":file_folder: InvokeAI will be installed in {dest}")
|
||||
default = True
|
||||
|
||||
dest_confirmed = Confirm.ask(" Please confirm:", default=default)
|
||||
|
||||
console.line()
|
||||
|
||||
return dest_confirmed
|
||||
|
||||
|
||||
def dest_path(dest=None) -> Path | None:
|
||||
"""
|
||||
Prompt the user for the destination path and create the path
|
||||
|
||||
@ -124,25 +162,21 @@ def dest_path(dest=None) -> Path:
|
||||
else:
|
||||
dest = Path.cwd().expanduser().resolve()
|
||||
prev_dest = init_path = dest
|
||||
|
||||
dest_confirmed = confirm_install(dest)
|
||||
dest_confirmed = False
|
||||
|
||||
while not dest_confirmed:
|
||||
# if the given destination already exists, the starting point for browsing is its parent directory.
|
||||
# the user may have made a typo, or otherwise wants to place the root dir next to an existing one.
|
||||
# if the destination dir does NOT exist, then the user must have changed their mind about the selection.
|
||||
# since we can't read their mind, start browsing at Path.cwd().
|
||||
browse_start = (prev_dest.parent if prev_dest.exists() else Path.cwd()).expanduser().resolve()
|
||||
browse_start = (dest or Path.cwd()).expanduser().resolve()
|
||||
|
||||
path_completer = PathCompleter(
|
||||
only_directories=True,
|
||||
expanduser=True,
|
||||
get_paths=lambda: [browse_start], # noqa: B023
|
||||
get_paths=lambda: [str(browse_start)], # noqa: B023
|
||||
# get_paths=lambda: [".."].extend(list(browse_start.iterdir()))
|
||||
)
|
||||
|
||||
console.line()
|
||||
console.print(f"[orange3]Please select the destination directory for the installation:[/] \\[{browse_start}]: ")
|
||||
|
||||
console.print(f":grey_question: [orange3]Please select the install destination:[/] \\[{browse_start}]: ")
|
||||
selected = prompt(
|
||||
">>> ",
|
||||
complete_in_thread=True,
|
||||
@ -155,6 +189,7 @@ def dest_path(dest=None) -> Path:
|
||||
)
|
||||
prev_dest = dest
|
||||
dest = Path(selected)
|
||||
|
||||
console.line()
|
||||
|
||||
dest_confirmed = confirm_install(dest.expanduser().resolve())
|
||||
@ -182,41 +217,45 @@ def dest_path(dest=None) -> Path:
|
||||
console.rule("Goodbye!")
|
||||
|
||||
|
||||
def graphical_accelerator():
|
||||
class GpuType(Enum):
|
||||
CUDA = "cuda"
|
||||
CUDA_AND_DML = "cuda_and_dml"
|
||||
ROCM = "rocm"
|
||||
CPU = "cpu"
|
||||
AUTODETECT = "autodetect"
|
||||
|
||||
|
||||
def select_gpu() -> GpuType:
|
||||
"""
|
||||
Prompt the user to select the graphical accelerator in their system
|
||||
This does not validate user's choices (yet), but only offers choices
|
||||
valid for the platform.
|
||||
CUDA is the fallback.
|
||||
We may be able to detect the GPU driver by shelling out to `modprobe` or `lspci`,
|
||||
but this is not yet supported or reliable. Also, some users may have exotic preferences.
|
||||
Prompt the user to select the GPU driver
|
||||
"""
|
||||
|
||||
if ARCH == "arm64" and OS != "Darwin":
|
||||
print(f"Only CPU acceleration is available on {ARCH} architecture. Proceeding with that.")
|
||||
return "cpu"
|
||||
return GpuType.CPU
|
||||
|
||||
nvidia = (
|
||||
"an [gold1 b]NVIDIA[/] GPU (using CUDA™)",
|
||||
"cuda",
|
||||
GpuType.CUDA,
|
||||
)
|
||||
nvidia_with_dml = (
|
||||
"an [gold1 b]NVIDIA[/] GPU (using CUDA™, and DirectML™ for ONNX) -- ALPHA",
|
||||
"cuda_and_dml",
|
||||
GpuType.CUDA_AND_DML,
|
||||
)
|
||||
amd = (
|
||||
"an [gold1 b]AMD[/] GPU (using ROCm™)",
|
||||
"rocm",
|
||||
GpuType.ROCM,
|
||||
)
|
||||
cpu = (
|
||||
"no compatible GPU, or specifically prefer to use the CPU",
|
||||
"cpu",
|
||||
"Do not install any GPU support, use CPU for generation (slow)",
|
||||
GpuType.CPU,
|
||||
)
|
||||
idk = (
|
||||
autodetect = (
|
||||
"I'm not sure what to choose",
|
||||
"idk",
|
||||
GpuType.AUTODETECT,
|
||||
)
|
||||
|
||||
options = []
|
||||
if OS == "Windows":
|
||||
options = [nvidia, nvidia_with_dml, cpu]
|
||||
if OS == "Linux":
|
||||
@ -230,7 +269,7 @@ def graphical_accelerator():
|
||||
return options[0][1]
|
||||
|
||||
# "I don't know" is always added the last option
|
||||
options.append(idk)
|
||||
options.append(autodetect) # type: ignore
|
||||
|
||||
options = {str(i): opt for i, opt in enumerate(options, 1)}
|
||||
|
||||
@ -265,9 +304,9 @@ def graphical_accelerator():
|
||||
),
|
||||
)
|
||||
|
||||
if options[choice][1] == "idk":
|
||||
if options[choice][1] is GpuType.AUTODETECT:
|
||||
console.print(
|
||||
"No problem. We will try to install a version that [i]should[/i] be compatible. :crossed_fingers:"
|
||||
"No problem. We will install CUDA support first :crossed_fingers: If Invoke does not detect a GPU, please re-run the installer and select one of the other GPU types."
|
||||
)
|
||||
|
||||
return options[choice][1]
|
||||
@ -291,7 +330,7 @@ def windows_long_paths_registry() -> None:
|
||||
"""
|
||||
|
||||
with open(str(Path(__file__).parent / "WinLongPathsEnabled.reg"), "r", encoding="utf-16le") as code:
|
||||
syntax = Syntax(code.read(), line_numbers=True)
|
||||
syntax = Syntax(code.read(), line_numbers=True, lexer="regedit")
|
||||
|
||||
console.print(
|
||||
Panel(
|
||||
@ -301,7 +340,7 @@ def windows_long_paths_registry() -> None:
|
||||
"We will now apply a registry fix to enable long paths on Windows. InvokeAI needs this to function correctly. We are asking your permission to modify the Windows Registry on your behalf.",
|
||||
"",
|
||||
"This is the change that will be applied:",
|
||||
syntax,
|
||||
str(syntax),
|
||||
]
|
||||
)
|
||||
),
|
||||
@ -340,7 +379,7 @@ def introduction() -> None:
|
||||
console.line(2)
|
||||
|
||||
|
||||
def _platform_specific_help() -> str:
|
||||
def _platform_specific_help() -> Text | None:
|
||||
if OS == "Darwin":
|
||||
text = Text.from_markup(
|
||||
"""[b wheat1]macOS Users![/]\n\nPlease be sure you have the [b wheat1]Xcode command-line tools[/] installed before continuing.\nIf not, cancel with [i]Control-C[/] and follow the Xcode install instructions at [deep_sky_blue1]https://www.freecodecamp.org/news/install-xcode-command-line-tools/[/]."""
|
||||
@ -354,5 +393,5 @@ def _platform_specific_help() -> str:
|
||||
[deep_sky_blue1]https://learn.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist?view=msvc-170[/]"""
|
||||
)
|
||||
else:
|
||||
text = ""
|
||||
return
|
||||
return text
|
||||
|
@ -15,7 +15,7 @@ echo 4. Download and install models
|
||||
echo 5. Change InvokeAI startup options
|
||||
echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade
|
||||
echo 7. Open the developer console
|
||||
echo 8. Update InvokeAI
|
||||
echo 8. Update InvokeAI (DEPRECATED - please use the installer)
|
||||
echo 9. Run the InvokeAI image database maintenance script
|
||||
echo 10. Command-line help
|
||||
echo Q - Quit
|
||||
@ -52,8 +52,10 @@ IF /I "%choice%" == "1" (
|
||||
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
|
||||
call cmd /k
|
||||
) ELSE IF /I "%choice%" == "8" (
|
||||
echo Running invokeai-update...
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
echo UPDATING FROM WITHIN THE APP IS BEING DEPRECATED.
|
||||
echo Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.
|
||||
timeout 4
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
) ELSE IF /I "%choice%" == "9" (
|
||||
echo Running the db maintenance script...
|
||||
python .venv\Scripts\invokeai-db-maintenance.exe
|
||||
@ -77,4 +79,3 @@ pause
|
||||
|
||||
:ending
|
||||
exit /b
|
||||
|
||||
|
@ -90,7 +90,9 @@ do_choice() {
|
||||
;;
|
||||
8)
|
||||
clear
|
||||
printf "Update InvokeAI\n"
|
||||
printf "UPDATING FROM WITHIN THE APP IS BEING DEPRECATED\n"
|
||||
printf "Please download the installer from https://github.com/invoke-ai/InvokeAI/releases/latest and run it to update your installation.\n"
|
||||
sleep 4
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
;;
|
||||
9)
|
||||
@ -122,7 +124,7 @@ do_dialog() {
|
||||
5 "Change InvokeAI startup options"
|
||||
6 "Re-run the configure script to fix a broken install or to complete a major upgrade"
|
||||
7 "Open the developer console"
|
||||
8 "Update InvokeAI"
|
||||
8 "Update InvokeAI (DEPRECATED - please use the installer)"
|
||||
9 "Run the InvokeAI image database maintenance script"
|
||||
10 "Command-line help"
|
||||
)
|
||||
|
@ -1,72 +0,0 @@
|
||||
@echo off
|
||||
setlocal EnableExtensions EnableDelayedExpansion
|
||||
|
||||
PUSHD "%~dp0"
|
||||
|
||||
set INVOKE_AI_VERSION=latest
|
||||
set arg=%1
|
||||
if "%arg%" neq "" (
|
||||
if "%arg:~0,2%" equ "/?" (
|
||||
echo Usage: update.bat ^<release name or branch^>
|
||||
echo Updates InvokeAI to use the indicated version of the code base.
|
||||
echo Find the version or branch for the release you want, and pass it as the argument.
|
||||
echo For example '.\update.bat v2.2.5' for release 2.2.5.
|
||||
echo '.\update.bat main' for the latest development version
|
||||
echo.
|
||||
echo If no argument provided then will install the most recent release, equivalent to
|
||||
echo '.\update.bat latest'
|
||||
exit /b
|
||||
) else (
|
||||
set INVOKE_AI_VERSION=%arg%
|
||||
)
|
||||
)
|
||||
|
||||
set INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/!INVOKE_AI_VERSION!.zip"
|
||||
set INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/!INVOKE_AI_VERSION!/environments-and-requirements/requirements-base.txt
|
||||
set INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
|
||||
|
||||
call curl -I "%INVOKE_AI_DEP%" -fs >.tmp.out
|
||||
if %errorlevel% neq 0 (
|
||||
echo '!INVOKE_AI_VERSION!' is not a known branch name or tag. Please check the version and try again.
|
||||
echo "Press any key to continue"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
del .tmp.out
|
||||
|
||||
echo This script will update InvokeAI and all its dependencies to !INVOKE_AI_SRC!.
|
||||
echo If you do not want to do this, press control-C now!
|
||||
pause
|
||||
|
||||
call curl -L "%INVOKE_AI_DEP%" > environments-and-requirements/requirements-base.txt
|
||||
call curl -L "%INVOKE_AI_MODELS%" > configs/INITIAL_MODELS.yaml
|
||||
|
||||
|
||||
call .venv\Scripts\activate.bat
|
||||
call .venv\Scripts\python -mpip install -r requirements.txt
|
||||
if %errorlevel% neq 0 (
|
||||
echo Installation of requirements failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
call .venv\Scripts\python -mpip install !INVOKE_AI_SRC!
|
||||
if %errorlevel% neq 0 (
|
||||
echo Installation of InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
@rem call .venv\Scripts\invokeai-configure --root=.
|
||||
|
||||
@rem if %errorlevel% neq 0 (
|
||||
@rem echo Configuration InvokeAI failed. See https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting for suggestions.
|
||||
@rem pause
|
||||
@rem exit /b
|
||||
@rem )
|
||||
|
||||
echo InvokeAI has been updated to '%INVOKE_AI_VERSION%'
|
||||
|
||||
echo "Press any key to continue"
|
||||
pause
|
||||
endlocal
|
@ -1,58 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eu
|
||||
|
||||
if [ $# -ge 1 ] && [ "${1:0:2}" == "-h" ]; then
|
||||
echo "Usage: update.sh <release>"
|
||||
echo "Updates InvokeAI to use the indicated version of the code base."
|
||||
echo "Find the version or branch for the release you want, and pass it as the argument."
|
||||
echo "For example: update.sh v2.2.5 for release 2.2.5."
|
||||
echo " update.sh main for the current development version."
|
||||
echo ""
|
||||
echo "If no argument provided then will install the version tagged with 'latest', equivalent to"
|
||||
echo "update.sh latest"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
INVOKE_AI_VERSION=${1:-latest}
|
||||
|
||||
INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive/$INVOKE_AI_VERSION.zip"
|
||||
INVOKE_AI_DEP=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/environments-and-requirements/requirements-base.txt
|
||||
INVOKE_AI_MODELS=https://raw.githubusercontent.com/invoke-ai/InvokeAI/$INVOKE_AI_VERSION/configs/INITIAL_MODELS.yaml
|
||||
|
||||
# ensure we're in the correct folder in case user's CWD is somewhere else
|
||||
scriptdir=$(dirname "$0")
|
||||
cd "$scriptdir"
|
||||
|
||||
function _err_exit {
|
||||
if test "$1" -ne 0
|
||||
then
|
||||
echo "Something went wrong while installing InvokeAI and/or its requirements."
|
||||
echo "Update cannot continue. Please report this error to https://github.com/invoke-ai/InvokeAI/issues"
|
||||
echo -e "Error code $1; Error caught was '$2'"
|
||||
read -p "Press any key to exit..."
|
||||
exit
|
||||
fi
|
||||
}
|
||||
|
||||
if ! curl -I "$INVOKE_AI_DEP" -fs >/dev/null; then
|
||||
echo \'$INVOKE_AI_VERSION\' is not a known branch name or tag. Please check the version and try again.
|
||||
exit
|
||||
fi
|
||||
|
||||
echo This script will update InvokeAI and all its dependencies to version \'$INVOKE_AI_VERSION\'.
|
||||
echo If you do not want to do this, press control-C now!
|
||||
read -p "Press any key to continue, or CTRL-C to exit..."
|
||||
|
||||
curl -L "$INVOKE_AI_DEP" > environments-and-requirements/requirements-base.txt
|
||||
curl -L "$INVOKE_AI_MODELS" > configs/INITIAL_MODELS.yaml
|
||||
|
||||
. .venv/bin/activate
|
||||
|
||||
./.venv/bin/python -mpip install -r requirements.txt
|
||||
_err_exit $? "The pip program failed to install InvokeAI's requirements."
|
||||
|
||||
./.venv/bin/python -mpip install $INVOKE_AI_SRC
|
||||
_err_exit $? "The pip program failed to install InvokeAI."
|
||||
|
||||
echo InvokeAI updated to \'$INVOKE_AI_VERSION\'
|
@ -2,6 +2,7 @@
|
||||
|
||||
from logging import Logger
|
||||
|
||||
from invokeai.app.services.item_storage.item_storage_memory import ItemStorageMemory
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.backend.model_manager.metadata import ModelMetadataStore
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
@ -22,7 +23,6 @@ from ..services.invocation_queue.invocation_queue_memory import MemoryInvocation
|
||||
from ..services.invocation_services import InvocationServices
|
||||
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService
|
||||
from ..services.invoker import Invoker
|
||||
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage
|
||||
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage
|
||||
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage
|
||||
from ..services.model_install import ModelInstallService
|
||||
@ -80,7 +80,7 @@ class ApiDependencies:
|
||||
board_records = SqliteBoardRecordStorage(db=db)
|
||||
boards = BoardService()
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
|
||||
graph_execution_manager = ItemStorageMemory[GraphExecutionState]()
|
||||
image_records = SqliteImageRecordStorage(db=db)
|
||||
images = ImageService()
|
||||
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein
|
||||
"""FastAPI route for model configuration records."""
|
||||
|
||||
|
||||
import pathlib
|
||||
from hashlib import sha1
|
||||
from random import randbytes
|
||||
from typing import Any, Dict, List, Optional, Set
|
||||
@ -27,6 +27,7 @@ from invokeai.backend.model_manager.config import (
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.merge import MergeInterpolationMethod, ModelMerger
|
||||
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
@ -415,3 +416,57 @@ async def sync_models_to_config() -> Response:
|
||||
"""
|
||||
ApiDependencies.invoker.services.model_install.sync_to_config()
|
||||
return Response(status_code=204)
|
||||
|
||||
|
||||
@model_records_router.put(
|
||||
"/merge",
|
||||
operation_id="merge",
|
||||
)
|
||||
async def merge(
|
||||
keys: List[str] = Body(description="Keys for two to three models to merge", min_length=2, max_length=3),
|
||||
merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
|
||||
alpha: float = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
|
||||
force: bool = Body(
|
||||
description="Force merging of models created with different versions of diffusers",
|
||||
default=False,
|
||||
),
|
||||
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method", default=None),
|
||||
merge_dest_directory: Optional[str] = Body(
|
||||
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
|
||||
default=None,
|
||||
),
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
Merge diffusers models.
|
||||
|
||||
keys: List of 2-3 model keys to merge together. All models must use the same base type.
|
||||
merged_model_name: Name for the merged model [Concat model names]
|
||||
alpha: Alpha value (0.0-1.0). Higher values give more weight to the second model [0.5]
|
||||
force: If true, force the merge even if the models were generated by different versions of the diffusers library [False]
|
||||
interp: Interpolation method. One of "weighted_sum", "sigmoid", "inv_sigmoid" or "add_difference" [weighted_sum]
|
||||
merge_dest_directory: Specify a directory to store the merged model in [models directory]
|
||||
"""
|
||||
print(f"here i am, keys={keys}")
|
||||
logger = ApiDependencies.invoker.services.logger
|
||||
try:
|
||||
logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
|
||||
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
|
||||
installer = ApiDependencies.invoker.services.model_install
|
||||
merger = ModelMerger(installer)
|
||||
model_names = [installer.record_store.get_model(x).name for x in keys]
|
||||
response = merger.merge_diffusion_models_and_save(
|
||||
model_keys=keys,
|
||||
merged_model_name=merged_model_name or "+".join(model_names),
|
||||
alpha=alpha,
|
||||
interp=interp,
|
||||
force=force,
|
||||
merge_dest_directory=dest,
|
||||
)
|
||||
except UnknownModelException:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"One or more of the models '{keys}' not found",
|
||||
)
|
||||
except ValueError as e:
|
||||
raise HTTPException(status_code=400, detail=str(e))
|
||||
return response
|
||||
|
@ -14,7 +14,7 @@ class SocketIO:
|
||||
|
||||
def __init__(self, app: FastAPI):
|
||||
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
|
||||
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
|
||||
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="/ws/socket.io")
|
||||
app.mount("/ws", self.__app)
|
||||
|
||||
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
|
||||
|
@ -17,7 +17,6 @@ from controlnet_aux import (
|
||||
MidasDetector,
|
||||
MLSDdetector,
|
||||
NormalBaeDetector,
|
||||
OpenposeDetector,
|
||||
PidiNetDetector,
|
||||
SamDetector,
|
||||
ZoeDetector,
|
||||
@ -31,6 +30,7 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
|
||||
from ...backend.model_management import BaseModelType
|
||||
from .baseinvocation import (
|
||||
@ -276,31 +276,6 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"openpose_image_processor",
|
||||
title="Openpose Processor",
|
||||
tags=["controlnet", "openpose", "pose"],
|
||||
category="controlnet",
|
||||
version="1.2.0",
|
||||
)
|
||||
class OpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Applies Openpose processing to image"""
|
||||
|
||||
hand_and_face: bool = InputField(default=False, description="Whether to use hands and face mode")
|
||||
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
processed_image = openpose_processor(
|
||||
image,
|
||||
detect_resolution=self.detect_resolution,
|
||||
image_resolution=self.image_resolution,
|
||||
hand_and_face=self.hand_and_face,
|
||||
)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"midas_depth_image_processor",
|
||||
title="Midas Depth Processor",
|
||||
@ -624,7 +599,7 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
|
||||
offload: bool = InputField(default=False)
|
||||
|
||||
def run_processor(self, image):
|
||||
def run_processor(self, image: Image.Image):
|
||||
depth_anything_detector = DepthAnythingDetector()
|
||||
depth_anything_detector.load_model(model_size=self.model_size)
|
||||
|
||||
@ -633,3 +608,30 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||
|
||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution, offload=self.offload)
|
||||
return processed_image
|
||||
|
||||
|
||||
@invocation(
|
||||
"dw_openpose_image_processor",
|
||||
title="DW Openpose Image Processor",
|
||||
tags=["controlnet", "dwpose", "openpose"],
|
||||
category="controlnet",
|
||||
version="1.0.0",
|
||||
)
|
||||
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Generates an openpose pose from an image using DWPose"""
|
||||
|
||||
draw_body: bool = InputField(default=True)
|
||||
draw_face: bool = InputField(default=False)
|
||||
draw_hands: bool = InputField(default=False)
|
||||
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
|
||||
|
||||
def run_processor(self, image):
|
||||
dw_openpose = DWOpenposeDetector()
|
||||
processed_image = dw_openpose(
|
||||
image,
|
||||
draw_face=self.draw_face,
|
||||
draw_hands=self.draw_hands,
|
||||
draw_body=self.draw_body,
|
||||
resolution=self.image_resolution,
|
||||
)
|
||||
return processed_image
|
||||
|
@ -5,12 +5,12 @@ from typing import Literal
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from PIL import Image
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
|
||||
|
@ -173,10 +173,10 @@ from __future__ import annotations
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_type_hints
|
||||
from typing import Any, ClassVar, Dict, List, Literal, Optional, Union
|
||||
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from pydantic import Field, TypeAdapter
|
||||
from pydantic import Field
|
||||
from pydantic.config import JsonDict
|
||||
from pydantic_settings import SettingsConfigDict
|
||||
|
||||
@ -251,7 +251,11 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging)
|
||||
log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging)
|
||||
|
||||
# Development
|
||||
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development)
|
||||
profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development)
|
||||
profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development)
|
||||
profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development)
|
||||
|
||||
version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other)
|
||||
|
||||
@ -270,7 +274,7 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation)
|
||||
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation)
|
||||
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation)
|
||||
png_compress_level : int = Field(default=6, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
|
||||
png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation)
|
||||
|
||||
# QUEUE
|
||||
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue)
|
||||
@ -280,6 +284,9 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes)
|
||||
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes)
|
||||
|
||||
# MODEL IMPORT
|
||||
civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other)
|
||||
|
||||
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
|
||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance)
|
||||
max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance)
|
||||
@ -289,6 +296,7 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths)
|
||||
embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
|
||||
controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths)
|
||||
|
||||
# this is not referred to in the source code and can be removed entirely
|
||||
#free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance)
|
||||
|
||||
@ -328,13 +336,9 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
super().parse_args(argv)
|
||||
|
||||
if self.singleton_init and not clobber:
|
||||
hints = get_type_hints(self.__class__)
|
||||
for k in self.singleton_init:
|
||||
setattr(
|
||||
self,
|
||||
k,
|
||||
TypeAdapter(hints[k]).validate_python(self.singleton_init[k]),
|
||||
)
|
||||
# When setting values in this way, set validate_assignment to true if you want to validate the value.
|
||||
for k, v in self.singleton_init.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig:
|
||||
@ -449,6 +453,11 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
disabled_in_config = not self.xformers_enabled
|
||||
return disabled_in_config and self.attention_type != "xformers"
|
||||
|
||||
@property
|
||||
def profiles_path(self) -> Path:
|
||||
"""Path to the graph profiles directory."""
|
||||
return self._resolve(self.profiles_dir)
|
||||
|
||||
@staticmethod
|
||||
def find_root() -> Path:
|
||||
"""Choose the runtime root directory when not specified on command line or init file."""
|
||||
|
@ -208,7 +208,6 @@ class DownloadQueueService(DownloadQueueServiceBase):
|
||||
job = self._queue.get(timeout=1)
|
||||
except Empty:
|
||||
continue
|
||||
|
||||
try:
|
||||
job.job_started = get_iso_timestamp()
|
||||
self._do_download(job)
|
||||
|
@ -154,7 +154,7 @@ class ImageService(ImageServiceABC):
|
||||
self.__invoker.services.logger.error("Image record not found")
|
||||
raise
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Problem getting image DTO")
|
||||
self.__invoker.services.logger.error("Problem getting image metadata")
|
||||
raise e
|
||||
|
||||
def get_workflow(self, image_name: str) -> Optional[WorkflowWithoutID]:
|
||||
|
@ -1,11 +1,16 @@
|
||||
import time
|
||||
import traceback
|
||||
from contextlib import suppress
|
||||
from threading import BoundedSemaphore, Event, Thread
|
||||
from typing import Optional
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import InvocationContext
|
||||
from invokeai.app.services.invocation_queue.invocation_queue_common import InvocationQueueItem
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import (
|
||||
GESStatsNotFoundError,
|
||||
)
|
||||
from invokeai.app.util.profiler import Profiler
|
||||
|
||||
from ..invoker import Invoker
|
||||
from .invocation_processor_base import InvocationProcessorABC
|
||||
@ -18,7 +23,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
__invoker: Invoker
|
||||
__threadLimit: BoundedSemaphore
|
||||
|
||||
def start(self, invoker) -> None:
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
# if we do want multithreading at some point, we could make this configurable
|
||||
self.__threadLimit = BoundedSemaphore(1)
|
||||
self.__invoker = invoker
|
||||
@ -39,6 +44,27 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
self.__threadLimit.acquire()
|
||||
queue_item: Optional[InvocationQueueItem] = None
|
||||
|
||||
profiler = (
|
||||
Profiler(
|
||||
logger=self.__invoker.services.logger,
|
||||
output_dir=self.__invoker.services.configuration.profiles_path,
|
||||
prefix=self.__invoker.services.configuration.profile_prefix,
|
||||
)
|
||||
if self.__invoker.services.configuration.profile_graphs
|
||||
else None
|
||||
)
|
||||
|
||||
def stats_cleanup(graph_execution_state_id: str) -> None:
|
||||
if profiler:
|
||||
profile_path = profiler.stop()
|
||||
stats_path = profile_path.with_suffix(".json")
|
||||
self.__invoker.services.performance_statistics.dump_stats(
|
||||
graph_execution_state_id=graph_execution_state_id, output_path=stats_path
|
||||
)
|
||||
with suppress(GESStatsNotFoundError):
|
||||
self.__invoker.services.performance_statistics.log_stats(graph_execution_state_id)
|
||||
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state_id)
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
queue_item = self.__invoker.services.queue.get()
|
||||
@ -49,6 +75,10 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
# do not hammer the queue
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
if profiler and profiler.profile_id != queue_item.graph_execution_state_id:
|
||||
profiler.start(profile_id=queue_item.graph_execution_state_id)
|
||||
|
||||
try:
|
||||
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
|
||||
queue_item.graph_execution_state_id
|
||||
@ -137,7 +167,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
pass
|
||||
|
||||
except CanceledException:
|
||||
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
|
||||
stats_cleanup(graph_execution_state.id)
|
||||
pass
|
||||
|
||||
except Exception as e:
|
||||
@ -162,7 +192,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
error_type=e.__class__.__name__,
|
||||
error=error,
|
||||
)
|
||||
self.__invoker.services.performance_statistics.reset_stats(graph_execution_state.id)
|
||||
pass
|
||||
|
||||
# Check queue to see if this is canceled, and skip if so
|
||||
@ -194,13 +223,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
error=traceback.format_exc(),
|
||||
)
|
||||
elif is_complete:
|
||||
self.__invoker.services.performance_statistics.log_stats(graph_execution_state.id)
|
||||
self.__invoker.services.events.emit_graph_execution_complete(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
)
|
||||
stats_cleanup(graph_execution_state.id)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
|
||||
|
@ -30,8 +30,10 @@ writes to the system log is stored in InvocationServices.performance_statistics.
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import AbstractContextManager
|
||||
from pathlib import Path
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invocation_stats.invocation_stats_common import InvocationStatsSummary
|
||||
|
||||
|
||||
class InvocationStatsServiceBase(ABC):
|
||||
@ -61,8 +63,9 @@ class InvocationStatsServiceBase(ABC):
|
||||
@abstractmethod
|
||||
def reset_stats(self, graph_execution_state_id: str):
|
||||
"""
|
||||
Reset all statistics for the indicated graph
|
||||
:param graph_execution_state_id
|
||||
Reset all statistics for the indicated graph.
|
||||
:param graph_execution_state_id: The id of the session whose stats to reset.
|
||||
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -70,5 +73,26 @@ class InvocationStatsServiceBase(ABC):
|
||||
def log_stats(self, graph_execution_state_id: str):
|
||||
"""
|
||||
Write out the accumulated statistics to the log or somewhere else.
|
||||
:param graph_execution_state_id: The id of the session whose stats to log.
|
||||
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
|
||||
"""
|
||||
Gets the accumulated statistics for the indicated graph.
|
||||
:param graph_execution_state_id: The id of the session whose stats to get.
|
||||
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def dump_stats(self, graph_execution_state_id: str, output_path: Path) -> None:
|
||||
"""
|
||||
Write out the accumulated statistics to the indicated path as JSON.
|
||||
:param graph_execution_state_id: The id of the session whose stats to dump.
|
||||
:param output_path: The file to write the stats to.
|
||||
:raises GESStatsNotFoundError: if the graph isn't tracked in the stats.
|
||||
"""
|
||||
pass
|
||||
|
@ -1,5 +1,91 @@
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import asdict, dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
class GESStatsNotFoundError(Exception):
|
||||
"""Raised when execution stats are not found for a given Graph Execution State."""
|
||||
|
||||
|
||||
@dataclass
|
||||
class NodeExecutionStatsSummary:
|
||||
"""The stats for a specific type of node."""
|
||||
|
||||
node_type: str
|
||||
num_calls: int
|
||||
time_used_seconds: float
|
||||
peak_vram_gb: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelCacheStatsSummary:
|
||||
"""The stats for the model cache."""
|
||||
|
||||
high_water_mark_gb: float
|
||||
cache_size_gb: float
|
||||
total_usage_gb: float
|
||||
cache_hits: int
|
||||
cache_misses: int
|
||||
models_cached: int
|
||||
models_cleared: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphExecutionStatsSummary:
|
||||
"""The stats for the graph execution state."""
|
||||
|
||||
graph_execution_state_id: str
|
||||
execution_time_seconds: float
|
||||
# `wall_time_seconds`, `ram_usage_gb` and `ram_change_gb` are derived from the node execution stats.
|
||||
# In some situations, there are no node stats, so these values are optional.
|
||||
wall_time_seconds: Optional[float]
|
||||
ram_usage_gb: Optional[float]
|
||||
ram_change_gb: Optional[float]
|
||||
|
||||
|
||||
@dataclass
|
||||
class InvocationStatsSummary:
|
||||
"""
|
||||
The accumulated stats for a graph execution.
|
||||
Its `__str__` method returns a human-readable stats summary.
|
||||
"""
|
||||
|
||||
vram_usage_gb: Optional[float]
|
||||
graph_stats: GraphExecutionStatsSummary
|
||||
model_cache_stats: ModelCacheStatsSummary
|
||||
node_stats: list[NodeExecutionStatsSummary]
|
||||
|
||||
def __str__(self) -> str:
|
||||
_str = ""
|
||||
_str = f"Graph stats: {self.graph_stats.graph_execution_state_id}\n"
|
||||
_str += f"{'Node':>30} {'Calls':>7} {'Seconds':>9} {'VRAM Used':>10}\n"
|
||||
|
||||
for summary in self.node_stats:
|
||||
_str += f"{summary.node_type:>30} {summary.num_calls:>7} {summary.time_used_seconds:>8.3f}s {summary.peak_vram_gb:>9.3f}G\n"
|
||||
|
||||
_str += f"TOTAL GRAPH EXECUTION TIME: {self.graph_stats.execution_time_seconds:7.3f}s\n"
|
||||
|
||||
if self.graph_stats.wall_time_seconds is not None:
|
||||
_str += f"TOTAL GRAPH WALL TIME: {self.graph_stats.wall_time_seconds:7.3f}s\n"
|
||||
|
||||
if self.graph_stats.ram_usage_gb is not None and self.graph_stats.ram_change_gb is not None:
|
||||
_str += f"RAM used by InvokeAI process: {self.graph_stats.ram_usage_gb:4.2f}G ({self.graph_stats.ram_change_gb:+5.3f}G)\n"
|
||||
|
||||
_str += f"RAM used to load models: {self.model_cache_stats.total_usage_gb:4.2f}G\n"
|
||||
if self.vram_usage_gb:
|
||||
_str += f"VRAM in use: {self.vram_usage_gb:4.3f}G\n"
|
||||
_str += "RAM cache statistics:\n"
|
||||
_str += f" Model cache hits: {self.model_cache_stats.cache_hits}\n"
|
||||
_str += f" Model cache misses: {self.model_cache_stats.cache_misses}\n"
|
||||
_str += f" Models cached: {self.model_cache_stats.models_cached}\n"
|
||||
_str += f" Models cleared from cache: {self.model_cache_stats.models_cleared}\n"
|
||||
_str += f" Cache high water mark: {self.model_cache_stats.high_water_mark_gb:4.2f}/{self.model_cache_stats.cache_size_gb:4.2f}G\n"
|
||||
|
||||
return _str
|
||||
|
||||
def as_dict(self) -> dict[str, Any]:
|
||||
"""Returns the stats as a dictionary."""
|
||||
return asdict(self)
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -55,12 +141,33 @@ class GraphExecutionStats:
|
||||
|
||||
return last_node
|
||||
|
||||
def get_pretty_log(self, graph_execution_state_id: str) -> str:
|
||||
log = f"Graph stats: {graph_execution_state_id}\n"
|
||||
log += f"{'Node':>30} {'Calls':>7}{'Seconds':>9} {'VRAM Used':>10}\n"
|
||||
def get_graph_stats_summary(self, graph_execution_state_id: str) -> GraphExecutionStatsSummary:
|
||||
"""Get a summary of the graph stats."""
|
||||
first_node = self.get_first_node_stats()
|
||||
last_node = self.get_last_node_stats()
|
||||
|
||||
# Log stats aggregated by node type.
|
||||
wall_time_seconds: Optional[float] = None
|
||||
ram_usage_gb: Optional[float] = None
|
||||
ram_change_gb: Optional[float] = None
|
||||
|
||||
if last_node and first_node:
|
||||
wall_time_seconds = last_node.end_time - first_node.start_time
|
||||
ram_usage_gb = last_node.end_ram_gb
|
||||
ram_change_gb = last_node.end_ram_gb - first_node.start_ram_gb
|
||||
|
||||
return GraphExecutionStatsSummary(
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
execution_time_seconds=self.get_total_run_time(),
|
||||
wall_time_seconds=wall_time_seconds,
|
||||
ram_usage_gb=ram_usage_gb,
|
||||
ram_change_gb=ram_change_gb,
|
||||
)
|
||||
|
||||
def get_node_stats_summaries(self) -> list[NodeExecutionStatsSummary]:
|
||||
"""Get a summary of the node stats."""
|
||||
summaries: list[NodeExecutionStatsSummary] = []
|
||||
node_stats_by_type: dict[str, list[NodeExecutionStats]] = defaultdict(list)
|
||||
|
||||
for node_stats in self._node_stats_list:
|
||||
node_stats_by_type[node_stats.invocation_type].append(node_stats)
|
||||
|
||||
@ -68,17 +175,9 @@ class GraphExecutionStats:
|
||||
num_calls = len(node_type_stats_list)
|
||||
time_used = sum([n.total_time() for n in node_type_stats_list])
|
||||
peak_vram = max([n.peak_vram_gb for n in node_type_stats_list])
|
||||
log += f"{node_type:>30} {num_calls:>4} {time_used:7.3f}s {peak_vram:4.3f}G\n"
|
||||
summary = NodeExecutionStatsSummary(
|
||||
node_type=node_type, num_calls=num_calls, time_used_seconds=time_used, peak_vram_gb=peak_vram
|
||||
)
|
||||
summaries.append(summary)
|
||||
|
||||
# Log stats for the entire graph.
|
||||
log += f"TOTAL GRAPH EXECUTION TIME: {self.get_total_run_time():7.3f}s\n"
|
||||
|
||||
first_node = self.get_first_node_stats()
|
||||
last_node = self.get_last_node_stats()
|
||||
if first_node is not None and last_node is not None:
|
||||
total_wall_time = last_node.end_time - first_node.start_time
|
||||
ram_change = last_node.end_ram_gb - first_node.start_ram_gb
|
||||
log += f"TOTAL GRAPH WALL TIME: {total_wall_time:7.3f}s\n"
|
||||
log += f"RAM used by InvokeAI process: {last_node.end_ram_gb:4.2f}G ({ram_change:+5.3f}G)\n"
|
||||
|
||||
return log
|
||||
return summaries
|
||||
|
@ -1,5 +1,7 @@
|
||||
import json
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
@ -7,10 +9,19 @@ import torch
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
|
||||
from invokeai.backend.model_management.model_cache import CacheStats
|
||||
|
||||
from .invocation_stats_base import InvocationStatsServiceBase
|
||||
from .invocation_stats_common import GraphExecutionStats, NodeExecutionStats
|
||||
from .invocation_stats_common import (
|
||||
GESStatsNotFoundError,
|
||||
GraphExecutionStats,
|
||||
GraphExecutionStatsSummary,
|
||||
InvocationStatsSummary,
|
||||
ModelCacheStatsSummary,
|
||||
NodeExecutionStats,
|
||||
NodeExecutionStatsSummary,
|
||||
)
|
||||
|
||||
# Size of 1GB in bytes.
|
||||
GB = 2**30
|
||||
@ -53,7 +64,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
finally:
|
||||
# Record state after the invocation.
|
||||
node_stats = NodeExecutionStats(
|
||||
invocation_type=invocation.type,
|
||||
invocation_type=invocation.get_type(),
|
||||
start_time=start_time,
|
||||
end_time=time.time(),
|
||||
start_ram_gb=start_ram / GB,
|
||||
@ -68,11 +79,11 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
This shouldn't be necessary, but we don't have totally robust upstream handling of graph completions/errors, so
|
||||
for now we call this function periodically to prevent them from accumulating.
|
||||
"""
|
||||
to_prune = []
|
||||
to_prune: list[str] = []
|
||||
for graph_execution_state_id in self._stats:
|
||||
try:
|
||||
graph_execution_state = self._invoker.services.graph_execution_manager.get(graph_execution_state_id)
|
||||
except Exception:
|
||||
except ItemNotFoundError:
|
||||
# TODO(ryand): What would cause this? Should this exception just be allowed to propagate?
|
||||
logger.warning(f"Failed to get graph state for {graph_execution_state_id}.")
|
||||
continue
|
||||
@ -95,31 +106,66 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
del self._stats[graph_execution_state_id]
|
||||
del self._cache_stats[graph_execution_state_id]
|
||||
except KeyError as e:
|
||||
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_state_id}: {e}.")
|
||||
raise GESStatsNotFoundError(
|
||||
f"Attempted to clear statistics for unknown graph {graph_execution_state_id}: {e}."
|
||||
) from e
|
||||
|
||||
def log_stats(self, graph_execution_state_id: str):
|
||||
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
|
||||
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)
|
||||
node_stats_summaries = self._get_node_summaries(graph_execution_state_id)
|
||||
model_cache_stats_summary = self._get_model_cache_summary(graph_execution_state_id)
|
||||
vram_usage_gb = torch.cuda.memory_allocated() / GB if torch.cuda.is_available() else None
|
||||
|
||||
return InvocationStatsSummary(
|
||||
graph_stats=graph_stats_summary,
|
||||
model_cache_stats=model_cache_stats_summary,
|
||||
node_stats=node_stats_summaries,
|
||||
vram_usage_gb=vram_usage_gb,
|
||||
)
|
||||
|
||||
def log_stats(self, graph_execution_state_id: str) -> None:
|
||||
stats = self.get_stats(graph_execution_state_id)
|
||||
logger.info(str(stats))
|
||||
|
||||
def dump_stats(self, graph_execution_state_id: str, output_path: Path) -> None:
|
||||
stats = self.get_stats(graph_execution_state_id)
|
||||
with open(output_path, "w") as f:
|
||||
f.write(json.dumps(stats.as_dict(), indent=2))
|
||||
|
||||
def _get_model_cache_summary(self, graph_execution_state_id: str) -> ModelCacheStatsSummary:
|
||||
try:
|
||||
graph_stats = self._stats[graph_execution_state_id]
|
||||
cache_stats = self._cache_stats[graph_execution_state_id]
|
||||
except KeyError as e:
|
||||
logger.warning(f"Attempted to log statistics for unknown graph {graph_execution_state_id}: {e}.")
|
||||
return
|
||||
raise GESStatsNotFoundError(
|
||||
f"Attempted to get model cache statistics for unknown graph {graph_execution_state_id}: {e}."
|
||||
) from e
|
||||
|
||||
log = graph_stats.get_pretty_log(graph_execution_state_id)
|
||||
return ModelCacheStatsSummary(
|
||||
cache_hits=cache_stats.hits,
|
||||
cache_misses=cache_stats.misses,
|
||||
high_water_mark_gb=cache_stats.high_watermark / GB,
|
||||
cache_size_gb=cache_stats.cache_size / GB,
|
||||
total_usage_gb=sum(list(cache_stats.loaded_model_sizes.values())) / GB,
|
||||
models_cached=cache_stats.in_cache,
|
||||
models_cleared=cache_stats.cleared,
|
||||
)
|
||||
|
||||
hwm = cache_stats.high_watermark / GB
|
||||
tot = cache_stats.cache_size / GB
|
||||
loaded = sum(list(cache_stats.loaded_model_sizes.values())) / GB
|
||||
log += f"RAM used to load models: {loaded:4.2f}G\n"
|
||||
if torch.cuda.is_available():
|
||||
log += f"VRAM in use: {(torch.cuda.memory_allocated() / GB):4.3f}G\n"
|
||||
log += "RAM cache statistics:\n"
|
||||
log += f" Model cache hits: {cache_stats.hits}\n"
|
||||
log += f" Model cache misses: {cache_stats.misses}\n"
|
||||
log += f" Models cached: {cache_stats.in_cache}\n"
|
||||
log += f" Models cleared from cache: {cache_stats.cleared}\n"
|
||||
log += f" Cache high water mark: {hwm:4.2f}/{tot:4.2f}G\n"
|
||||
logger.info(log)
|
||||
def _get_graph_summary(self, graph_execution_state_id: str) -> GraphExecutionStatsSummary:
|
||||
try:
|
||||
graph_stats = self._stats[graph_execution_state_id]
|
||||
except KeyError as e:
|
||||
raise GESStatsNotFoundError(
|
||||
f"Attempted to get graph statistics for unknown graph {graph_execution_state_id}: {e}."
|
||||
) from e
|
||||
|
||||
del self._stats[graph_execution_state_id]
|
||||
del self._cache_stats[graph_execution_state_id]
|
||||
return graph_stats.get_graph_stats_summary(graph_execution_state_id)
|
||||
|
||||
def _get_node_summaries(self, graph_execution_state_id: str) -> list[NodeExecutionStatsSummary]:
|
||||
try:
|
||||
graph_stats = self._stats[graph_execution_state_id]
|
||||
except KeyError as e:
|
||||
raise GESStatsNotFoundError(
|
||||
f"Attempted to get node statistics for unknown graph {graph_execution_state_id}: {e}."
|
||||
) from e
|
||||
|
||||
return graph_stats.get_node_stats_summaries()
|
||||
|
@ -1,10 +1,8 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Callable, Generic, Optional, TypeVar
|
||||
from typing import Callable, Generic, TypeVar
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
|
||||
@ -22,26 +20,26 @@ class ItemStorageABC(ABC, Generic[T]):
|
||||
|
||||
@abstractmethod
|
||||
def get(self, item_id: str) -> T:
|
||||
"""Gets the item, parsing it into a Pydantic model"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_raw(self, item_id: str) -> Optional[str]:
|
||||
"""Gets the raw item as a string, skipping Pydantic parsing"""
|
||||
"""
|
||||
Gets the item.
|
||||
:param item_id: the id of the item to get
|
||||
:raises ItemNotFoundError: if the item is not found
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set(self, item: T) -> None:
|
||||
"""Sets the item"""
|
||||
"""
|
||||
Sets the item. The id will be extracted based on id_field.
|
||||
:param item: the item to set
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
|
||||
"""Gets a paginated list of items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
|
||||
def delete(self, item_id: str) -> None:
|
||||
"""
|
||||
Deletes the item, if it exists.
|
||||
"""
|
||||
pass
|
||||
|
||||
def on_changed(self, on_changed: Callable[[T], None]) -> None:
|
||||
|
@ -0,0 +1,5 @@
|
||||
class ItemNotFoundError(KeyError):
|
||||
"""Raised when an item is not found in storage"""
|
||||
|
||||
def __init__(self, item_id: str) -> None:
|
||||
super().__init__(f"Item with id {item_id} not found")
|
52
invokeai/app/services/item_storage/item_storage_memory.py
Normal file
52
invokeai/app/services/item_storage/item_storage_memory.py
Normal file
@ -0,0 +1,52 @@
|
||||
from collections import OrderedDict
|
||||
from contextlib import suppress
|
||||
from typing import Generic, TypeVar
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.services.item_storage.item_storage_base import ItemStorageABC
|
||||
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
|
||||
class ItemStorageMemory(ItemStorageABC[T], Generic[T]):
|
||||
"""
|
||||
Provides a simple in-memory storage for items, with a maximum number of items to store.
|
||||
The storage uses the LRU strategy to evict items from storage when the max has been reached.
|
||||
"""
|
||||
|
||||
def __init__(self, id_field: str = "id", max_items: int = 10) -> None:
|
||||
super().__init__()
|
||||
if max_items < 1:
|
||||
raise ValueError("max_items must be at least 1")
|
||||
if not id_field:
|
||||
raise ValueError("id_field must not be empty")
|
||||
self._id_field = id_field
|
||||
self._items: OrderedDict[str, T] = OrderedDict()
|
||||
self._max_items = max_items
|
||||
|
||||
def get(self, item_id: str) -> T:
|
||||
# If the item exists, move it to the end of the OrderedDict.
|
||||
item = self._items.pop(item_id, None)
|
||||
if item is None:
|
||||
raise ItemNotFoundError(item_id)
|
||||
self._items[item_id] = item
|
||||
return item
|
||||
|
||||
def set(self, item: T) -> None:
|
||||
item_id = getattr(item, self._id_field)
|
||||
if item_id in self._items:
|
||||
# If item already exists, remove it and add it to the end
|
||||
self._items.pop(item_id)
|
||||
elif len(self._items) >= self._max_items:
|
||||
# If cache is full, evict the least recently used item
|
||||
self._items.popitem(last=False)
|
||||
self._items[item_id] = item
|
||||
self._on_changed(item)
|
||||
|
||||
def delete(self, item_id: str) -> None:
|
||||
# This is a no-op if the item doesn't exist.
|
||||
with suppress(KeyError):
|
||||
del self._items[item_id]
|
||||
self._on_deleted(item_id)
|
@ -1,147 +0,0 @@
|
||||
import sqlite3
|
||||
import threading
|
||||
from typing import Generic, Optional, TypeVar, get_args
|
||||
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
|
||||
from .item_storage_base import ItemStorageABC
|
||||
|
||||
T = TypeVar("T", bound=BaseModel)
|
||||
|
||||
|
||||
class SqliteItemStorage(ItemStorageABC, Generic[T]):
|
||||
_table_name: str
|
||||
_conn: sqlite3.Connection
|
||||
_cursor: sqlite3.Cursor
|
||||
_id_field: str
|
||||
_lock: threading.RLock
|
||||
_validator: Optional[TypeAdapter[T]]
|
||||
|
||||
def __init__(self, db: SqliteDatabase, table_name: str, id_field: str = "id"):
|
||||
super().__init__()
|
||||
|
||||
self._lock = db.lock
|
||||
self._conn = db.conn
|
||||
self._table_name = table_name
|
||||
self._id_field = id_field # TODO: validate that T has this field
|
||||
self._cursor = self._conn.cursor()
|
||||
self._validator: Optional[TypeAdapter[T]] = None
|
||||
|
||||
self._create_table()
|
||||
|
||||
def _create_table(self):
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
f"""CREATE TABLE IF NOT EXISTS {self._table_name} (
|
||||
item TEXT,
|
||||
id TEXT GENERATED ALWAYS AS (json_extract(item, '$.{self._id_field}')) VIRTUAL NOT NULL);"""
|
||||
)
|
||||
self._cursor.execute(
|
||||
f"""CREATE UNIQUE INDEX IF NOT EXISTS {self._table_name}_id ON {self._table_name}(id);"""
|
||||
)
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
def _parse_item(self, item: str) -> T:
|
||||
if self._validator is None:
|
||||
"""
|
||||
We don't get access to `__orig_class__` in `__init__()`, and we need this before start(), so
|
||||
we can create it when it is first needed instead.
|
||||
__orig_class__ is technically an implementation detail of the typing module, not a supported API
|
||||
"""
|
||||
self._validator = TypeAdapter(get_args(self.__orig_class__)[0]) # type: ignore [attr-defined]
|
||||
return self._validator.validate_json(item)
|
||||
|
||||
def set(self, item: T):
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
f"""INSERT OR REPLACE INTO {self._table_name} (item) VALUES (?);""",
|
||||
(item.model_dump_json(warnings=False, exclude_none=True),),
|
||||
)
|
||||
self._conn.commit()
|
||||
finally:
|
||||
self._lock.release()
|
||||
self._on_changed(item)
|
||||
|
||||
def get(self, id: str) -> Optional[T]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
|
||||
result = self._cursor.fetchone()
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return self._parse_item(result[0])
|
||||
|
||||
def get_raw(self, id: str) -> Optional[str]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(f"""SELECT item FROM {self._table_name} WHERE id = ?;""", (str(id),))
|
||||
result = self._cursor.fetchone()
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
if not result:
|
||||
return None
|
||||
|
||||
return result[0]
|
||||
|
||||
def delete(self, id: str):
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(f"""DELETE FROM {self._table_name} WHERE id = ?;""", (str(id),))
|
||||
self._conn.commit()
|
||||
finally:
|
||||
self._lock.release()
|
||||
self._on_deleted(id)
|
||||
|
||||
def list(self, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
f"""SELECT item FROM {self._table_name} LIMIT ? OFFSET ?;""",
|
||||
(per_page, page * per_page),
|
||||
)
|
||||
result = self._cursor.fetchall()
|
||||
|
||||
items = [self._parse_item(r[0]) for r in result]
|
||||
|
||||
self._cursor.execute(f"""SELECT count(*) FROM {self._table_name};""")
|
||||
count = self._cursor.fetchone()[0]
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
pageCount = int(count / per_page) + 1
|
||||
|
||||
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
|
||||
|
||||
def search(self, query: str, page: int = 0, per_page: int = 10) -> PaginatedResults[T]:
|
||||
try:
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
f"""SELECT item FROM {self._table_name} WHERE item LIKE ? LIMIT ? OFFSET ?;""",
|
||||
(f"%{query}%", per_page, page * per_page),
|
||||
)
|
||||
result = self._cursor.fetchall()
|
||||
|
||||
items = [self._parse_item(r[0]) for r in result]
|
||||
|
||||
self._cursor.execute(
|
||||
f"""SELECT count(*) FROM {self._table_name} WHERE item LIKE ?;""",
|
||||
(f"%{query}%",),
|
||||
)
|
||||
count = self._cursor.fetchone()[0]
|
||||
finally:
|
||||
self._lock.release()
|
||||
|
||||
pageCount = int(count / per_page) + 1
|
||||
|
||||
return PaginatedResults[T](items=items, page=page, pages=pageCount, per_page=per_page, total=count)
|
@ -165,8 +165,8 @@ class ModelInstallJob(BaseModel):
|
||||
)
|
||||
source: ModelSource = Field(description="Source (URL, repo_id, or local path) of model")
|
||||
local_path: Path = Field(description="Path to locally-downloaded model; may be the same as the source")
|
||||
bytes: Optional[int] = Field(
|
||||
default=None, description="For a remote model, the number of bytes downloaded so far (may not be available)"
|
||||
bytes: int = Field(
|
||||
default=0, description="For a remote model, the number of bytes downloaded so far (may not be available)"
|
||||
)
|
||||
total_bytes: int = Field(default=0, description="Total size of the model to be installed")
|
||||
source_metadata: Optional[AnyModelRepoMetadata] = Field(
|
||||
|
@ -535,19 +535,19 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
|
||||
# URLs from Civitai or HuggingFace will be handled specially
|
||||
url_patterns = {
|
||||
r"https?://civitai.com/": CivitaiMetadataFetch,
|
||||
r"https?://huggingface.co/": HuggingFaceMetadataFetch,
|
||||
r"^https?://civitai.com/": CivitaiMetadataFetch,
|
||||
r"^https?://huggingface.co/[^/]+/[^/]+$": HuggingFaceMetadataFetch,
|
||||
}
|
||||
metadata = None
|
||||
for pattern, fetcher in url_patterns.items():
|
||||
if re.match(pattern, str(source.url), re.IGNORECASE):
|
||||
metadata = fetcher(self._session).from_url(source.url)
|
||||
break
|
||||
self._logger.debug(f"metadata={metadata}")
|
||||
if metadata and isinstance(metadata, ModelMetadataWithFiles):
|
||||
remote_files = metadata.download_urls(session=self._session)
|
||||
else:
|
||||
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
|
||||
|
||||
return self._import_remote_model(
|
||||
source=source,
|
||||
config=config,
|
||||
@ -586,6 +586,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
|
||||
|
||||
self._logger.info(f"Queuing {source} for downloading")
|
||||
self._logger.debug(f"remote_files={remote_files}")
|
||||
for model_file in remote_files:
|
||||
url = model_file.url
|
||||
path = model_file.path
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Annotated, Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import BaseModel, ConfigDict, field_validator, model_validator
|
||||
@ -141,6 +141,16 @@ def are_connections_compatible(
|
||||
return are_connection_types_compatible(from_node_field, to_node_field)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def copydeep(obj: T) -> T:
|
||||
"""Deep-copies an object. If it is a pydantic model, use the model's copy method."""
|
||||
if isinstance(obj, BaseModel):
|
||||
return obj.model_copy(deep=True)
|
||||
return copy.deepcopy(obj)
|
||||
|
||||
|
||||
class NodeAlreadyInGraphError(ValueError):
|
||||
pass
|
||||
|
||||
@ -530,7 +540,7 @@ class Graph(BaseModel):
|
||||
except NodeNotFoundError:
|
||||
return False
|
||||
|
||||
def get_node(self, node_path: str) -> InvocationsUnion:
|
||||
def get_node(self, node_path: str) -> BaseInvocation:
|
||||
"""Gets a node from the graph using a node path."""
|
||||
# Materialized graphs may have nodes at the top level
|
||||
graph, node_id = self._get_graph_and_node(node_path)
|
||||
@ -881,7 +891,7 @@ class GraphExecutionState(BaseModel):
|
||||
# If next is still none, there's no next node, return None
|
||||
return next_node
|
||||
|
||||
def complete(self, node_id: str, output: InvocationOutputsUnion):
|
||||
def complete(self, node_id: str, output: BaseInvocationOutput) -> None:
|
||||
"""Marks a node as complete"""
|
||||
|
||||
if node_id not in self.execution_graph.nodes:
|
||||
@ -1118,17 +1128,22 @@ class GraphExecutionState(BaseModel):
|
||||
|
||||
def _prepare_inputs(self, node: BaseInvocation):
|
||||
input_edges = [e for e in self.execution_graph.edges if e.destination.node_id == node.id]
|
||||
# Inputs must be deep-copied, else if a node mutates the object, other nodes that get the same input
|
||||
# will see the mutation.
|
||||
if isinstance(node, CollectInvocation):
|
||||
output_collection = [
|
||||
getattr(self.results[edge.source.node_id], edge.source.field)
|
||||
copydeep(getattr(self.results[edge.source.node_id], edge.source.field))
|
||||
for edge in input_edges
|
||||
if edge.destination.field == "item"
|
||||
]
|
||||
node.collection = output_collection
|
||||
else:
|
||||
for edge in input_edges:
|
||||
output_value = getattr(self.results[edge.source.node_id], edge.source.field)
|
||||
setattr(node, edge.destination.field, output_value)
|
||||
setattr(
|
||||
node,
|
||||
edge.destination.field,
|
||||
copydeep(getattr(self.results[edge.source.node_id], edge.source.field)),
|
||||
)
|
||||
|
||||
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
|
||||
def _is_edge_valid(self, edge: Edge) -> bool:
|
||||
|
@ -7,6 +7,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_1 import
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_2 import build_migration_2
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import build_migration_3
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_4 import build_migration_4
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import build_migration_5
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@ -31,6 +32,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator.register_migration(build_migration_2(image_files=image_files, logger=logger))
|
||||
migrator.register_migration(build_migration_3(app_config=config, logger=logger))
|
||||
migrator.register_migration(build_migration_4())
|
||||
migrator.register_migration(build_migration_5())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
@ -0,0 +1,34 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
|
||||
class Migration5Callback:
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._drop_graph_executions(cursor)
|
||||
|
||||
def _drop_graph_executions(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""Drops the `graph_executions` table."""
|
||||
|
||||
cursor.execute(
|
||||
"""--sql
|
||||
DROP TABLE IF EXISTS graph_executions;
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def build_migration_5() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 4 to 5.
|
||||
|
||||
Introduced in v3.6.3, this migration:
|
||||
- Drops the `graph_executions` table. We are able to do this because we are moving the graph storage
|
||||
to be purely in-memory.
|
||||
"""
|
||||
migration_5 = Migration(
|
||||
from_version=4,
|
||||
to_version=5,
|
||||
callback=Migration5Callback(),
|
||||
)
|
||||
|
||||
return migration_5
|
@ -72,7 +72,12 @@ class MigrateModelYamlToDb1:
|
||||
continue
|
||||
|
||||
base_type, model_type, model_name = str(model_key).split("/")
|
||||
hash = FastModelHash.hash(self.config.models_path / stanza.path)
|
||||
try:
|
||||
hash = FastModelHash.hash(self.config.models_path / stanza.path)
|
||||
except OSError:
|
||||
self.logger.warning(f"The model at {stanza.path} is not a valid file or directory. Skipping migration.")
|
||||
continue
|
||||
|
||||
assert isinstance(model_key, str)
|
||||
new_key = sha1(model_key.encode("utf-8")).hexdigest()
|
||||
|
||||
|
67
invokeai/app/util/profiler.py
Normal file
67
invokeai/app/util/profiler.py
Normal file
@ -0,0 +1,67 @@
|
||||
import cProfile
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class Profiler:
|
||||
"""
|
||||
Simple wrapper around cProfile.
|
||||
|
||||
Usage
|
||||
```
|
||||
# Create a profiler
|
||||
profiler = Profiler(logger, output_dir, "sql_query_perf")
|
||||
# Start a new profile
|
||||
profiler.start("my_profile")
|
||||
# Do stuff
|
||||
profiler.stop()
|
||||
```
|
||||
|
||||
Visualize a profile as a flamegraph with [snakeviz](https://jiffyclub.github.io/snakeviz/)
|
||||
```sh
|
||||
snakeviz my_profile.prof
|
||||
```
|
||||
|
||||
Visualize a profile as directed graph with [graphviz](https://graphviz.org/download/) & [gprof2dot](https://github.com/jrfonseca/gprof2dot)
|
||||
```sh
|
||||
gprof2dot -f pstats my_profile.prof | dot -Tpng -o my_profile.png
|
||||
# SVG or PDF may be nicer - you can search for function names
|
||||
gprof2dot -f pstats my_profile.prof | dot -Tsvg -o my_profile.svg
|
||||
gprof2dot -f pstats my_profile.prof | dot -Tpdf -o my_profile.pdf
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, logger: Logger, output_dir: Path, prefix: Optional[str] = None) -> None:
|
||||
self._logger = logger.getChild(f"profiler.{prefix}" if prefix else "profiler")
|
||||
self._output_dir = output_dir
|
||||
self._output_dir.mkdir(parents=True, exist_ok=True)
|
||||
self._profiler: Optional[cProfile.Profile] = None
|
||||
self._prefix = prefix
|
||||
|
||||
self.profile_id: Optional[str] = None
|
||||
|
||||
def start(self, profile_id: str) -> None:
|
||||
if self._profiler:
|
||||
self.stop()
|
||||
|
||||
self.profile_id = profile_id
|
||||
|
||||
self._profiler = cProfile.Profile()
|
||||
self._profiler.enable()
|
||||
self._logger.info(f"Started profiling {self.profile_id}.")
|
||||
|
||||
def stop(self) -> Path:
|
||||
if not self._profiler:
|
||||
raise RuntimeError("Profiler not initialized. Call start() first.")
|
||||
self._profiler.disable()
|
||||
|
||||
filename = f"{self._prefix}_{self.profile_id}.prof" if self._prefix else f"{self.profile_id}.prof"
|
||||
path = Path(self._output_dir, filename)
|
||||
|
||||
self._profiler.dump_stats(path)
|
||||
self._logger.info(f"Stopped profiling, profile dumped to {path}.")
|
||||
self._profiler = None
|
||||
self.profile_id = None
|
||||
|
||||
return path
|
201
invokeai/backend/image_util/basicsr/LICENSE
Normal file
201
invokeai/backend/image_util/basicsr/LICENSE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2018-2022 BasicSR Authors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
18
invokeai/backend/image_util/basicsr/__init__.py
Normal file
18
invokeai/backend/image_util/basicsr/__init__.py
Normal file
@ -0,0 +1,18 @@
|
||||
"""
|
||||
Adapted from https://github.com/XPixelGroup/BasicSR
|
||||
License: Apache-2.0
|
||||
|
||||
As of Feb 2024, `basicsr` appears to be unmaintained. It imports a function from `torchvision` that is removed in
|
||||
`torchvision` 0.17. Here is the deprecation warning:
|
||||
|
||||
UserWarning: The torchvision.transforms.functional_tensor module is deprecated in 0.15 and will be **removed in
|
||||
0.17**. Please don't rely on it. You probably just need to use APIs in torchvision.transforms.functional or in
|
||||
torchvision.transforms.v2.functional.
|
||||
|
||||
As a result, a dependency on `basicsr` means we cannot keep our `torchvision` dependency up to date.
|
||||
|
||||
Because we only rely on a single class `RRDBNet` from `basicsr`, we've copied the relevant code here and removed the
|
||||
dependency on `basicsr`.
|
||||
|
||||
The code is almost unchanged, only a few type annotations have been added. The license is also copied.
|
||||
"""
|
75
invokeai/backend/image_util/basicsr/arch_util.py
Normal file
75
invokeai/backend/image_util/basicsr/arch_util.py
Normal file
@ -0,0 +1,75 @@
|
||||
from typing import Type
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import init as init
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def default_init_weights(
|
||||
module_list: list[nn.Module] | nn.Module, scale: float = 1, bias_fill: float = 0, **kwargs
|
||||
) -> None:
|
||||
"""Initialize network weights.
|
||||
|
||||
Args:
|
||||
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
||||
scale (float): Scale initialized weights, especially for residual
|
||||
blocks. Default: 1.
|
||||
bias_fill (float): The value to fill bias. Default: 0
|
||||
kwargs (dict): Other arguments for initialization function.
|
||||
"""
|
||||
if not isinstance(module_list, list):
|
||||
module_list = [module_list]
|
||||
for module in module_list:
|
||||
for m in module.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
init.kaiming_normal_(m.weight, **kwargs)
|
||||
m.weight.data *= scale
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
elif isinstance(m, nn.Linear):
|
||||
init.kaiming_normal_(m.weight, **kwargs)
|
||||
m.weight.data *= scale
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
elif isinstance(m, _BatchNorm):
|
||||
init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
|
||||
|
||||
def make_layer(basic_block: Type[nn.Module], num_basic_block: int, **kwarg) -> nn.Sequential:
|
||||
"""Make layers by stacking the same blocks.
|
||||
|
||||
Args:
|
||||
basic_block (Type[nn.Module]): nn.Module class for basic block.
|
||||
num_basic_block (int): number of blocks.
|
||||
|
||||
Returns:
|
||||
nn.Sequential: Stacked blocks in nn.Sequential.
|
||||
"""
|
||||
layers = []
|
||||
for _ in range(num_basic_block):
|
||||
layers.append(basic_block(**kwarg))
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
# TODO: may write a cpp file
|
||||
def pixel_unshuffle(x: torch.Tensor, scale: int) -> torch.Tensor:
|
||||
"""Pixel unshuffle.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input feature with shape (b, c, hh, hw).
|
||||
scale (int): Downsample ratio.
|
||||
|
||||
Returns:
|
||||
Tensor: the pixel unshuffled feature.
|
||||
"""
|
||||
b, c, hh, hw = x.size()
|
||||
out_channel = c * (scale**2)
|
||||
assert hh % scale == 0 and hw % scale == 0
|
||||
h = hh // scale
|
||||
w = hw // scale
|
||||
x_view = x.view(b, c, h, scale, w, scale)
|
||||
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
125
invokeai/backend/image_util/basicsr/rrdbnet_arch.py
Normal file
125
invokeai/backend/image_util/basicsr/rrdbnet_arch.py
Normal file
@ -0,0 +1,125 @@
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .arch_util import default_init_weights, make_layer, pixel_unshuffle
|
||||
|
||||
|
||||
class ResidualDenseBlock(nn.Module):
|
||||
"""Residual Dense Block.
|
||||
|
||||
Used in RRDB block in ESRGAN.
|
||||
|
||||
Args:
|
||||
num_feat (int): Channel number of intermediate features.
|
||||
num_grow_ch (int): Channels for each growth.
|
||||
"""
|
||||
|
||||
def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
|
||||
super(ResidualDenseBlock, self).__init__()
|
||||
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
||||
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
||||
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
||||
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
||||
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
||||
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
# initialization
|
||||
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x1 = self.lrelu(self.conv1(x))
|
||||
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
||||
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
||||
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
||||
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
||||
# Empirically, we use 0.2 to scale the residual for better performance
|
||||
return x5 * 0.2 + x
|
||||
|
||||
|
||||
class RRDB(nn.Module):
|
||||
"""Residual in Residual Dense Block.
|
||||
|
||||
Used in RRDB-Net in ESRGAN.
|
||||
|
||||
Args:
|
||||
num_feat (int): Channel number of intermediate features.
|
||||
num_grow_ch (int): Channels for each growth.
|
||||
"""
|
||||
|
||||
def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
|
||||
super(RRDB, self).__init__()
|
||||
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
||||
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
||||
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
out = self.rdb1(x)
|
||||
out = self.rdb2(out)
|
||||
out = self.rdb3(out)
|
||||
# Empirically, we use 0.2 to scale the residual for better performance
|
||||
return out * 0.2 + x
|
||||
|
||||
|
||||
class RRDBNet(nn.Module):
|
||||
"""Networks consisting of Residual in Residual Dense Block, which is used
|
||||
in ESRGAN.
|
||||
|
||||
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
||||
|
||||
We extend ESRGAN for scale x2 and scale x1.
|
||||
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
||||
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
||||
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
||||
|
||||
Args:
|
||||
num_in_ch (int): Channel number of inputs.
|
||||
num_out_ch (int): Channel number of outputs.
|
||||
num_feat (int): Channel number of intermediate features.
|
||||
Default: 64
|
||||
num_block (int): Block number in the trunk network. Defaults: 23
|
||||
num_grow_ch (int): Channels for each growth. Default: 32.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_in_ch: int,
|
||||
num_out_ch: int,
|
||||
scale: int = 4,
|
||||
num_feat: int = 64,
|
||||
num_block: int = 23,
|
||||
num_grow_ch: int = 32,
|
||||
) -> None:
|
||||
super(RRDBNet, self).__init__()
|
||||
self.scale = scale
|
||||
if scale == 2:
|
||||
num_in_ch = num_in_ch * 4
|
||||
elif scale == 1:
|
||||
num_in_ch = num_in_ch * 16
|
||||
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
||||
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
||||
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
||||
# upsample
|
||||
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
||||
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
||||
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
||||
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
||||
|
||||
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if self.scale == 2:
|
||||
feat = pixel_unshuffle(x, scale=2)
|
||||
elif self.scale == 1:
|
||||
feat = pixel_unshuffle(x, scale=4)
|
||||
else:
|
||||
feat = x
|
||||
feat = self.conv_first(feat)
|
||||
body_feat = self.conv_body(self.body(feat))
|
||||
feat = feat + body_feat
|
||||
# upsample
|
||||
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
|
||||
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
|
||||
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
||||
return out
|
81
invokeai/backend/image_util/dw_openpose/__init__.py
Normal file
81
invokeai/backend/image_util/dw_openpose/__init__.py
Normal file
@ -0,0 +1,81 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from controlnet_aux.util import resize_image
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
|
||||
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
|
||||
|
||||
|
||||
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
|
||||
bodies = pose["bodies"]
|
||||
faces = pose["faces"]
|
||||
hands = pose["hands"]
|
||||
candidate = bodies["candidate"]
|
||||
subset = bodies["subset"]
|
||||
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
||||
|
||||
if draw_body:
|
||||
canvas = draw_bodypose(canvas, candidate, subset)
|
||||
|
||||
if draw_hands:
|
||||
canvas = draw_handpose(canvas, hands)
|
||||
|
||||
if draw_face:
|
||||
canvas = draw_facepose(canvas, faces)
|
||||
|
||||
dwpose_image = resize_image(
|
||||
canvas,
|
||||
resolution,
|
||||
)
|
||||
dwpose_image = Image.fromarray(dwpose_image)
|
||||
|
||||
return dwpose_image
|
||||
|
||||
|
||||
class DWOpenposeDetector:
|
||||
"""
|
||||
Code from the original implementation of the DW Openpose Detector.
|
||||
Credits: https://github.com/IDEA-Research/DWPose
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.pose_estimation = Wholebody()
|
||||
|
||||
def __call__(
|
||||
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
|
||||
) -> Image.Image:
|
||||
np_image = np.array(image)
|
||||
H, W, C = np_image.shape
|
||||
|
||||
with torch.no_grad():
|
||||
candidate, subset = self.pose_estimation(np_image)
|
||||
nums, keys, locs = candidate.shape
|
||||
candidate[..., 0] /= float(W)
|
||||
candidate[..., 1] /= float(H)
|
||||
body = candidate[:, :18].copy()
|
||||
body = body.reshape(nums * 18, locs)
|
||||
score = subset[:, :18]
|
||||
for i in range(len(score)):
|
||||
for j in range(len(score[i])):
|
||||
if score[i][j] > 0.3:
|
||||
score[i][j] = int(18 * i + j)
|
||||
else:
|
||||
score[i][j] = -1
|
||||
|
||||
un_visible = subset < 0.3
|
||||
candidate[un_visible] = -1
|
||||
|
||||
# foot = candidate[:, 18:24]
|
||||
|
||||
faces = candidate[:, 24:92]
|
||||
|
||||
hands = candidate[:, 92:113]
|
||||
hands = np.vstack([hands, candidate[:, 113:]])
|
||||
|
||||
bodies = {"candidate": body, "subset": score}
|
||||
pose = {"bodies": bodies, "hands": hands, "faces": faces}
|
||||
|
||||
return draw_pose(
|
||||
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
|
||||
)
|
128
invokeai/backend/image_util/dw_openpose/onnxdet.py
Normal file
128
invokeai/backend/image_util/dw_openpose/onnxdet.py
Normal file
@ -0,0 +1,128 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def nms(boxes, scores, nms_thr):
|
||||
"""Single class NMS implemented in Numpy."""
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
|
||||
inds = np.where(ovr <= nms_thr)[0]
|
||||
order = order[inds + 1]
|
||||
|
||||
return keep
|
||||
|
||||
|
||||
def multiclass_nms(boxes, scores, nms_thr, score_thr):
|
||||
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
||||
final_dets = []
|
||||
num_classes = scores.shape[1]
|
||||
for cls_ind in range(num_classes):
|
||||
cls_scores = scores[:, cls_ind]
|
||||
valid_score_mask = cls_scores > score_thr
|
||||
if valid_score_mask.sum() == 0:
|
||||
continue
|
||||
else:
|
||||
valid_scores = cls_scores[valid_score_mask]
|
||||
valid_boxes = boxes[valid_score_mask]
|
||||
keep = nms(valid_boxes, valid_scores, nms_thr)
|
||||
if len(keep) > 0:
|
||||
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
||||
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
|
||||
final_dets.append(dets)
|
||||
if len(final_dets) == 0:
|
||||
return None
|
||||
return np.concatenate(final_dets, 0)
|
||||
|
||||
|
||||
def demo_postprocess(outputs, img_size, p6=False):
|
||||
grids = []
|
||||
expanded_strides = []
|
||||
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
||||
|
||||
hsizes = [img_size[0] // stride for stride in strides]
|
||||
wsizes = [img_size[1] // stride for stride in strides]
|
||||
|
||||
for hsize, wsize, stride in zip(hsizes, wsizes, strides, strict=False):
|
||||
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
||||
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
||||
grids.append(grid)
|
||||
shape = grid.shape[:2]
|
||||
expanded_strides.append(np.full((*shape, 1), stride))
|
||||
|
||||
grids = np.concatenate(grids, 1)
|
||||
expanded_strides = np.concatenate(expanded_strides, 1)
|
||||
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
||||
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def preprocess(img, input_size, swap=(2, 0, 1)):
|
||||
if len(img.shape) == 3:
|
||||
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
||||
else:
|
||||
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
||||
|
||||
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
||||
resized_img = cv2.resize(
|
||||
img,
|
||||
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
).astype(np.uint8)
|
||||
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
||||
|
||||
padded_img = padded_img.transpose(swap)
|
||||
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
||||
return padded_img, r
|
||||
|
||||
|
||||
def inference_detector(session, oriImg):
|
||||
input_shape = (640, 640)
|
||||
img, ratio = preprocess(oriImg, input_shape)
|
||||
|
||||
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
||||
output = session.run(None, ort_inputs)
|
||||
predictions = demo_postprocess(output[0], input_shape)[0]
|
||||
|
||||
boxes = predictions[:, :4]
|
||||
scores = predictions[:, 4:5] * predictions[:, 5:]
|
||||
|
||||
boxes_xyxy = np.ones_like(boxes)
|
||||
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
|
||||
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
|
||||
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
|
||||
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
|
||||
boxes_xyxy /= ratio
|
||||
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
||||
if dets is not None:
|
||||
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
||||
isscore = final_scores > 0.3
|
||||
iscat = final_cls_inds == 0
|
||||
isbbox = [i and j for (i, j) in zip(isscore, iscat, strict=False)]
|
||||
final_boxes = final_boxes[isbbox]
|
||||
else:
|
||||
final_boxes = np.array([])
|
||||
|
||||
return final_boxes
|
361
invokeai/backend/image_util/dw_openpose/onnxpose.py
Normal file
361
invokeai/backend/image_util/dw_openpose/onnxpose.py
Normal file
@ -0,0 +1,361 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
|
||||
def preprocess(
|
||||
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Do preprocessing for RTMPose model inference.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): Input image in shape.
|
||||
input_size (tuple): Input image size in shape (w, h).
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- resized_img (np.ndarray): Preprocessed image.
|
||||
- center (np.ndarray): Center of image.
|
||||
- scale (np.ndarray): Scale of image.
|
||||
"""
|
||||
# get shape of image
|
||||
img_shape = img.shape[:2]
|
||||
out_img, out_center, out_scale = [], [], []
|
||||
if len(out_bbox) == 0:
|
||||
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
|
||||
for i in range(len(out_bbox)):
|
||||
x0 = out_bbox[i][0]
|
||||
y0 = out_bbox[i][1]
|
||||
x1 = out_bbox[i][2]
|
||||
y1 = out_bbox[i][3]
|
||||
bbox = np.array([x0, y0, x1, y1])
|
||||
|
||||
# get center and scale
|
||||
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
|
||||
|
||||
# do affine transformation
|
||||
resized_img, scale = top_down_affine(input_size, scale, center, img)
|
||||
|
||||
# normalize image
|
||||
mean = np.array([123.675, 116.28, 103.53])
|
||||
std = np.array([58.395, 57.12, 57.375])
|
||||
resized_img = (resized_img - mean) / std
|
||||
|
||||
out_img.append(resized_img)
|
||||
out_center.append(center)
|
||||
out_scale.append(scale)
|
||||
|
||||
return out_img, out_center, out_scale
|
||||
|
||||
|
||||
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
|
||||
"""Inference RTMPose model.
|
||||
|
||||
Args:
|
||||
sess (ort.InferenceSession): ONNXRuntime session.
|
||||
img (np.ndarray): Input image in shape.
|
||||
|
||||
Returns:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
"""
|
||||
all_out = []
|
||||
# build input
|
||||
for i in range(len(img)):
|
||||
input = [img[i].transpose(2, 0, 1)]
|
||||
|
||||
# build output
|
||||
sess_input = {sess.get_inputs()[0].name: input}
|
||||
sess_output = []
|
||||
for out in sess.get_outputs():
|
||||
sess_output.append(out.name)
|
||||
|
||||
# run model
|
||||
outputs = sess.run(sess_output, sess_input)
|
||||
all_out.append(outputs)
|
||||
|
||||
return all_out
|
||||
|
||||
|
||||
def postprocess(
|
||||
outputs: List[np.ndarray],
|
||||
model_input_size: Tuple[int, int],
|
||||
center: Tuple[int, int],
|
||||
scale: Tuple[int, int],
|
||||
simcc_split_ratio: float = 2.0,
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Postprocess for RTMPose model output.
|
||||
|
||||
Args:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
model_input_size (tuple): RTMPose model Input image size.
|
||||
center (tuple): Center of bbox in shape (x, y).
|
||||
scale (tuple): Scale of bbox in shape (w, h).
|
||||
simcc_split_ratio (float): Split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- keypoints (np.ndarray): Rescaled keypoints.
|
||||
- scores (np.ndarray): Model predict scores.
|
||||
"""
|
||||
all_key = []
|
||||
all_score = []
|
||||
for i in range(len(outputs)):
|
||||
# use simcc to decode
|
||||
simcc_x, simcc_y = outputs[i]
|
||||
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
|
||||
|
||||
# rescale keypoints
|
||||
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
|
||||
all_key.append(keypoints[0])
|
||||
all_score.append(scores[0])
|
||||
|
||||
return np.array(all_key), np.array(all_score)
|
||||
|
||||
|
||||
def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Transform the bbox format from (x,y,w,h) into (center, scale)
|
||||
|
||||
Args:
|
||||
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
|
||||
as (left, top, right, bottom)
|
||||
padding (float): BBox padding factor that will be multilied to scale.
|
||||
Default: 1.0
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
"""
|
||||
# convert single bbox from (4, ) to (1, 4)
|
||||
dim = bbox.ndim
|
||||
if dim == 1:
|
||||
bbox = bbox[None, :]
|
||||
|
||||
# get bbox center and scale
|
||||
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
|
||||
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
|
||||
scale = np.hstack([x2 - x1, y2 - y1]) * padding
|
||||
|
||||
if dim == 1:
|
||||
center = center[0]
|
||||
scale = scale[0]
|
||||
|
||||
return center, scale
|
||||
|
||||
|
||||
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray:
|
||||
"""Extend the scale to match the given aspect ratio.
|
||||
|
||||
Args:
|
||||
scale (np.ndarray): The image scale (w, h) in shape (2, )
|
||||
aspect_ratio (float): The ratio of ``w/h``
|
||||
|
||||
Returns:
|
||||
np.ndarray: The reshaped image scale in (2, )
|
||||
"""
|
||||
w, h = np.hsplit(bbox_scale, [1])
|
||||
bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h]))
|
||||
return bbox_scale
|
||||
|
||||
|
||||
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
|
||||
"""Rotate a point by an angle.
|
||||
|
||||
Args:
|
||||
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
|
||||
angle_rad (float): rotation angle in radian
|
||||
|
||||
Returns:
|
||||
np.ndarray: Rotated point in shape (2, )
|
||||
"""
|
||||
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
||||
rot_mat = np.array([[cs, -sn], [sn, cs]])
|
||||
return rot_mat @ pt
|
||||
|
||||
|
||||
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
||||
"""To calculate the affine matrix, three pairs of points are required. This
|
||||
function is used to get the 3rd point, given 2D points a & b.
|
||||
|
||||
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
||||
anticlockwise, using b as the rotation center.
|
||||
|
||||
Args:
|
||||
a (np.ndarray): The 1st point (x,y) in shape (2, )
|
||||
b (np.ndarray): The 2nd point (x,y) in shape (2, )
|
||||
|
||||
Returns:
|
||||
np.ndarray: The 3rd point.
|
||||
"""
|
||||
direction = a - b
|
||||
c = b + np.r_[-direction[1], direction[0]]
|
||||
return c
|
||||
|
||||
|
||||
def get_warp_matrix(
|
||||
center: np.ndarray,
|
||||
scale: np.ndarray,
|
||||
rot: float,
|
||||
output_size: Tuple[int, int],
|
||||
shift: Tuple[float, float] = (0.0, 0.0),
|
||||
inv: bool = False,
|
||||
) -> np.ndarray:
|
||||
"""Calculate the affine transformation matrix that can warp the bbox area
|
||||
in the input image to the output size.
|
||||
|
||||
Args:
|
||||
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
||||
scale (np.ndarray[2, ]): Scale of the bounding box
|
||||
wrt [width, height].
|
||||
rot (float): Rotation angle (degree).
|
||||
output_size (np.ndarray[2, ] | list(2,)): Size of the
|
||||
destination heatmaps.
|
||||
shift (0-100%): Shift translation ratio wrt the width/height.
|
||||
Default (0., 0.).
|
||||
inv (bool): Option to inverse the affine transform direction.
|
||||
(inv=False: src->dst or inv=True: dst->src)
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2x3 transformation matrix
|
||||
"""
|
||||
shift = np.array(shift)
|
||||
src_w = scale[0]
|
||||
dst_w = output_size[0]
|
||||
dst_h = output_size[1]
|
||||
|
||||
# compute transformation matrix
|
||||
rot_rad = np.deg2rad(rot)
|
||||
src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad)
|
||||
dst_dir = np.array([0.0, dst_w * -0.5])
|
||||
|
||||
# get four corners of the src rectangle in the original image
|
||||
src = np.zeros((3, 2), dtype=np.float32)
|
||||
src[0, :] = center + scale * shift
|
||||
src[1, :] = center + src_dir + scale * shift
|
||||
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
||||
|
||||
# get four corners of the dst rectangle in the input image
|
||||
dst = np.zeros((3, 2), dtype=np.float32)
|
||||
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
||||
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
||||
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
||||
|
||||
if inv:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
||||
else:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
||||
|
||||
return warp_mat
|
||||
|
||||
|
||||
def top_down_affine(
|
||||
input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get the bbox image as the model input by affine transform.
|
||||
|
||||
Args:
|
||||
input_size (dict): The input size of the model.
|
||||
bbox_scale (dict): The bbox scale of the img.
|
||||
bbox_center (dict): The bbox center of the img.
|
||||
img (np.ndarray): The original image.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: img after affine transform.
|
||||
- np.ndarray[float32]: bbox scale after affine transform.
|
||||
"""
|
||||
w, h = input_size
|
||||
warp_size = (int(w), int(h))
|
||||
|
||||
# reshape bbox to fixed aspect ratio
|
||||
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
|
||||
|
||||
# get the affine matrix
|
||||
center = bbox_center
|
||||
scale = bbox_scale
|
||||
rot = 0
|
||||
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
|
||||
|
||||
# do affine transform
|
||||
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
|
||||
|
||||
return img, bbox_scale
|
||||
|
||||
|
||||
def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get maximum response location and value from simcc representations.
|
||||
|
||||
Note:
|
||||
instance number: N
|
||||
num_keypoints: K
|
||||
heatmap height: H
|
||||
heatmap width: W
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
|
||||
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- locs (np.ndarray): locations of maximum heatmap responses in shape
|
||||
(K, 2) or (N, K, 2)
|
||||
- vals (np.ndarray): values of maximum heatmap responses in shape
|
||||
(K,) or (N, K)
|
||||
"""
|
||||
N, K, Wx = simcc_x.shape
|
||||
simcc_x = simcc_x.reshape(N * K, -1)
|
||||
simcc_y = simcc_y.reshape(N * K, -1)
|
||||
|
||||
# get maximum value locations
|
||||
x_locs = np.argmax(simcc_x, axis=1)
|
||||
y_locs = np.argmax(simcc_y, axis=1)
|
||||
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
|
||||
max_val_x = np.amax(simcc_x, axis=1)
|
||||
max_val_y = np.amax(simcc_y, axis=1)
|
||||
|
||||
# get maximum value across x and y axis
|
||||
mask = max_val_x > max_val_y
|
||||
max_val_x[mask] = max_val_y[mask]
|
||||
vals = max_val_x
|
||||
locs[vals <= 0.0] = -1
|
||||
|
||||
# reshape
|
||||
locs = locs.reshape(N, K, 2)
|
||||
vals = vals.reshape(N, K)
|
||||
|
||||
return locs, vals
|
||||
|
||||
|
||||
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Modulate simcc distribution with Gaussian.
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
|
||||
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
|
||||
simcc_split_ratio (int): The split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
|
||||
- np.ndarray[float32]: scores in shape (K,) or (n, K)
|
||||
"""
|
||||
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
|
||||
keypoints /= simcc_split_ratio
|
||||
|
||||
return keypoints, scores
|
||||
|
||||
|
||||
def inference_pose(session, out_bbox, oriImg):
|
||||
h, w = session.get_inputs()[0].shape[2:]
|
||||
model_input_size = (w, h)
|
||||
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
|
||||
outputs = inference(session, resized_img)
|
||||
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
|
||||
|
||||
return keypoints, scores
|
155
invokeai/backend/image_util/dw_openpose/utils.py
Normal file
155
invokeai/backend/image_util/dw_openpose/utils.py
Normal file
@ -0,0 +1,155 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
|
||||
import math
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
eps = 0.01
|
||||
|
||||
|
||||
def draw_bodypose(canvas, candidate, subset):
|
||||
H, W, C = canvas.shape
|
||||
candidate = np.array(candidate)
|
||||
subset = np.array(subset)
|
||||
|
||||
stickwidth = 4
|
||||
|
||||
limbSeq = [
|
||||
[2, 3],
|
||||
[2, 6],
|
||||
[3, 4],
|
||||
[4, 5],
|
||||
[6, 7],
|
||||
[7, 8],
|
||||
[2, 9],
|
||||
[9, 10],
|
||||
[10, 11],
|
||||
[2, 12],
|
||||
[12, 13],
|
||||
[13, 14],
|
||||
[2, 1],
|
||||
[1, 15],
|
||||
[15, 17],
|
||||
[1, 16],
|
||||
[16, 18],
|
||||
[3, 17],
|
||||
[6, 18],
|
||||
]
|
||||
|
||||
colors = [
|
||||
[255, 0, 0],
|
||||
[255, 85, 0],
|
||||
[255, 170, 0],
|
||||
[255, 255, 0],
|
||||
[170, 255, 0],
|
||||
[85, 255, 0],
|
||||
[0, 255, 0],
|
||||
[0, 255, 85],
|
||||
[0, 255, 170],
|
||||
[0, 255, 255],
|
||||
[0, 170, 255],
|
||||
[0, 85, 255],
|
||||
[0, 0, 255],
|
||||
[85, 0, 255],
|
||||
[170, 0, 255],
|
||||
[255, 0, 255],
|
||||
[255, 0, 170],
|
||||
[255, 0, 85],
|
||||
]
|
||||
|
||||
for i in range(17):
|
||||
for n in range(len(subset)):
|
||||
index = subset[n][np.array(limbSeq[i]) - 1]
|
||||
if -1 in index:
|
||||
continue
|
||||
Y = candidate[index.astype(int), 0] * float(W)
|
||||
X = candidate[index.astype(int), 1] * float(H)
|
||||
mX = np.mean(X)
|
||||
mY = np.mean(Y)
|
||||
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
||||
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
||||
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
||||
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
||||
|
||||
canvas = (canvas * 0.6).astype(np.uint8)
|
||||
|
||||
for i in range(18):
|
||||
for n in range(len(subset)):
|
||||
index = int(subset[n][i])
|
||||
if index == -1:
|
||||
continue
|
||||
x, y = candidate[index][0:2]
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_handpose(canvas, all_hand_peaks):
|
||||
H, W, C = canvas.shape
|
||||
|
||||
edges = [
|
||||
[0, 1],
|
||||
[1, 2],
|
||||
[2, 3],
|
||||
[3, 4],
|
||||
[0, 5],
|
||||
[5, 6],
|
||||
[6, 7],
|
||||
[7, 8],
|
||||
[0, 9],
|
||||
[9, 10],
|
||||
[10, 11],
|
||||
[11, 12],
|
||||
[0, 13],
|
||||
[13, 14],
|
||||
[14, 15],
|
||||
[15, 16],
|
||||
[0, 17],
|
||||
[17, 18],
|
||||
[18, 19],
|
||||
[19, 20],
|
||||
]
|
||||
|
||||
for peaks in all_hand_peaks:
|
||||
peaks = np.array(peaks)
|
||||
|
||||
for ie, e in enumerate(edges):
|
||||
x1, y1 = peaks[e[0]]
|
||||
x2, y2 = peaks[e[1]]
|
||||
x1 = int(x1 * W)
|
||||
y1 = int(y1 * H)
|
||||
x2 = int(x2 * W)
|
||||
y2 = int(y2 * H)
|
||||
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
||||
cv2.line(
|
||||
canvas,
|
||||
(x1, y1),
|
||||
(x2, y2),
|
||||
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
|
||||
thickness=2,
|
||||
)
|
||||
|
||||
for _, keyponit in enumerate(peaks):
|
||||
x, y = keyponit
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_facepose(canvas, all_lmks):
|
||||
H, W, C = canvas.shape
|
||||
for lmks in all_lmks:
|
||||
lmks = np.array(lmks)
|
||||
for lmk in lmks:
|
||||
x, y = lmk
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
||||
return canvas
|
67
invokeai/backend/image_util/dw_openpose/wholebody.py
Normal file
67
invokeai/backend/image_util/dw_openpose/wholebody.py
Normal file
@ -0,0 +1,67 @@
|
||||
# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
|
||||
# Modified pathing to suit Invoke
|
||||
|
||||
import pathlib
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
from invokeai.backend.util.util import download_with_progress_bar
|
||||
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
DWPOSE_MODELS = {
|
||||
"yolox_l.onnx": {
|
||||
"local": "any/annotators/dwpose/yolox_l.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
|
||||
},
|
||||
"dw-ll_ucoco_384.onnx": {
|
||||
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
|
||||
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
|
||||
},
|
||||
}
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
|
||||
|
||||
class Wholebody:
|
||||
def __init__(self):
|
||||
device = choose_torch_device()
|
||||
|
||||
providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]
|
||||
|
||||
DET_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"])
|
||||
if not DET_MODEL_PATH.exists():
|
||||
download_with_progress_bar(DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
|
||||
|
||||
POSE_MODEL_PATH = pathlib.Path(config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"])
|
||||
if not POSE_MODEL_PATH.exists():
|
||||
download_with_progress_bar(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH)
|
||||
|
||||
onnx_det = DET_MODEL_PATH
|
||||
onnx_pose = POSE_MODEL_PATH
|
||||
|
||||
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
||||
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
||||
|
||||
def __call__(self, oriImg):
|
||||
det_result = inference_detector(self.session_det, oriImg)
|
||||
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
||||
|
||||
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
|
||||
# compute neck joint
|
||||
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
||||
# neck score when visualizing pred
|
||||
neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
||||
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
|
||||
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
|
||||
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
|
||||
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
|
||||
keypoints_info = new_keypoints_info
|
||||
|
||||
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
|
||||
|
||||
return keypoints, scores
|
@ -7,10 +7,10 @@ import cv2
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from cv2.typing import MatLike
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
|
||||
"""
|
||||
|
281
invokeai/backend/install/install_helper.py
Normal file
281
invokeai/backend/install/install_helper.py
Normal file
@ -0,0 +1,281 @@
|
||||
"""Utility (backend) functions used by model_install.py"""
|
||||
import re
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import omegaconf
|
||||
from huggingface_hub import HfFolder
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.dataclasses import dataclass
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
import invokeai.configs as configs
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.download import DownloadQueueService
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from invokeai.app.services.model_install import (
|
||||
HFModelSource,
|
||||
LocalModelSource,
|
||||
ModelInstallService,
|
||||
ModelInstallServiceBase,
|
||||
ModelSource,
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_records import ModelRecordServiceBase, ModelRecordServiceSQL
|
||||
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
|
||||
from invokeai.backend.model_manager import (
|
||||
BaseModelType,
|
||||
InvalidModelConfigException,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.metadata import UnknownMetadataException
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
# name of the starter models file
|
||||
INITIAL_MODELS = "INITIAL_MODELS2.yaml"
|
||||
|
||||
|
||||
def initialize_record_store(app_config: InvokeAIAppConfig) -> ModelRecordServiceBase:
|
||||
"""Return an initialized ModelConfigRecordServiceBase object."""
|
||||
logger = InvokeAILogger.get_logger(config=app_config)
|
||||
image_files = DiskImageFileStorage(f"{app_config.output_path}/images")
|
||||
db = init_db(config=app_config, logger=logger, image_files=image_files)
|
||||
obj: ModelRecordServiceBase = ModelRecordServiceSQL(db)
|
||||
return obj
|
||||
|
||||
|
||||
def initialize_installer(
|
||||
app_config: InvokeAIAppConfig, event_bus: Optional[EventServiceBase] = None
|
||||
) -> ModelInstallServiceBase:
|
||||
"""Return an initialized ModelInstallService object."""
|
||||
record_store = initialize_record_store(app_config)
|
||||
metadata_store = record_store.metadata_store
|
||||
download_queue = DownloadQueueService()
|
||||
installer = ModelInstallService(
|
||||
app_config=app_config,
|
||||
record_store=record_store,
|
||||
metadata_store=metadata_store,
|
||||
download_queue=download_queue,
|
||||
event_bus=event_bus,
|
||||
)
|
||||
download_queue.start()
|
||||
installer.start()
|
||||
return installer
|
||||
|
||||
|
||||
class UnifiedModelInfo(BaseModel):
|
||||
"""Catchall class for information in INITIAL_MODELS2.yaml."""
|
||||
|
||||
name: Optional[str] = None
|
||||
base: Optional[BaseModelType] = None
|
||||
type: Optional[ModelType] = None
|
||||
source: Optional[str] = None
|
||||
subfolder: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
recommended: bool = False
|
||||
installed: bool = False
|
||||
default: bool = False
|
||||
requires: List[str] = Field(default_factory=list)
|
||||
|
||||
|
||||
@dataclass
|
||||
class InstallSelections:
|
||||
"""Lists of models to install and remove."""
|
||||
|
||||
install_models: List[UnifiedModelInfo] = Field(default_factory=list)
|
||||
remove_models: List[str] = Field(default_factory=list)
|
||||
|
||||
|
||||
class TqdmEventService(EventServiceBase):
|
||||
"""An event service to track downloads."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Create a new TqdmEventService object."""
|
||||
super().__init__()
|
||||
self._bars: Dict[str, tqdm] = {}
|
||||
self._last: Dict[str, int] = {}
|
||||
|
||||
def dispatch(self, event_name: str, payload: Any) -> None:
|
||||
"""Dispatch an event by appending it to self.events."""
|
||||
if payload["event"] == "model_install_downloading":
|
||||
data = payload["data"]
|
||||
dest = data["local_path"]
|
||||
total_bytes = data["total_bytes"]
|
||||
bytes = data["bytes"]
|
||||
if dest not in self._bars:
|
||||
self._bars[dest] = tqdm(desc=Path(dest).name, initial=0, total=total_bytes, unit="iB", unit_scale=True)
|
||||
self._last[dest] = 0
|
||||
self._bars[dest].update(bytes - self._last[dest])
|
||||
self._last[dest] = bytes
|
||||
|
||||
|
||||
class InstallHelper(object):
|
||||
"""Capture information stored jointly in INITIAL_MODELS.yaml and the installed models db."""
|
||||
|
||||
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger):
|
||||
"""Create new InstallHelper object."""
|
||||
self._app_config = app_config
|
||||
self.all_models: Dict[str, UnifiedModelInfo] = {}
|
||||
|
||||
omega = omegaconf.OmegaConf.load(Path(configs.__path__[0]) / INITIAL_MODELS)
|
||||
assert isinstance(omega, omegaconf.dictconfig.DictConfig)
|
||||
|
||||
self._installer = initialize_installer(app_config, TqdmEventService())
|
||||
self._initial_models = omega
|
||||
self._installed_models: List[str] = []
|
||||
self._starter_models: List[str] = []
|
||||
self._default_model: Optional[str] = None
|
||||
self._logger = logger
|
||||
self._initialize_model_lists()
|
||||
|
||||
@property
|
||||
def installer(self) -> ModelInstallServiceBase:
|
||||
"""Return the installer object used internally."""
|
||||
return self._installer
|
||||
|
||||
def _initialize_model_lists(self) -> None:
|
||||
"""
|
||||
Initialize our model slots.
|
||||
|
||||
Set up the following:
|
||||
installed_models -- list of installed model keys
|
||||
starter_models -- list of starter model keys from INITIAL_MODELS
|
||||
all_models -- dict of key => UnifiedModelInfo
|
||||
default_model -- key to default model
|
||||
"""
|
||||
# previously-installed models
|
||||
for model in self._installer.record_store.all_models():
|
||||
info = UnifiedModelInfo.parse_obj(model.dict())
|
||||
info.installed = True
|
||||
model_key = f"{model.base.value}/{model.type.value}/{model.name}"
|
||||
self.all_models[model_key] = info
|
||||
self._installed_models.append(model_key)
|
||||
|
||||
for key in self._initial_models.keys():
|
||||
assert isinstance(key, str)
|
||||
if key in self.all_models:
|
||||
# we want to preserve the description
|
||||
description = self.all_models[key].description or self._initial_models[key].get("description")
|
||||
self.all_models[key].description = description
|
||||
else:
|
||||
base_model, model_type, model_name = key.split("/")
|
||||
info = UnifiedModelInfo(
|
||||
name=model_name,
|
||||
type=ModelType(model_type),
|
||||
base=BaseModelType(base_model),
|
||||
source=self._initial_models[key].source,
|
||||
description=self._initial_models[key].get("description"),
|
||||
recommended=self._initial_models[key].get("recommended", False),
|
||||
default=self._initial_models[key].get("default", False),
|
||||
subfolder=self._initial_models[key].get("subfolder"),
|
||||
requires=list(self._initial_models[key].get("requires", [])),
|
||||
)
|
||||
self.all_models[key] = info
|
||||
if not self.default_model():
|
||||
self._default_model = key
|
||||
elif self._initial_models[key].get("default", False):
|
||||
self._default_model = key
|
||||
self._starter_models.append(key)
|
||||
|
||||
# previously-installed models
|
||||
for model in self._installer.record_store.all_models():
|
||||
info = UnifiedModelInfo.parse_obj(model.dict())
|
||||
info.installed = True
|
||||
model_key = f"{model.base.value}/{model.type.value}/{model.name}"
|
||||
self.all_models[model_key] = info
|
||||
self._installed_models.append(model_key)
|
||||
|
||||
def recommended_models(self) -> List[UnifiedModelInfo]:
|
||||
"""List of the models recommended in INITIAL_MODELS.yaml."""
|
||||
return [self._to_model(x) for x in self._starter_models if self._to_model(x).recommended]
|
||||
|
||||
def installed_models(self) -> List[UnifiedModelInfo]:
|
||||
"""List of models already installed."""
|
||||
return [self._to_model(x) for x in self._installed_models]
|
||||
|
||||
def starter_models(self) -> List[UnifiedModelInfo]:
|
||||
"""List of starter models."""
|
||||
return [self._to_model(x) for x in self._starter_models]
|
||||
|
||||
def default_model(self) -> Optional[UnifiedModelInfo]:
|
||||
"""Return the default model."""
|
||||
return self._to_model(self._default_model) if self._default_model else None
|
||||
|
||||
def _to_model(self, key: str) -> UnifiedModelInfo:
|
||||
return self.all_models[key]
|
||||
|
||||
def _add_required_models(self, model_list: List[UnifiedModelInfo]) -> None:
|
||||
installed = {x.source for x in self.installed_models()}
|
||||
reverse_source = {x.source: x for x in self.all_models.values()}
|
||||
additional_models: List[UnifiedModelInfo] = []
|
||||
for model_info in model_list:
|
||||
for requirement in model_info.requires:
|
||||
if requirement not in installed and reverse_source.get(requirement):
|
||||
additional_models.append(reverse_source[requirement])
|
||||
model_list.extend(additional_models)
|
||||
|
||||
def _make_install_source(self, model_info: UnifiedModelInfo) -> ModelSource:
|
||||
assert model_info.source
|
||||
model_path_id_or_url = model_info.source.strip("\"' ")
|
||||
model_path = Path(model_path_id_or_url)
|
||||
|
||||
if model_path.exists(): # local file on disk
|
||||
return LocalModelSource(path=model_path.absolute(), inplace=True)
|
||||
if re.match(r"^[^/]+/[^/]+$", model_path_id_or_url): # hugging face repo_id
|
||||
return HFModelSource(
|
||||
repo_id=model_path_id_or_url,
|
||||
access_token=HfFolder.get_token(),
|
||||
subfolder=model_info.subfolder,
|
||||
)
|
||||
if re.match(r"^(http|https):", model_path_id_or_url):
|
||||
return URLModelSource(url=AnyHttpUrl(model_path_id_or_url))
|
||||
raise ValueError(f"Unsupported model source: {model_path_id_or_url}")
|
||||
|
||||
def add_or_delete(self, selections: InstallSelections) -> None:
|
||||
"""Add or delete selected models."""
|
||||
installer = self._installer
|
||||
self._add_required_models(selections.install_models)
|
||||
for model in selections.install_models:
|
||||
source = self._make_install_source(model)
|
||||
config = (
|
||||
{
|
||||
"description": model.description,
|
||||
"name": model.name,
|
||||
}
|
||||
if model.name
|
||||
else None
|
||||
)
|
||||
|
||||
try:
|
||||
installer.import_model(
|
||||
source=source,
|
||||
config=config,
|
||||
)
|
||||
except (UnknownMetadataException, InvalidModelConfigException, HTTPError, OSError) as e:
|
||||
self._logger.warning(f"{source}: {e}")
|
||||
|
||||
for model_to_remove in selections.remove_models:
|
||||
parts = model_to_remove.split("/")
|
||||
if len(parts) == 1:
|
||||
base_model, model_type, model_name = (None, None, model_to_remove)
|
||||
else:
|
||||
base_model, model_type, model_name = parts
|
||||
matches = installer.record_store.search_by_attr(
|
||||
base_model=BaseModelType(base_model) if base_model else None,
|
||||
model_type=ModelType(model_type) if model_type else None,
|
||||
model_name=model_name,
|
||||
)
|
||||
if len(matches) > 1:
|
||||
print(f"{model} is ambiguous. Please use model_type:model_name (e.g. main:my_model) to disambiguate.")
|
||||
elif not matches:
|
||||
print(f"{model}: unknown model")
|
||||
else:
|
||||
for m in matches:
|
||||
print(f"Deleting {m.type}:{m.name}")
|
||||
installer.delete(m.key)
|
||||
|
||||
installer.wait_for_installs()
|
@ -849,7 +849,7 @@ def migrate_if_needed(opt: Namespace, root: Path) -> bool:
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def main():
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
||||
parser.add_argument(
|
||||
"--skip-sd-weights",
|
||||
|
@ -104,12 +104,14 @@ class ModelInstall(object):
|
||||
prediction_type_helper: Optional[Callable[[Path], SchedulerPredictionType]] = None,
|
||||
model_manager: Optional[ModelManager] = None,
|
||||
access_token: Optional[str] = None,
|
||||
civitai_api_key: Optional[str] = None,
|
||||
):
|
||||
self.config = config
|
||||
self.mgr = model_manager or ModelManager(config.model_conf_path)
|
||||
self.datasets = OmegaConf.load(Dataset_path)
|
||||
self.prediction_helper = prediction_type_helper
|
||||
self.access_token = access_token or HfFolder.get_token()
|
||||
self.civitai_api_key = civitai_api_key or config.civitai_api_key
|
||||
self.reverse_paths = self._reverse_paths(self.datasets)
|
||||
|
||||
def all_models(self) -> Dict[str, ModelLoadInfo]:
|
||||
@ -326,7 +328,11 @@ class ModelInstall(object):
|
||||
|
||||
def _install_url(self, url: str) -> AddModelResult:
|
||||
with TemporaryDirectory(dir=self.config.models_path) as staging:
|
||||
location = download_with_resume(url, Path(staging))
|
||||
CIVITAI_RE = r".*civitai.com.*"
|
||||
civit_url = re.match(CIVITAI_RE, url, re.IGNORECASE)
|
||||
location = download_with_resume(
|
||||
url, Path(staging), access_token=self.civitai_api_key if civit_url else None
|
||||
)
|
||||
if not location:
|
||||
logger.error(f"Unable to download {url}. Skipping.")
|
||||
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
|
||||
|
@ -42,8 +42,7 @@ from diffusers.schedulers import (
|
||||
PNDMScheduler,
|
||||
UnCLIPScheduler,
|
||||
)
|
||||
from diffusers.utils import is_accelerate_available, is_omegaconf_available
|
||||
from diffusers.utils.import_utils import BACKENDS_MAPPING
|
||||
from diffusers.utils import is_accelerate_available
|
||||
from picklescan.scanner import scan_file_path
|
||||
from transformers import (
|
||||
AutoFeatureExtractor,
|
||||
@ -1211,9 +1210,6 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
if prediction_type == "v-prediction":
|
||||
prediction_type = "v_prediction"
|
||||
|
||||
if not is_omegaconf_available():
|
||||
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
|
||||
|
||||
if from_safetensors:
|
||||
from safetensors.torch import load_file as safe_load
|
||||
|
||||
@ -1647,11 +1643,6 @@ def download_controlnet_from_original_ckpt(
|
||||
cross_attention_dim: Optional[bool] = None,
|
||||
scan_needed: bool = False,
|
||||
) -> DiffusionPipeline:
|
||||
if not is_omegaconf_available():
|
||||
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
if from_safetensors:
|
||||
from safetensors import safe_open
|
||||
|
||||
|
@ -287,6 +287,14 @@ class ModelCache(object):
|
||||
if torch.device(source_device).type == torch.device(target_device).type:
|
||||
return
|
||||
|
||||
if target_device.type == "cuda":
|
||||
vram_device = (
|
||||
target_device if target_device.index is not None else torch.device(str(target_device), index=0)
|
||||
)
|
||||
free_mem, _ = torch.cuda.mem_get_info(torch.device(vram_device))
|
||||
if cache_entry.size > free_mem:
|
||||
raise torch.cuda.OutOfMemoryError
|
||||
|
||||
start_model_to_time = time.time()
|
||||
snapshot_before = self._capture_memory_snapshot()
|
||||
cache_entry.model.to(target_device)
|
||||
@ -356,6 +364,10 @@ class ModelCache(object):
|
||||
self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}")
|
||||
self.cache._print_cuda_stats()
|
||||
|
||||
except torch.cuda.OutOfMemoryError:
|
||||
self.cache.logger.warning("Out of GPU memory encountered.")
|
||||
self.cache_entry.unlock()
|
||||
raise
|
||||
except Exception:
|
||||
self.cache_entry.unlock()
|
||||
raise
|
||||
@ -524,7 +536,6 @@ class ModelCache(object):
|
||||
break
|
||||
if not cache_entry.locked and cache_entry.loaded:
|
||||
self._move_model_to_device(model_key, self.storage_device)
|
||||
|
||||
vram_in_use = torch.cuda.memory_allocated()
|
||||
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB")
|
||||
|
||||
|
@ -141,7 +141,7 @@ class StableDiffusionXLModel(DiffusersModel):
|
||||
version=base_model,
|
||||
model_config=config,
|
||||
output_path=output_path,
|
||||
use_safetensors=False, # corrupts sdxl models for some reason
|
||||
use_safetensors=True,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
|
@ -1,10 +1,11 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import List, Union
|
||||
from typing import Callable, List, Union
|
||||
|
||||
import torch.nn as nn
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
|
||||
|
||||
def _conv_forward_asymmetric(self, input, weight, bias):
|
||||
@ -26,70 +27,51 @@ def _conv_forward_asymmetric(self, input, weight, bias):
|
||||
|
||||
@contextmanager
|
||||
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
|
||||
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
|
||||
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
|
||||
try:
|
||||
to_restore = []
|
||||
|
||||
# Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence
|
||||
skipped_layers = 1
|
||||
for m_name, m in model.named_modules():
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if ".attentions." in m_name:
|
||||
if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
continue
|
||||
|
||||
if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name:
|
||||
# down_blocks.1.resnets.1.conv1
|
||||
_, block_num, _, resnet_num, submodule_name = m_name.split(".")
|
||||
block_num = int(block_num)
|
||||
resnet_num = int(resnet_num)
|
||||
|
||||
if block_num >= len(model.down_blocks) - skipped_layers:
|
||||
continue
|
||||
|
||||
if ".resnets." in m_name:
|
||||
if ".conv2" in m_name:
|
||||
continue
|
||||
if ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
"""
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if False and ".upsamplers." in m_name:
|
||||
# Skip the second resnet (could be configurable)
|
||||
if resnet_num > 0:
|
||||
continue
|
||||
|
||||
if False and ".downsamplers." in m_name:
|
||||
# Skip Conv2d layers (could be configurable)
|
||||
if submodule_name == "conv2":
|
||||
continue
|
||||
|
||||
if True and ".resnets." in m_name:
|
||||
if True and ".conv1" in m_name:
|
||||
if False and "down_blocks" in m_name:
|
||||
continue
|
||||
if False and "mid_block" in m_name:
|
||||
continue
|
||||
if False and "up_blocks" in m_name:
|
||||
continue
|
||||
m.asymmetric_padding_mode = {}
|
||||
m.asymmetric_padding = {}
|
||||
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["x"] = (
|
||||
m._reversed_padding_repeated_twice[0],
|
||||
m._reversed_padding_repeated_twice[1],
|
||||
0,
|
||||
0,
|
||||
)
|
||||
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["y"] = (
|
||||
0,
|
||||
0,
|
||||
m._reversed_padding_repeated_twice[2],
|
||||
m._reversed_padding_repeated_twice[3],
|
||||
)
|
||||
|
||||
if True and ".conv2" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".attentions." in m_name:
|
||||
continue
|
||||
|
||||
if False and m_name in ["conv_in", "conv_out"]:
|
||||
continue
|
||||
"""
|
||||
|
||||
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
m.asymmetric_padding_mode = {}
|
||||
m.asymmetric_padding = {}
|
||||
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["x"] = (
|
||||
m._reversed_padding_repeated_twice[0],
|
||||
m._reversed_padding_repeated_twice[1],
|
||||
0,
|
||||
0,
|
||||
)
|
||||
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["y"] = (
|
||||
0,
|
||||
0,
|
||||
m._reversed_padding_repeated_twice[2],
|
||||
m._reversed_padding_repeated_twice[3],
|
||||
)
|
||||
|
||||
to_restore.append((m, m._conv_forward))
|
||||
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
||||
to_restore.append((m, m._conv_forward))
|
||||
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
||||
|
||||
yield
|
||||
|
||||
|
177
invokeai/backend/model_manager/merge.py
Normal file
177
invokeai/backend/model_manager/merge.py
Normal file
@ -0,0 +1,177 @@
|
||||
"""
|
||||
invokeai.backend.model_manager.merge exports:
|
||||
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
|
||||
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
|
||||
|
||||
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Optional, Set
|
||||
|
||||
import torch
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from diffusers import logging as dlogging
|
||||
|
||||
from invokeai.app.services.model_install import ModelInstallServiceBase
|
||||
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
||||
|
||||
from . import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
)
|
||||
from .config import MainDiffusersConfig
|
||||
|
||||
|
||||
class MergeInterpolationMethod(str, Enum):
|
||||
WeightedSum = "weighted_sum"
|
||||
Sigmoid = "sigmoid"
|
||||
InvSigmoid = "inv_sigmoid"
|
||||
AddDifference = "add_difference"
|
||||
|
||||
|
||||
class ModelMerger(object):
|
||||
"""Wrapper class for model merge function."""
|
||||
|
||||
def __init__(self, installer: ModelInstallServiceBase):
|
||||
"""
|
||||
Initialize a ModelMerger object.
|
||||
|
||||
:param store: Underlying storage manager for the running process.
|
||||
:param config: InvokeAIAppConfig object (if not provided, default will be selected).
|
||||
"""
|
||||
self._installer = installer
|
||||
|
||||
def merge_diffusion_models(
|
||||
self,
|
||||
model_paths: List[Path],
|
||||
alpha: float = 0.5,
|
||||
interp: Optional[MergeInterpolationMethod] = None,
|
||||
force: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> Any: # pipe.merge is an untyped function.
|
||||
"""
|
||||
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
dlogging.set_verbosity_error()
|
||||
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
|
||||
|
||||
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
|
||||
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(
|
||||
model_paths[0],
|
||||
custom_pipeline="checkpoint_merger",
|
||||
torch_dtype=dtype,
|
||||
variant=variant,
|
||||
)
|
||||
merged_pipe = pipe.merge(
|
||||
pretrained_model_name_or_path_list=model_paths,
|
||||
alpha=alpha,
|
||||
interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
|
||||
force=force,
|
||||
torch_dtype=dtype,
|
||||
variant=variant,
|
||||
**kwargs,
|
||||
)
|
||||
dlogging.set_verbosity(verbosity)
|
||||
return merged_pipe
|
||||
|
||||
def merge_diffusion_models_and_save(
|
||||
self,
|
||||
model_keys: List[str],
|
||||
merged_model_name: str,
|
||||
alpha: float = 0.5,
|
||||
force: bool = False,
|
||||
interp: Optional[MergeInterpolationMethod] = None,
|
||||
merge_dest_directory: Optional[Path] = None,
|
||||
variant: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
:param models: up to three models, designated by their InvokeAI models.yaml model name
|
||||
:param merged_model_name: name for new model
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
model_paths: List[Path] = []
|
||||
model_names: List[str] = []
|
||||
config = self._installer.app_config
|
||||
store = self._installer.record_store
|
||||
base_models: Set[BaseModelType] = set()
|
||||
vae = None
|
||||
variant = None if self._installer.app_config.full_precision else "fp16"
|
||||
|
||||
assert (
|
||||
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
|
||||
), "When merging three models, only the 'add_difference' merge method is supported"
|
||||
|
||||
for key in model_keys:
|
||||
info = store.get_model(key)
|
||||
model_names.append(info.name)
|
||||
assert isinstance(
|
||||
info, MainDiffusersConfig
|
||||
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
|
||||
assert info.variant == ModelVariantType(
|
||||
"normal"
|
||||
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
|
||||
|
||||
# pick up the first model's vae
|
||||
if key == model_keys[0]:
|
||||
vae = info.vae
|
||||
|
||||
# tally base models used
|
||||
base_models.add(info.base)
|
||||
model_paths.extend([config.models_path / info.path])
|
||||
|
||||
assert len(base_models) == 1, f"All models to merge must have same base model, but found bases {base_models}"
|
||||
base_model = base_models.pop()
|
||||
|
||||
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
|
||||
merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, variant=variant, **kwargs)
|
||||
dump_path = (
|
||||
Path(merge_dest_directory)
|
||||
if merge_dest_directory
|
||||
else config.models_path / base_model.value / ModelType.Main.value
|
||||
)
|
||||
dump_path.mkdir(parents=True, exist_ok=True)
|
||||
dump_path = dump_path / merged_model_name
|
||||
|
||||
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
|
||||
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
|
||||
|
||||
# register model and get its unique key
|
||||
key = self._installer.register_path(dump_path)
|
||||
|
||||
# update model's config
|
||||
model_config = self._installer.record_store.get_model(key)
|
||||
model_config.update(
|
||||
{
|
||||
"name": merged_model_name,
|
||||
"description": f"Merge of models {', '.join(model_names)}",
|
||||
"vae": vae,
|
||||
}
|
||||
)
|
||||
self._installer.record_store.update_model(key, model_config)
|
||||
return model_config
|
@ -170,6 +170,8 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
|
||||
if model_id is None:
|
||||
version_url = CIVITAI_VERSION_ENDPOINT + str(version_id)
|
||||
version = self._requests.get(version_url).json()
|
||||
if error := version.get("error"):
|
||||
raise UnknownMetadataException(error)
|
||||
model_id = version["modelId"]
|
||||
|
||||
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
|
||||
|
@ -12,7 +12,7 @@ import psutil
|
||||
import torch
|
||||
from compel.cross_attention_control import Arguments
|
||||
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, SlicedAttnProcessor
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from torch import nn
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
@ -11,6 +11,7 @@ import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
@ -30,8 +31,6 @@ from diffusers.optimization import get_scheduler
|
||||
from diffusers.utils import check_min_version
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from huggingface_hub import HfFolder, Repository, whoami
|
||||
|
||||
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
||||
from packaging import version
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
@ -41,8 +40,8 @@ from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
# invokeai stuff
|
||||
from invokeai.app.services.config import InvokeAIAppConfig, PagingArgumentParser
|
||||
from invokeai.app.services.model_manager import ModelManagerService
|
||||
from invokeai.backend.model_management.models import SubModelType
|
||||
from invokeai.backend.install.install_helper import initialize_record_store
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelType
|
||||
|
||||
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
||||
PIL_INTERPOLATION = {
|
||||
@ -77,7 +76,7 @@ def save_progress(text_encoder, placeholder_token_id, accelerator, placeholder_t
|
||||
torch.save(learned_embeds_dict, save_path)
|
||||
|
||||
|
||||
def parse_args():
|
||||
def parse_args() -> Namespace:
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
parser = PagingArgumentParser(description="Textual inversion training")
|
||||
general_group = parser.add_argument_group("General")
|
||||
@ -444,7 +443,7 @@ class TextualInversionDataset(Dataset):
|
||||
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
|
||||
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self._length
|
||||
|
||||
def __getitem__(self, i):
|
||||
@ -509,11 +508,10 @@ def do_textual_inversion_training(
|
||||
initializer_token: str,
|
||||
save_steps: int = 500,
|
||||
only_save_embeds: bool = False,
|
||||
revision: str = None,
|
||||
tokenizer_name: str = None,
|
||||
tokenizer_name: Optional[str] = None,
|
||||
learnable_property: str = "object",
|
||||
repeats: int = 100,
|
||||
seed: int = None,
|
||||
seed: Optional[int] = None,
|
||||
resolution: int = 512,
|
||||
center_crop: bool = False,
|
||||
train_batch_size: int = 16,
|
||||
@ -530,18 +528,18 @@ def do_textual_inversion_training(
|
||||
adam_weight_decay: float = 1e-02,
|
||||
adam_epsilon: float = 1e-08,
|
||||
push_to_hub: bool = False,
|
||||
hub_token: str = None,
|
||||
hub_token: Optional[str] = None,
|
||||
logging_dir: Path = Path("logs"),
|
||||
mixed_precision: str = "fp16",
|
||||
allow_tf32: bool = False,
|
||||
report_to: str = "tensorboard",
|
||||
local_rank: int = -1,
|
||||
checkpointing_steps: int = 500,
|
||||
resume_from_checkpoint: Path = None,
|
||||
resume_from_checkpoint: Optional[Path] = None,
|
||||
enable_xformers_memory_efficient_attention: bool = False,
|
||||
hub_model_id: str = None,
|
||||
hub_model_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
) -> None:
|
||||
assert model, "Please specify a base model with --model"
|
||||
assert train_data_dir, "Please specify a directory containing the training images using --train_data_dir"
|
||||
assert placeholder_token, "Please specify a trigger term using --placeholder_token"
|
||||
@ -564,8 +562,6 @@ def do_textual_inversion_training(
|
||||
project_config=accelerator_config,
|
||||
)
|
||||
|
||||
model_manager = ModelManagerService(config, logger)
|
||||
|
||||
# Make one log on every process with the configuration for debugging.
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
@ -603,44 +599,37 @@ def do_textual_inversion_training(
|
||||
elif output_dir is not None:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
known_models = model_manager.model_names()
|
||||
model_name = model.split("/")[-1]
|
||||
model_meta = next((mm for mm in known_models if mm[0].endswith(model_name)), None)
|
||||
assert model_meta is not None, f"Unknown model: {model}"
|
||||
model_info = model_manager.model_info(*model_meta)
|
||||
assert model_info["model_format"] == "diffusers", "This script only works with models of type 'diffusers'"
|
||||
tokenizer_info = model_manager.get_model(*model_meta, submodel=SubModelType.Tokenizer)
|
||||
noise_scheduler_info = model_manager.get_model(*model_meta, submodel=SubModelType.Scheduler)
|
||||
text_encoder_info = model_manager.get_model(*model_meta, submodel=SubModelType.TextEncoder)
|
||||
vae_info = model_manager.get_model(*model_meta, submodel=SubModelType.Vae)
|
||||
unet_info = model_manager.get_model(*model_meta, submodel=SubModelType.UNet)
|
||||
model_records = initialize_record_store(config)
|
||||
base, type, name = model.split("/") # note frontend still returns old-style keys
|
||||
try:
|
||||
model_config = model_records.search_by_attr(
|
||||
model_name=name, model_type=ModelType(type), base_model=BaseModelType(base)
|
||||
)[0]
|
||||
except IndexError:
|
||||
raise Exception(f"Unknown model {model}")
|
||||
model_path = config.models_path / model_config.path
|
||||
|
||||
pipeline_args = {"local_files_only": True}
|
||||
if tokenizer_name:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_name, **pipeline_args)
|
||||
else:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_info.location, subfolder="tokenizer", **pipeline_args)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", **pipeline_args)
|
||||
|
||||
# Load scheduler and models
|
||||
noise_scheduler = DDPMScheduler.from_pretrained(
|
||||
noise_scheduler_info.location, subfolder="scheduler", **pipeline_args
|
||||
)
|
||||
noise_scheduler = DDPMScheduler.from_pretrained(model_path, subfolder="scheduler", **pipeline_args)
|
||||
text_encoder = CLIPTextModel.from_pretrained(
|
||||
text_encoder_info.location,
|
||||
model_path,
|
||||
subfolder="text_encoder",
|
||||
revision=revision,
|
||||
**pipeline_args,
|
||||
)
|
||||
vae = AutoencoderKL.from_pretrained(
|
||||
vae_info.location,
|
||||
model_path,
|
||||
subfolder="vae",
|
||||
revision=revision,
|
||||
**pipeline_args,
|
||||
)
|
||||
unet = UNet2DConditionModel.from_pretrained(
|
||||
unet_info.location,
|
||||
model_path,
|
||||
subfolder="unet",
|
||||
revision=revision,
|
||||
**pipeline_args,
|
||||
)
|
||||
|
||||
@ -728,7 +717,7 @@ def do_textual_inversion_training(
|
||||
max_train_steps = num_train_epochs * num_update_steps_per_epoch
|
||||
overrode_max_train_steps = True
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
scheduler = get_scheduler(
|
||||
lr_scheduler,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
|
||||
@ -737,7 +726,7 @@ def do_textual_inversion_training(
|
||||
|
||||
# Prepare everything with our `accelerator`.
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
text_encoder, optimizer, train_dataloader, scheduler
|
||||
)
|
||||
|
||||
# For mixed precision training we cast the unet and vae weights to half-precision
|
||||
@ -863,7 +852,7 @@ def do_textual_inversion_training(
|
||||
accelerator.backward(loss)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
# Let's make sure we don't update any embedding weights besides the newly added token
|
||||
@ -893,7 +882,7 @@ def do_textual_inversion_training(
|
||||
accelerator.save_state(save_path)
|
||||
logger.info(f"Saved state to {save_path}")
|
||||
|
||||
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
||||
logs = {"loss": loss.detach().item(), "lr": scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
@ -910,7 +899,7 @@ def do_textual_inversion_training(
|
||||
save_full_model = not only_save_embeds
|
||||
if save_full_model:
|
||||
pipeline = StableDiffusionPipeline.from_pretrained(
|
||||
unet_info.location,
|
||||
model_path,
|
||||
text_encoder=accelerator.unwrap_model(text_encoder),
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
|
@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import diffusers
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.loaders import FromOriginalControlnetMixin
|
||||
from diffusers.loaders import FromOriginalControlNetMixin
|
||||
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
||||
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
||||
from diffusers.models.embeddings import (
|
||||
@ -14,8 +14,13 @@ from diffusers.models.embeddings import (
|
||||
Timesteps,
|
||||
)
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2DCrossAttn, get_down_block
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.models.unets.unet_2d_blocks import (
|
||||
CrossAttnDownBlock2D,
|
||||
DownBlock2D,
|
||||
UNetMidBlock2DCrossAttn,
|
||||
get_down_block,
|
||||
)
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from torch import nn
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
@ -27,7 +32,7 @@ from invokeai.backend.util.logging import InvokeAILogger
|
||||
logger = InvokeAILogger.get_logger(__name__)
|
||||
|
||||
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
||||
"""
|
||||
A ControlNet model.
|
||||
|
||||
|
@ -286,7 +286,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
|
||||
open_mode = "wb"
|
||||
exist_size = 0
|
||||
|
||||
resp = requests.get(url, header, stream=True)
|
||||
resp = requests.get(url, headers=header, stream=True, allow_redirects=True)
|
||||
content_length = int(resp.headers.get("content-length", 0))
|
||||
|
||||
if dest.is_dir():
|
||||
|
157
invokeai/configs/INITIAL_MODELS2.yaml
Normal file
157
invokeai/configs/INITIAL_MODELS2.yaml
Normal file
@ -0,0 +1,157 @@
|
||||
# This file predefines a few models that the user may want to install.
|
||||
sd-1/main/stable-diffusion-v1-5:
|
||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||
source: runwayml/stable-diffusion-v1-5
|
||||
recommended: True
|
||||
default: True
|
||||
sd-1/main/stable-diffusion-v1-5-inpainting:
|
||||
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
|
||||
source: runwayml/stable-diffusion-inpainting
|
||||
recommended: True
|
||||
sd-2/main/stable-diffusion-2-1:
|
||||
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
|
||||
source: stabilityai/stable-diffusion-2-1
|
||||
recommended: False
|
||||
sd-2/main/stable-diffusion-2-inpainting:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
source: stabilityai/stable-diffusion-2-inpainting
|
||||
recommended: False
|
||||
sdxl/main/stable-diffusion-xl-base-1-0:
|
||||
description: Stable Diffusion XL base model (12 GB)
|
||||
source: stabilityai/stable-diffusion-xl-base-1.0
|
||||
recommended: True
|
||||
sdxl-refiner/main/stable-diffusion-xl-refiner-1-0:
|
||||
description: Stable Diffusion XL refiner model (12 GB)
|
||||
source: stabilityai/stable-diffusion-xl-refiner-1.0
|
||||
recommended: False
|
||||
sdxl/vae/sdxl-vae-fp16-fix:
|
||||
description: Version of the SDXL-1.0 VAE that works in half precision mode
|
||||
source: madebyollin/sdxl-vae-fp16-fix
|
||||
recommended: True
|
||||
sd-1/main/Analog-Diffusion:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
source: wavymulder/Analog-Diffusion
|
||||
recommended: False
|
||||
sd-1/main/Deliberate:
|
||||
description: Versatile model that produces detailed images up to 768px (4.27 GB)
|
||||
source: XpucT/Deliberate
|
||||
recommended: False
|
||||
sd-1/main/Dungeons-and-Diffusion:
|
||||
description: Dungeons & Dragons characters (2.13 GB)
|
||||
source: 0xJustin/Dungeons-and-Diffusion
|
||||
recommended: False
|
||||
sd-1/main/dreamlike-photoreal-2:
|
||||
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
|
||||
source: dreamlike-art/dreamlike-photoreal-2.0
|
||||
recommended: False
|
||||
sd-1/main/Inkpunk-Diffusion:
|
||||
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
|
||||
source: Envvi/Inkpunk-Diffusion
|
||||
recommended: False
|
||||
sd-1/main/openjourney:
|
||||
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
|
||||
source: prompthero/openjourney
|
||||
recommended: False
|
||||
sd-1/main/seek.art_MEGA:
|
||||
source: coreco/seek.art_MEGA
|
||||
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
|
||||
recommended: False
|
||||
sd-1/main/trinart_stable_diffusion_v2:
|
||||
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
|
||||
source: naclbit/trinart_stable_diffusion_v2
|
||||
recommended: False
|
||||
sd-1/controlnet/qrcode_monster:
|
||||
source: monster-labs/control_v1p_sd15_qrcode_monster
|
||||
subfolder: v2
|
||||
sd-1/controlnet/canny:
|
||||
source: lllyasviel/control_v11p_sd15_canny
|
||||
recommended: True
|
||||
sd-1/controlnet/inpaint:
|
||||
source: lllyasviel/control_v11p_sd15_inpaint
|
||||
sd-1/controlnet/mlsd:
|
||||
source: lllyasviel/control_v11p_sd15_mlsd
|
||||
sd-1/controlnet/depth:
|
||||
source: lllyasviel/control_v11f1p_sd15_depth
|
||||
recommended: True
|
||||
sd-1/controlnet/normal_bae:
|
||||
source: lllyasviel/control_v11p_sd15_normalbae
|
||||
sd-1/controlnet/seg:
|
||||
source: lllyasviel/control_v11p_sd15_seg
|
||||
sd-1/controlnet/lineart:
|
||||
source: lllyasviel/control_v11p_sd15_lineart
|
||||
recommended: True
|
||||
sd-1/controlnet/lineart_anime:
|
||||
source: lllyasviel/control_v11p_sd15s2_lineart_anime
|
||||
sd-1/controlnet/openpose:
|
||||
source: lllyasviel/control_v11p_sd15_openpose
|
||||
recommended: True
|
||||
sd-1/controlnet/scribble:
|
||||
source: lllyasviel/control_v11p_sd15_scribble
|
||||
recommended: False
|
||||
sd-1/controlnet/softedge:
|
||||
source: lllyasviel/control_v11p_sd15_softedge
|
||||
sd-1/controlnet/shuffle:
|
||||
source: lllyasviel/control_v11e_sd15_shuffle
|
||||
sd-1/controlnet/tile:
|
||||
source: lllyasviel/control_v11f1e_sd15_tile
|
||||
sd-1/controlnet/ip2p:
|
||||
source: lllyasviel/control_v11e_sd15_ip2p
|
||||
sd-1/t2i_adapter/canny-sd15:
|
||||
source: TencentARC/t2iadapter_canny_sd15v2
|
||||
sd-1/t2i_adapter/sketch-sd15:
|
||||
source: TencentARC/t2iadapter_sketch_sd15v2
|
||||
sd-1/t2i_adapter/depth-sd15:
|
||||
source: TencentARC/t2iadapter_depth_sd15v2
|
||||
sd-1/t2i_adapter/zoedepth-sd15:
|
||||
source: TencentARC/t2iadapter_zoedepth_sd15v1
|
||||
sdxl/t2i_adapter/canny-sdxl:
|
||||
source: TencentARC/t2i-adapter-canny-sdxl-1.0
|
||||
sdxl/t2i_adapter/zoedepth-sdxl:
|
||||
source: TencentARC/t2i-adapter-depth-zoe-sdxl-1.0
|
||||
sdxl/t2i_adapter/lineart-sdxl:
|
||||
source: TencentARC/t2i-adapter-lineart-sdxl-1.0
|
||||
sdxl/t2i_adapter/sketch-sdxl:
|
||||
source: TencentARC/t2i-adapter-sketch-sdxl-1.0
|
||||
sd-1/embedding/EasyNegative:
|
||||
source: https://huggingface.co/embed/EasyNegative/resolve/main/EasyNegative.safetensors
|
||||
recommended: True
|
||||
description: A textual inversion to use in the negative prompt to reduce bad anatomy
|
||||
sd-1/lora/FlatColor:
|
||||
source: https://civitai.com/models/6433/loraflatcolor
|
||||
recommended: True
|
||||
description: A LoRA that generates scenery using solid blocks of color
|
||||
sd-1/lora/Ink scenery:
|
||||
source: https://civitai.com/api/download/models/83390
|
||||
description: Generate india ink-like landscapes
|
||||
sd-1/ip_adapter/ip_adapter_sd15:
|
||||
source: InvokeAI/ip_adapter_sd15
|
||||
recommended: True
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: IP-Adapter for SD 1.5 models
|
||||
sd-1/ip_adapter/ip_adapter_plus_sd15:
|
||||
source: InvokeAI/ip_adapter_plus_sd15
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: Refined IP-Adapter for SD 1.5 models
|
||||
sd-1/ip_adapter/ip_adapter_plus_face_sd15:
|
||||
source: InvokeAI/ip_adapter_plus_face_sd15
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: Refined IP-Adapter for SD 1.5 models, adapted for faces
|
||||
sdxl/ip_adapter/ip_adapter_sdxl:
|
||||
source: InvokeAI/ip_adapter_sdxl
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sdxl_image_encoder
|
||||
description: IP-Adapter for SDXL models
|
||||
any/clip_vision/ip_adapter_sd_image_encoder:
|
||||
source: InvokeAI/ip_adapter_sd_image_encoder
|
||||
recommended: False
|
||||
description: Required model for using IP-Adapters with SD-1/2 models
|
||||
any/clip_vision/ip_adapter_sdxl_image_encoder:
|
||||
source: InvokeAI/ip_adapter_sdxl_image_encoder
|
||||
recommended: False
|
||||
description: Required model for using IP-Adapters with SDXL models
|
@ -2,3 +2,5 @@
|
||||
Wrapper for invokeai.backend.configure.invokeai_configure
|
||||
"""
|
||||
from ...backend.install.invokeai_configure import main as invokeai_configure # noqa: F401
|
||||
|
||||
__all__ = ["invokeai_configure"]
|
||||
|
@ -5,14 +5,14 @@ pip install <path_to_git_source>.
|
||||
import os
|
||||
import platform
|
||||
from distutils.version import LooseVersion
|
||||
from importlib.metadata import PackageNotFoundError, distribution, distributions
|
||||
|
||||
import pkg_resources
|
||||
import psutil
|
||||
import requests
|
||||
from rich import box, print
|
||||
from rich.console import Console, group
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
from rich.prompt import Confirm, Prompt
|
||||
from rich.style import Style
|
||||
|
||||
from invokeai.version import __version__
|
||||
@ -61,6 +61,65 @@ def get_pypi_versions():
|
||||
return latest_version, latest_release_candidate, versions
|
||||
|
||||
|
||||
def get_torch_extra_index_url() -> str | None:
|
||||
"""
|
||||
Determine torch wheel source URL and optional modules based on the user's OS.
|
||||
"""
|
||||
|
||||
resolved_url = None
|
||||
|
||||
# In all other cases (like MacOS (MPS) or Linux+CUDA), there is no need to specify the extra index URL.
|
||||
torch_package_urls = {
|
||||
"windows_cuda": "https://download.pytorch.org/whl/cu121",
|
||||
"linux_rocm": "https://download.pytorch.org/whl/rocm5.6",
|
||||
"linux_cpu": "https://download.pytorch.org/whl/cpu",
|
||||
}
|
||||
|
||||
nvidia_packages_present = (
|
||||
len([d.metadata["Name"] for d in distributions() if d.metadata["Name"].startswith("nvidia")]) > 0
|
||||
)
|
||||
device = "cuda" if nvidia_packages_present else None
|
||||
manual_gpu_selection_prompt = (
|
||||
"[bold]We tried and failed to guess your GPU capabilities[/] :thinking_face:. Please select the GPU type:"
|
||||
)
|
||||
|
||||
if OS == "Linux":
|
||||
if not device:
|
||||
# do we even need to offer a CPU-only install option?
|
||||
print(manual_gpu_selection_prompt)
|
||||
print("1: NVIDIA (CUDA)")
|
||||
print("2: AMD (ROCm)")
|
||||
print("3: No GPU - CPU only")
|
||||
answer = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
|
||||
match answer:
|
||||
case "1":
|
||||
device = "cuda"
|
||||
case "2":
|
||||
device = "rocm"
|
||||
case "3":
|
||||
device = "cpu"
|
||||
|
||||
if device != "cuda":
|
||||
resolved_url = torch_package_urls[f"linux_{device}"]
|
||||
|
||||
if OS == "Windows":
|
||||
if not device:
|
||||
print(manual_gpu_selection_prompt)
|
||||
print("1: NVIDIA (CUDA)")
|
||||
print("2: No GPU - CPU only")
|
||||
answer = Prompt.ask("Your choice:", choices=["1", "2"], default="1")
|
||||
match answer:
|
||||
case "1":
|
||||
device = "cuda"
|
||||
case "2":
|
||||
device = "cpu"
|
||||
|
||||
if device == "cuda":
|
||||
resolved_url = torch_package_urls[f"windows_{device}"]
|
||||
|
||||
return resolved_url
|
||||
|
||||
|
||||
def welcome(latest_release: str, latest_prerelease: str):
|
||||
@group()
|
||||
def text():
|
||||
@ -89,12 +148,11 @@ def welcome(latest_release: str, latest_prerelease: str):
|
||||
|
||||
|
||||
def get_extras():
|
||||
extras = ""
|
||||
try:
|
||||
_ = pkg_resources.get_distribution("xformers")
|
||||
distribution("xformers")
|
||||
extras = "[xformers]"
|
||||
except pkg_resources.DistributionNotFound:
|
||||
pass
|
||||
except PackageNotFoundError:
|
||||
extras = ""
|
||||
return extras
|
||||
|
||||
|
||||
@ -125,8 +183,22 @@ def main():
|
||||
|
||||
extras = get_extras()
|
||||
|
||||
console.line()
|
||||
force_reinstall = Confirm.ask(
|
||||
"[bold]Force reinstallation of all dependencies?[/] This [i]may[/] help fix a broken upgrade, but is usually not necessary.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
console.line()
|
||||
flags = []
|
||||
if (index_url := get_torch_extra_index_url()) is not None:
|
||||
flags.append(f"--extra-index-url {index_url}")
|
||||
if force_reinstall:
|
||||
flags.append("--force-reinstall")
|
||||
flags = " ".join(flags)
|
||||
|
||||
print(f":crossed_fingers: Upgrading to [yellow]{release}[/yellow]")
|
||||
cmd = f'pip install "invokeai{extras}=={release}" --use-pep517 --upgrade'
|
||||
cmd = f'pip install "invokeai{extras}=={release}" --use-pep517 --upgrade {flags}'
|
||||
|
||||
print("")
|
||||
print("")
|
||||
|
645
invokeai/frontend/install/model_install2.py
Normal file
645
invokeai/frontend/install/model_install2.py
Normal file
@ -0,0 +1,645 @@
|
||||
#!/usr/bin/env python
|
||||
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
||||
# Before running stable-diffusion on an internet-isolated machine,
|
||||
# run this script from one with internet connectivity. The
|
||||
# two machines must share a common .cache directory.
|
||||
|
||||
"""
|
||||
This is the npyscreen frontend to the model installation application.
|
||||
It is currently named model_install2.py, but will ultimately replace model_install.py.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import curses
|
||||
import sys
|
||||
import traceback
|
||||
import warnings
|
||||
from argparse import Namespace
|
||||
from shutil import get_terminal_size
|
||||
from typing import Any, Dict, List, Optional, Set
|
||||
|
||||
import npyscreen
|
||||
import torch
|
||||
from npyscreen import widget
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_install import ModelInstallService
|
||||
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections, UnifiedModelInfo
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.util import choose_precision, choose_torch_device
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.frontend.install.widgets import (
|
||||
MIN_COLS,
|
||||
MIN_LINES,
|
||||
CenteredTitleText,
|
||||
CyclingForm,
|
||||
MultiSelectColumns,
|
||||
SingleSelectColumns,
|
||||
TextBox,
|
||||
WindowTooSmallException,
|
||||
set_min_terminal_size,
|
||||
)
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning) # noqa: E402
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
logger = InvokeAILogger.get_logger("ModelInstallService")
|
||||
logger.setLevel("WARNING")
|
||||
# logger.setLevel('DEBUG')
|
||||
|
||||
# build a table mapping all non-printable characters to None
|
||||
# for stripping control characters
|
||||
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
|
||||
NOPRINT_TRANS_TABLE = {i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()}
|
||||
|
||||
# maximum number of installed models we can display before overflowing vertically
|
||||
MAX_OTHER_MODELS = 72
|
||||
|
||||
|
||||
def make_printable(s: str) -> str:
|
||||
"""Replace non-printable characters in a string."""
|
||||
return s.translate(NOPRINT_TRANS_TABLE)
|
||||
|
||||
|
||||
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
"""Main form for interactive TUI."""
|
||||
|
||||
# for responsive resizing set to False, but this seems to cause a crash!
|
||||
FIX_MINIMUM_SIZE_WHEN_CREATED = True
|
||||
|
||||
# for persistence
|
||||
current_tab = 0
|
||||
|
||||
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, multipage: bool = False, **keywords: Any):
|
||||
self.multipage = multipage
|
||||
self.subprocess = None
|
||||
super().__init__(parentApp=parentApp, name=name, **keywords)
|
||||
|
||||
def create(self) -> None:
|
||||
self.installer = self.parentApp.install_helper.installer
|
||||
self.model_labels = self._get_model_labels()
|
||||
self.keypress_timeout = 10
|
||||
self.counter = 0
|
||||
self.subprocess_connection = None
|
||||
|
||||
window_width, window_height = get_terminal_size()
|
||||
|
||||
# npyscreen has no typing hints
|
||||
self.nextrely -= 1 # type: ignore
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields. Cursor keys navigate, and <space> selects.",
|
||||
editable=False,
|
||||
color="CAUTION",
|
||||
)
|
||||
self.nextrely += 1 # type: ignore
|
||||
self.tabs = self.add_widget_intelligent(
|
||||
SingleSelectColumns,
|
||||
values=[
|
||||
"STARTERS",
|
||||
"MAINS",
|
||||
"CONTROLNETS",
|
||||
"T2I-ADAPTERS",
|
||||
"IP-ADAPTERS",
|
||||
"LORAS",
|
||||
"TI EMBEDDINGS",
|
||||
],
|
||||
value=[self.current_tab],
|
||||
columns=7,
|
||||
max_height=2,
|
||||
relx=8,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.tabs.on_changed = self._toggle_tables
|
||||
|
||||
top_of_table = self.nextrely # type: ignore
|
||||
self.starter_pipelines = self.add_starter_pipelines()
|
||||
bottom_of_table = self.nextrely # type: ignore
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.pipeline_models = self.add_pipeline_widgets(
|
||||
model_type=ModelType.Main, window_width=window_width, exclude=self.starter_models
|
||||
)
|
||||
# self.pipeline_models['autoload_pending'] = True
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.controlnet_models = self.add_model_widgets(
|
||||
model_type=ModelType.ControlNet,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.t2i_models = self.add_model_widgets(
|
||||
model_type=ModelType.T2IAdapter,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
self.nextrely = top_of_table
|
||||
self.ipadapter_models = self.add_model_widgets(
|
||||
model_type=ModelType.IPAdapter,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.lora_models = self.add_model_widgets(
|
||||
model_type=ModelType.Lora,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.ti_models = self.add_model_widgets(
|
||||
model_type=ModelType.TextualInversion,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = bottom_of_table + 1
|
||||
|
||||
self.nextrely += 1
|
||||
back_label = "BACK"
|
||||
cancel_label = "CANCEL"
|
||||
current_position = self.nextrely
|
||||
if self.multipage:
|
||||
self.back_button = self.add_widget_intelligent(
|
||||
npyscreen.ButtonPress,
|
||||
name=back_label,
|
||||
when_pressed_function=self.on_back,
|
||||
)
|
||||
else:
|
||||
self.nextrely = current_position
|
||||
self.cancel_button = self.add_widget_intelligent(
|
||||
npyscreen.ButtonPress, name=cancel_label, when_pressed_function=self.on_cancel
|
||||
)
|
||||
self.nextrely = current_position
|
||||
|
||||
label = "APPLY CHANGES"
|
||||
self.nextrely = current_position
|
||||
self.done = self.add_widget_intelligent(
|
||||
npyscreen.ButtonPress,
|
||||
name=label,
|
||||
relx=window_width - len(label) - 15,
|
||||
when_pressed_function=self.on_done,
|
||||
)
|
||||
|
||||
# This restores the selected page on return from an installation
|
||||
for _i in range(1, self.current_tab + 1):
|
||||
self.tabs.h_cursor_line_down(1)
|
||||
self._toggle_tables([self.current_tab])
|
||||
|
||||
############# diffusers tab ##########
|
||||
def add_starter_pipelines(self) -> dict[str, npyscreen.widget]:
|
||||
"""Add widgets responsible for selecting diffusers models"""
|
||||
widgets: Dict[str, npyscreen.widget] = {}
|
||||
|
||||
all_models = self.all_models # master dict of all models, indexed by key
|
||||
model_list = [x for x in self.starter_models if all_models[x].type in ["main", "vae"]]
|
||||
model_labels = [self.model_labels[x] for x in model_list]
|
||||
|
||||
widgets.update(
|
||||
label1=self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name="Select from a starter set of Stable Diffusion models from HuggingFace and Civitae.",
|
||||
editable=False,
|
||||
labelColor="CAUTION",
|
||||
)
|
||||
)
|
||||
|
||||
self.nextrely -= 1
|
||||
# if user has already installed some initial models, then don't patronize them
|
||||
# by showing more recommendations
|
||||
show_recommended = len(self.installed_models) == 0
|
||||
|
||||
checked = [
|
||||
model_list.index(x)
|
||||
for x in model_list
|
||||
if (show_recommended and all_models[x].recommended) or all_models[x].installed
|
||||
]
|
||||
widgets.update(
|
||||
models_selected=self.add_widget_intelligent(
|
||||
MultiSelectColumns,
|
||||
columns=1,
|
||||
name="Install Starter Models",
|
||||
values=model_labels,
|
||||
value=checked,
|
||||
max_height=len(model_list) + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
),
|
||||
models=model_list,
|
||||
)
|
||||
|
||||
self.nextrely += 1
|
||||
return widgets
|
||||
|
||||
############# Add a set of model install widgets ########
|
||||
def add_model_widgets(
|
||||
self,
|
||||
model_type: ModelType,
|
||||
window_width: int = 120,
|
||||
install_prompt: Optional[str] = None,
|
||||
exclude: Optional[Set[str]] = None,
|
||||
) -> dict[str, npyscreen.widget]:
|
||||
"""Generic code to create model selection widgets"""
|
||||
if exclude is None:
|
||||
exclude = set()
|
||||
widgets: Dict[str, npyscreen.widget] = {}
|
||||
all_models = self.all_models
|
||||
model_list = sorted(
|
||||
[x for x in all_models if all_models[x].type == model_type and x not in exclude],
|
||||
key=lambda x: all_models[x].name or "",
|
||||
)
|
||||
model_labels = [self.model_labels[x] for x in model_list]
|
||||
|
||||
show_recommended = len(self.installed_models) == 0
|
||||
truncated = False
|
||||
if len(model_list) > 0:
|
||||
max_width = max([len(x) for x in model_labels])
|
||||
columns = window_width // (max_width + 8) # 8 characters for "[x] " and padding
|
||||
columns = min(len(model_list), columns) or 1
|
||||
prompt = (
|
||||
install_prompt
|
||||
or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk."
|
||||
)
|
||||
|
||||
widgets.update(
|
||||
label1=self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name=prompt,
|
||||
editable=False,
|
||||
labelColor="CAUTION",
|
||||
)
|
||||
)
|
||||
|
||||
if len(model_labels) > MAX_OTHER_MODELS:
|
||||
model_labels = model_labels[0:MAX_OTHER_MODELS]
|
||||
truncated = True
|
||||
|
||||
widgets.update(
|
||||
models_selected=self.add_widget_intelligent(
|
||||
MultiSelectColumns,
|
||||
columns=columns,
|
||||
name=f"Install {model_type} Models",
|
||||
values=model_labels,
|
||||
value=[
|
||||
model_list.index(x)
|
||||
for x in model_list
|
||||
if (show_recommended and all_models[x].recommended) or all_models[x].installed
|
||||
],
|
||||
max_height=len(model_list) // columns + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
),
|
||||
models=model_list,
|
||||
)
|
||||
|
||||
if truncated:
|
||||
widgets.update(
|
||||
warning_message=self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value=f"Too many models to display (max={MAX_OTHER_MODELS}). Some are not displayed.",
|
||||
editable=False,
|
||||
color="CAUTION",
|
||||
)
|
||||
)
|
||||
|
||||
self.nextrely += 1
|
||||
widgets.update(
|
||||
download_ids=self.add_widget_intelligent(
|
||||
TextBox,
|
||||
name="Additional URLs, or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
|
||||
max_height=6,
|
||||
scroll_exit=True,
|
||||
editable=True,
|
||||
)
|
||||
)
|
||||
return widgets
|
||||
|
||||
### Tab for arbitrary diffusers widgets ###
|
||||
def add_pipeline_widgets(
|
||||
self,
|
||||
model_type: ModelType = ModelType.Main,
|
||||
window_width: int = 120,
|
||||
**kwargs,
|
||||
) -> dict[str, npyscreen.widget]:
|
||||
"""Similar to add_model_widgets() but adds some additional widgets at the bottom
|
||||
to support the autoload directory"""
|
||||
widgets = self.add_model_widgets(
|
||||
model_type=model_type,
|
||||
window_width=window_width,
|
||||
install_prompt=f"Installed {model_type.value.title()} models. Unchecked models in the InvokeAI root directory will be deleted. Enter URLs, paths or repo_ids to import.",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return widgets
|
||||
|
||||
def resize(self) -> None:
|
||||
super().resize()
|
||||
if s := self.starter_pipelines.get("models_selected"):
|
||||
if model_list := self.starter_pipelines.get("models"):
|
||||
s.values = [self.model_labels[x] for x in model_list]
|
||||
|
||||
def _toggle_tables(self, value: List[int]) -> None:
|
||||
selected_tab = value[0]
|
||||
widgets = [
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
self.controlnet_models,
|
||||
self.t2i_models,
|
||||
self.ipadapter_models,
|
||||
self.lora_models,
|
||||
self.ti_models,
|
||||
]
|
||||
|
||||
for group in widgets:
|
||||
for _k, v in group.items():
|
||||
try:
|
||||
v.hidden = True
|
||||
v.editable = False
|
||||
except Exception:
|
||||
pass
|
||||
for _k, v in widgets[selected_tab].items():
|
||||
try:
|
||||
v.hidden = False
|
||||
if not isinstance(v, (npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
|
||||
v.editable = True
|
||||
except Exception:
|
||||
pass
|
||||
self.__class__.current_tab = selected_tab # for persistence
|
||||
self.display()
|
||||
|
||||
def _get_model_labels(self) -> dict[str, str]:
|
||||
"""Return a list of trimmed labels for all models."""
|
||||
window_width, window_height = get_terminal_size()
|
||||
checkbox_width = 4
|
||||
spacing_width = 2
|
||||
result = {}
|
||||
|
||||
models = self.all_models
|
||||
label_width = max([len(models[x].name or "") for x in self.starter_models])
|
||||
description_width = window_width - label_width - checkbox_width - spacing_width
|
||||
|
||||
for key in self.all_models:
|
||||
description = models[key].description
|
||||
description = (
|
||||
description[0 : description_width - 3] + "..."
|
||||
if description and len(description) > description_width
|
||||
else description
|
||||
if description
|
||||
else ""
|
||||
)
|
||||
result[key] = f"%-{label_width}s %s" % (models[key].name, description)
|
||||
|
||||
return result
|
||||
|
||||
def _get_columns(self) -> int:
|
||||
window_width, window_height = get_terminal_size()
|
||||
cols = 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1
|
||||
return min(cols, len(self.installed_models))
|
||||
|
||||
def confirm_deletions(self, selections: InstallSelections) -> bool:
|
||||
remove_models = selections.remove_models
|
||||
if remove_models:
|
||||
model_names = [self.all_models[x].name or "" for x in remove_models]
|
||||
mods = "\n".join(model_names)
|
||||
is_ok = npyscreen.notify_ok_cancel(
|
||||
f"These unchecked models will be deleted from disk. Continue?\n---------\n{mods}"
|
||||
)
|
||||
assert isinstance(is_ok, bool) # npyscreen doesn't have return type annotations
|
||||
return is_ok
|
||||
else:
|
||||
return True
|
||||
|
||||
@property
|
||||
def all_models(self) -> Dict[str, UnifiedModelInfo]:
|
||||
# npyscreen doesn't having typing hints
|
||||
return self.parentApp.install_helper.all_models # type: ignore
|
||||
|
||||
@property
|
||||
def starter_models(self) -> List[str]:
|
||||
return self.parentApp.install_helper._starter_models # type: ignore
|
||||
|
||||
@property
|
||||
def installed_models(self) -> List[str]:
|
||||
return self.parentApp.install_helper._installed_models # type: ignore
|
||||
|
||||
def on_back(self) -> None:
|
||||
self.parentApp.switchFormPrevious()
|
||||
self.editing = False
|
||||
|
||||
def on_cancel(self) -> None:
|
||||
self.parentApp.setNextForm(None)
|
||||
self.parentApp.user_cancelled = True
|
||||
self.editing = False
|
||||
|
||||
def on_done(self) -> None:
|
||||
self.marshall_arguments()
|
||||
if not self.confirm_deletions(self.parentApp.install_selections):
|
||||
return
|
||||
self.parentApp.setNextForm(None)
|
||||
self.parentApp.user_cancelled = False
|
||||
self.editing = False
|
||||
|
||||
def marshall_arguments(self) -> None:
|
||||
"""
|
||||
Assemble arguments and store as attributes of the application:
|
||||
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
|
||||
True => Install
|
||||
False => Remove
|
||||
.scan_directory: Path to a directory of models to scan and import
|
||||
.autoscan_on_startup: True if invokeai should scan and import at startup time
|
||||
.import_model_paths: list of URLs, repo_ids and file paths to import
|
||||
"""
|
||||
selections = self.parentApp.install_selections
|
||||
all_models = self.all_models
|
||||
|
||||
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
|
||||
ui_sections = [
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
self.controlnet_models,
|
||||
self.t2i_models,
|
||||
self.ipadapter_models,
|
||||
self.lora_models,
|
||||
self.ti_models,
|
||||
]
|
||||
for section in ui_sections:
|
||||
if "models_selected" not in section:
|
||||
continue
|
||||
selected = {section["models"][x] for x in section["models_selected"].value}
|
||||
models_to_install = [x for x in selected if not self.all_models[x].installed]
|
||||
models_to_remove = [x for x in section["models"] if x not in selected and self.all_models[x].installed]
|
||||
selections.remove_models.extend(models_to_remove)
|
||||
selections.install_models.extend([all_models[x] for x in models_to_install])
|
||||
|
||||
# models located in the 'download_ids" section
|
||||
for section in ui_sections:
|
||||
if downloads := section.get("download_ids"):
|
||||
models = [UnifiedModelInfo(source=x) for x in downloads.value.split()]
|
||||
selections.install_models.extend(models)
|
||||
|
||||
|
||||
class AddModelApplication(npyscreen.NPSAppManaged): # type: ignore
|
||||
def __init__(self, opt: Namespace, install_helper: InstallHelper):
|
||||
super().__init__()
|
||||
self.program_opts = opt
|
||||
self.user_cancelled = False
|
||||
self.install_selections = InstallSelections()
|
||||
self.install_helper = install_helper
|
||||
|
||||
def onStart(self) -> None:
|
||||
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
||||
self.main_form = self.addForm(
|
||||
"MAIN",
|
||||
addModelsForm,
|
||||
name="Install Stable Diffusion Models",
|
||||
cycle_widgets=False,
|
||||
)
|
||||
|
||||
|
||||
def list_models(installer: ModelInstallService, model_type: ModelType):
|
||||
"""Print out all models of type model_type."""
|
||||
models = installer.record_store.search_by_attr(model_type=model_type)
|
||||
print(f"Installed models of type `{model_type}`:")
|
||||
for model in models:
|
||||
path = (config.models_path / model.path).resolve()
|
||||
print(f"{model.name:40}{model.base.value:14}{path}")
|
||||
|
||||
|
||||
# --------------------------------------------------------
|
||||
def select_and_download_models(opt: Namespace) -> None:
|
||||
"""Prompt user for install/delete selections and execute."""
|
||||
precision = "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device()))
|
||||
# unsure how to avoid a typing complaint in the next line: config.precision is an enumerated Literal
|
||||
config.precision = precision # type: ignore
|
||||
install_helper = InstallHelper(config, logger)
|
||||
installer = install_helper.installer
|
||||
|
||||
if opt.list_models:
|
||||
list_models(installer, opt.list_models)
|
||||
|
||||
elif opt.add or opt.delete:
|
||||
selections = InstallSelections(
|
||||
install_models=[UnifiedModelInfo(source=x) for x in (opt.add or [])], remove_models=opt.delete or []
|
||||
)
|
||||
install_helper.add_or_delete(selections)
|
||||
|
||||
elif opt.default_only:
|
||||
selections = InstallSelections(install_models=[install_helper.default_model()])
|
||||
install_helper.add_or_delete(selections)
|
||||
|
||||
elif opt.yes_to_all:
|
||||
selections = InstallSelections(install_models=install_helper.recommended_models())
|
||||
install_helper.add_or_delete(selections)
|
||||
|
||||
# this is where the TUI is called
|
||||
else:
|
||||
if not set_min_terminal_size(MIN_COLS, MIN_LINES):
|
||||
raise WindowTooSmallException(
|
||||
"Could not increase terminal size. Try running again with a larger window or smaller font size."
|
||||
)
|
||||
|
||||
installApp = AddModelApplication(opt, install_helper)
|
||||
try:
|
||||
installApp.run()
|
||||
except KeyboardInterrupt:
|
||||
print("Aborted...")
|
||||
sys.exit(-1)
|
||||
|
||||
install_helper.add_or_delete(installApp.install_selections)
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
||||
parser.add_argument(
|
||||
"--add",
|
||||
nargs="*",
|
||||
help="List of URLs, local paths or repo_ids of models to install",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--delete",
|
||||
nargs="*",
|
||||
help="List of names of models to delete. Use type:name to disambiguate, as in `controlnet:my_model`",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--full-precision",
|
||||
dest="full_precision",
|
||||
action=argparse.BooleanOptionalAction,
|
||||
type=bool,
|
||||
default=False,
|
||||
help="use 32-bit weights instead of faster 16-bit weights",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--yes",
|
||||
"-y",
|
||||
dest="yes_to_all",
|
||||
action="store_true",
|
||||
help='answer "yes" to all prompts',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--default_only",
|
||||
action="store_true",
|
||||
help="Only install the default model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--list-models",
|
||||
choices=[x.value for x in ModelType],
|
||||
help="list installed models",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--root_dir",
|
||||
dest="root",
|
||||
type=str,
|
||||
default=None,
|
||||
help="path to root of install directory",
|
||||
)
|
||||
opt = parser.parse_args()
|
||||
|
||||
invoke_args = []
|
||||
if opt.root:
|
||||
invoke_args.extend(["--root", opt.root])
|
||||
if opt.full_precision:
|
||||
invoke_args.extend(["--precision", "float32"])
|
||||
config.parse_args(invoke_args)
|
||||
logger = InvokeAILogger().get_logger(config=config)
|
||||
|
||||
if not config.model_conf_path.exists():
|
||||
logger.info("Your InvokeAI root directory is not set up. Calling invokeai-configure.")
|
||||
from invokeai.frontend.install.invokeai_configure import invokeai_configure
|
||||
|
||||
invokeai_configure()
|
||||
sys.exit(0)
|
||||
|
||||
try:
|
||||
select_and_download_models(opt)
|
||||
except AssertionError as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
curses.nocbreak()
|
||||
curses.echo()
|
||||
curses.endwin()
|
||||
logger.info("Goodbye! Come back soon.")
|
||||
except WindowTooSmallException as e:
|
||||
logger.error(str(e))
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("Insufficient vertical space for the interface. Please make your window taller and try again")
|
||||
input("Press any key to continue...")
|
||||
except Exception as e:
|
||||
if str(e).startswith("addwstr"):
|
||||
logger.error(
|
||||
"Insufficient horizontal space for the interface. Please make your window wider and try again."
|
||||
)
|
||||
else:
|
||||
print(f"An exception has occurred: {str(e)} Details:")
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
input("Press any key to continue...")
|
||||
|
||||
|
||||
# -------------------------------------
|
||||
if __name__ == "__main__":
|
||||
main()
|
438
invokeai/frontend/merge/merge_diffusers2.py
Normal file
438
invokeai/frontend/merge/merge_diffusers2.py
Normal file
@ -0,0 +1,438 @@
|
||||
"""
|
||||
invokeai.frontend.merge exports a single function called merge_diffusion_models().
|
||||
|
||||
It merges 2-3 models together and create a new InvokeAI-registered diffusion model.
|
||||
|
||||
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
import argparse
|
||||
import curses
|
||||
import re
|
||||
import sys
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import npyscreen
|
||||
from npyscreen import widget
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_install import ModelInstallServiceBase
|
||||
from invokeai.app.services.model_records import ModelRecordServiceBase
|
||||
from invokeai.backend.install.install_helper import initialize_installer
|
||||
from invokeai.backend.model_manager import (
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
)
|
||||
from invokeai.backend.model_manager.merge import ModelMerger
|
||||
from invokeai.frontend.install.widgets import FloatTitleSlider, SingleSelectColumns, TextBox
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
|
||||
BASE_TYPES = [
|
||||
(BaseModelType.StableDiffusion1, "Models Built on SD-1.x"),
|
||||
(BaseModelType.StableDiffusion2, "Models Built on SD-2.x"),
|
||||
(BaseModelType.StableDiffusionXL, "Models Built on SDXL"),
|
||||
]
|
||||
|
||||
|
||||
def _parse_args() -> Namespace:
|
||||
parser = argparse.ArgumentParser(description="InvokeAI model merging")
|
||||
parser.add_argument(
|
||||
"--root_dir",
|
||||
type=Path,
|
||||
default=config.root,
|
||||
help="Path to the invokeai runtime directory",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--front_end",
|
||||
"--gui",
|
||||
dest="front_end",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Activate the text-based graphical front end for collecting parameters. Aside from --root_dir, other parameters will be ignored.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--models",
|
||||
dest="model_names",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="Two to three model names to be merged",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base_model",
|
||||
type=str,
|
||||
choices=[x[0].value for x in BASE_TYPES],
|
||||
help="The base model shared by the models to be merged",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--merged_model_name",
|
||||
"--destination",
|
||||
dest="merged_model_name",
|
||||
type=str,
|
||||
help="Name of the output model. If not specified, will be the concatenation of the input model names.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--alpha",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="The interpolation parameter, ranging from 0 to 1. It affects the ratio in which the checkpoints are merged. Higher values give more weight to the 2d and 3d models",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--interpolation",
|
||||
dest="interp",
|
||||
type=str,
|
||||
choices=["weighted_sum", "sigmoid", "inv_sigmoid", "add_difference"],
|
||||
default="weighted_sum",
|
||||
help='Interpolation method to use. If three models are present, only "add_difference" will work.',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force",
|
||||
action="store_true",
|
||||
help="Try to merge models even if they are incompatible with each other",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--clobber",
|
||||
"--overwrite",
|
||||
dest="clobber",
|
||||
action="store_true",
|
||||
help="Overwrite the merged model if --merged_model_name already exists",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
# ------------------------- GUI HERE -------------------------
|
||||
class mergeModelsForm(npyscreen.FormMultiPageAction):
|
||||
interpolations = ["weighted_sum", "sigmoid", "inv_sigmoid"]
|
||||
|
||||
def __init__(self, parentApp, name):
|
||||
self.parentApp = parentApp
|
||||
self.ALLOW_RESIZE = True
|
||||
self.FIX_MINIMUM_SIZE_WHEN_CREATED = False
|
||||
super().__init__(parentApp, name)
|
||||
|
||||
@property
|
||||
def model_record_store(self) -> ModelRecordServiceBase:
|
||||
installer: ModelInstallServiceBase = self.parentApp.installer
|
||||
return installer.record_store
|
||||
|
||||
def afterEditing(self) -> None:
|
||||
self.parentApp.setNextForm(None)
|
||||
|
||||
def create(self) -> None:
|
||||
window_height, window_width = curses.initscr().getmaxyx()
|
||||
self.current_base = 0
|
||||
self.models = self.get_models(BASE_TYPES[self.current_base][0])
|
||||
self.model_names = [x[1] for x in self.models]
|
||||
max_width = max([len(x) for x in self.model_names])
|
||||
max_width += 6
|
||||
horizontal_layout = max_width * 3 < window_width
|
||||
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
color="CONTROL",
|
||||
value="Select two models to merge and optionally a third.",
|
||||
editable=False,
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
color="CONTROL",
|
||||
value="Use up and down arrows to move, <space> to select an item, <tab> and <shift-tab> to move from one field to the next.",
|
||||
editable=False,
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.base_select = self.add_widget_intelligent(
|
||||
SingleSelectColumns,
|
||||
values=[x[1] for x in BASE_TYPES],
|
||||
value=[self.current_base],
|
||||
columns=4,
|
||||
max_height=2,
|
||||
relx=8,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.base_select.on_changed = self._populate_models
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="MODEL 1",
|
||||
color="GOOD",
|
||||
editable=False,
|
||||
rely=6 if horizontal_layout else None,
|
||||
)
|
||||
self.model1 = self.add_widget_intelligent(
|
||||
npyscreen.SelectOne,
|
||||
values=self.model_names,
|
||||
value=0,
|
||||
max_height=len(self.model_names),
|
||||
max_width=max_width,
|
||||
scroll_exit=True,
|
||||
rely=7,
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="MODEL 2",
|
||||
color="GOOD",
|
||||
editable=False,
|
||||
relx=max_width + 3 if horizontal_layout else None,
|
||||
rely=6 if horizontal_layout else None,
|
||||
)
|
||||
self.model2 = self.add_widget_intelligent(
|
||||
npyscreen.SelectOne,
|
||||
name="(2)",
|
||||
values=self.model_names,
|
||||
value=1,
|
||||
max_height=len(self.model_names),
|
||||
max_width=max_width,
|
||||
relx=max_width + 3 if horizontal_layout else None,
|
||||
rely=7 if horizontal_layout else None,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="MODEL 3",
|
||||
color="GOOD",
|
||||
editable=False,
|
||||
relx=max_width * 2 + 3 if horizontal_layout else None,
|
||||
rely=6 if horizontal_layout else None,
|
||||
)
|
||||
models_plus_none = self.model_names.copy()
|
||||
models_plus_none.insert(0, "None")
|
||||
self.model3 = self.add_widget_intelligent(
|
||||
npyscreen.SelectOne,
|
||||
name="(3)",
|
||||
values=models_plus_none,
|
||||
value=0,
|
||||
max_height=len(self.model_names) + 1,
|
||||
max_width=max_width,
|
||||
scroll_exit=True,
|
||||
relx=max_width * 2 + 3 if horizontal_layout else None,
|
||||
rely=7 if horizontal_layout else None,
|
||||
)
|
||||
for m in [self.model1, self.model2, self.model3]:
|
||||
m.when_value_edited = self.models_changed
|
||||
self.merged_model_name = self.add_widget_intelligent(
|
||||
TextBox,
|
||||
name="Name for merged model:",
|
||||
labelColor="CONTROL",
|
||||
max_height=3,
|
||||
value="",
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.force = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Force merge of models created by different diffusers library versions",
|
||||
labelColor="CONTROL",
|
||||
value=True,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.merge_method = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Merge Method:",
|
||||
values=self.interpolations,
|
||||
value=0,
|
||||
labelColor="CONTROL",
|
||||
max_height=len(self.interpolations) + 1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.alpha = self.add_widget_intelligent(
|
||||
FloatTitleSlider,
|
||||
name="Weight (alpha) to assign to second and third models:",
|
||||
out_of=1.0,
|
||||
step=0.01,
|
||||
lowest=0,
|
||||
value=0.5,
|
||||
labelColor="CONTROL",
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.model1.editing = True
|
||||
|
||||
def models_changed(self) -> None:
|
||||
models = self.model1.values
|
||||
selected_model1 = self.model1.value[0]
|
||||
selected_model2 = self.model2.value[0]
|
||||
selected_model3 = self.model3.value[0]
|
||||
merged_model_name = f"{models[selected_model1]}+{models[selected_model2]}"
|
||||
self.merged_model_name.value = merged_model_name
|
||||
|
||||
if selected_model3 > 0:
|
||||
self.merge_method.values = ["add_difference ( A+(B-C) )"]
|
||||
self.merged_model_name.value += f"+{models[selected_model3 -1]}" # In model3 there is one more element in the list (None). So we have to subtract one.
|
||||
else:
|
||||
self.merge_method.values = self.interpolations
|
||||
self.merge_method.value = 0
|
||||
|
||||
def on_ok(self) -> None:
|
||||
if self.validate_field_values() and self.check_for_overwrite():
|
||||
self.parentApp.setNextForm(None)
|
||||
self.editing = False
|
||||
self.parentApp.merge_arguments = self.marshall_arguments()
|
||||
npyscreen.notify("Starting the merge...")
|
||||
else:
|
||||
self.editing = True
|
||||
|
||||
def on_cancel(self) -> None:
|
||||
sys.exit(0)
|
||||
|
||||
def marshall_arguments(self) -> dict:
|
||||
model_keys = [x[0] for x in self.models]
|
||||
models = [
|
||||
model_keys[self.model1.value[0]],
|
||||
model_keys[self.model2.value[0]],
|
||||
]
|
||||
if self.model3.value[0] > 0:
|
||||
models.append(model_keys[self.model3.value[0] - 1])
|
||||
interp = "add_difference"
|
||||
else:
|
||||
interp = self.interpolations[self.merge_method.value[0]]
|
||||
|
||||
args = {
|
||||
"model_keys": models,
|
||||
"alpha": self.alpha.value,
|
||||
"interp": interp,
|
||||
"force": self.force.value,
|
||||
"merged_model_name": self.merged_model_name.value,
|
||||
}
|
||||
return args
|
||||
|
||||
def check_for_overwrite(self) -> bool:
|
||||
model_out = self.merged_model_name.value
|
||||
if model_out not in self.model_names:
|
||||
return True
|
||||
else:
|
||||
result: bool = npyscreen.notify_yes_no(
|
||||
f"The chosen merged model destination, {model_out}, is already in use. Overwrite?"
|
||||
)
|
||||
return result
|
||||
|
||||
def validate_field_values(self) -> bool:
|
||||
bad_fields = []
|
||||
model_names = self.model_names
|
||||
selected_models = {model_names[self.model1.value[0]], model_names[self.model2.value[0]]}
|
||||
if self.model3.value[0] > 0:
|
||||
selected_models.add(model_names[self.model3.value[0] - 1])
|
||||
if len(selected_models) < 2:
|
||||
bad_fields.append(f"Please select two or three DIFFERENT models to compare. You selected {selected_models}")
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:"
|
||||
for problem in bad_fields:
|
||||
message += f"\n* {problem}"
|
||||
npyscreen.notify_confirm(message)
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def get_models(self, base_model: Optional[BaseModelType] = None) -> List[Tuple[str, str]]: # key to name
|
||||
models = [
|
||||
(x.key, x.name)
|
||||
for x in self.model_record_store.search_by_attr(model_type=ModelType.Main, base_model=base_model)
|
||||
if x.format == ModelFormat("diffusers")
|
||||
and hasattr(x, "variant")
|
||||
and x.variant == ModelVariantType("normal")
|
||||
]
|
||||
return sorted(models, key=lambda x: x[1])
|
||||
|
||||
def _populate_models(self, value: List[int]) -> None:
|
||||
base_model = BASE_TYPES[value[0]][0]
|
||||
self.models = self.get_models(base_model)
|
||||
self.model_names = [x[1] for x in self.models]
|
||||
|
||||
models_plus_none = self.model_names.copy()
|
||||
models_plus_none.insert(0, "None")
|
||||
self.model1.values = self.model_names
|
||||
self.model2.values = self.model_names
|
||||
self.model3.values = models_plus_none
|
||||
|
||||
self.display()
|
||||
|
||||
|
||||
# npyscreen is untyped and causes mypy to get naggy
|
||||
class Mergeapp(npyscreen.NPSAppManaged): # type: ignore
|
||||
def __init__(self, installer: ModelInstallServiceBase):
|
||||
"""Initialize the npyscreen application."""
|
||||
super().__init__()
|
||||
self.installer = installer
|
||||
|
||||
def onStart(self) -> None:
|
||||
npyscreen.setTheme(npyscreen.Themes.ElegantTheme)
|
||||
self.main = self.addForm("MAIN", mergeModelsForm, name="Merge Models Settings")
|
||||
|
||||
|
||||
def run_gui(args: Namespace) -> None:
|
||||
installer = initialize_installer(config)
|
||||
mergeapp = Mergeapp(installer)
|
||||
mergeapp.run()
|
||||
merge_args = mergeapp.merge_arguments
|
||||
merger = ModelMerger(installer)
|
||||
merger.merge_diffusion_models_and_save(**merge_args)
|
||||
logger.info(f'Models merged into new model: "{merge_args.merged_model_name}".')
|
||||
|
||||
|
||||
def run_cli(args: Namespace) -> None:
|
||||
assert args.alpha >= 0 and args.alpha <= 1.0, "alpha must be between 0 and 1"
|
||||
assert (
|
||||
args.model_names and len(args.model_names) >= 1 and len(args.model_names) <= 3
|
||||
), "Please provide the --models argument to list 2 to 3 models to merge. Use --help for full usage."
|
||||
|
||||
if not args.merged_model_name:
|
||||
args.merged_model_name = "+".join(args.model_names)
|
||||
logger.info(f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"')
|
||||
|
||||
installer = initialize_installer(config)
|
||||
store = installer.record_store
|
||||
assert (
|
||||
len(store.search_by_attr(args.merged_model_name, args.base_model, ModelType.Main)) == 0 or args.clobber
|
||||
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
|
||||
|
||||
merger = ModelMerger(installer)
|
||||
model_keys = []
|
||||
for name in args.model_names:
|
||||
if len(name) == 32 and re.match(r"^[0-9a-f]$", name):
|
||||
model_keys.append(name)
|
||||
else:
|
||||
models = store.search_by_attr(
|
||||
model_name=name, model_type=ModelType.Main, base_model=BaseModelType(args.base_model)
|
||||
)
|
||||
assert len(models) > 0, f"{name}: Unknown model"
|
||||
assert len(models) < 2, f"{name}: More than one model by this name. Please specify the model key instead."
|
||||
model_keys.append(models[0].key)
|
||||
|
||||
merger.merge_diffusion_models_and_save(
|
||||
alpha=args.alpha,
|
||||
model_keys=model_keys,
|
||||
merged_model_name=args.merged_model_name,
|
||||
interp=args.interp,
|
||||
force=args.force,
|
||||
)
|
||||
logger.info(f'Models merged into new model: "{args.merged_model_name}".')
|
||||
|
||||
|
||||
def main() -> None:
|
||||
args = _parse_args()
|
||||
if args.root_dir:
|
||||
config.parse_args(["--root", str(args.root_dir)])
|
||||
else:
|
||||
config.parse_args([])
|
||||
|
||||
try:
|
||||
if args.front_end:
|
||||
run_gui(args)
|
||||
else:
|
||||
run_cli(args)
|
||||
except widget.NotEnoughSpaceForWidget as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("You need to have at least two diffusers models defined in models.yaml in order to merge")
|
||||
else:
|
||||
logger.error("Not enough room for the user interface. Try making this window larger.")
|
||||
sys.exit(-1)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -3,7 +3,7 @@
|
||||
"""
|
||||
This is the frontend to "textual_inversion_training.py".
|
||||
|
||||
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
|
||||
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@ import sys
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import npyscreen
|
||||
from npyscreen import widget
|
||||
@ -22,8 +22,9 @@ from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
|
||||
from ...backend.training import do_textual_inversion_training, parse_args
|
||||
from invokeai.backend.install.install_helper import initialize_installer
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.training import do_textual_inversion_training, parse_args
|
||||
|
||||
TRAINING_DATA = "text-inversion-training-data"
|
||||
TRAINING_DIR = "text-inversion-output"
|
||||
@ -44,19 +45,21 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
precisions = ["no", "fp16", "bf16"]
|
||||
learnable_properties = ["object", "style"]
|
||||
|
||||
def __init__(self, parentApp, name, saved_args=None):
|
||||
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, saved_args: Optional[Dict[str, str]] = None):
|
||||
self.saved_args = saved_args or {}
|
||||
super().__init__(parentApp, name)
|
||||
|
||||
def afterEditing(self):
|
||||
def afterEditing(self) -> None:
|
||||
self.parentApp.setNextForm(None)
|
||||
|
||||
def create(self):
|
||||
def create(self) -> None:
|
||||
self.model_names, default = self.get_model_names()
|
||||
default_initializer_token = "★"
|
||||
default_placeholder_token = ""
|
||||
saved_args = self.saved_args
|
||||
|
||||
assert config is not None
|
||||
|
||||
try:
|
||||
default = self.model_names.index(saved_args["model"])
|
||||
except Exception:
|
||||
@ -71,7 +74,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
self.model = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Model Name:",
|
||||
values=self.model_names,
|
||||
values=sorted(self.model_names),
|
||||
value=default,
|
||||
max_height=len(self.model_names) + 1,
|
||||
scroll_exit=True,
|
||||
@ -236,7 +239,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
)
|
||||
self.model.editing = True
|
||||
|
||||
def initializer_changed(self):
|
||||
def initializer_changed(self) -> None:
|
||||
placeholder = self.placeholder_token.value
|
||||
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
|
||||
self.train_data_dir.value = str(config.root_dir / TRAINING_DATA / placeholder)
|
||||
@ -275,10 +278,13 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
return True
|
||||
|
||||
def get_model_names(self) -> Tuple[List[str], int]:
|
||||
conf = OmegaConf.load(config.root_dir / "configs/models.yaml")
|
||||
model_names = [idx for idx in sorted(conf.keys()) if conf[idx].get("format", None) == "diffusers"]
|
||||
defaults = [idx for idx in range(len(model_names)) if "default" in conf[model_names[idx]]]
|
||||
default = defaults[0] if len(defaults) > 0 else 0
|
||||
global config
|
||||
assert config is not None
|
||||
installer = initialize_installer(config)
|
||||
store = installer.record_store
|
||||
main_models = store.search_by_attr(model_type=ModelType.Main)
|
||||
model_names = [f"{x.base.value}/{x.type.value}/{x.name}" for x in main_models if x.format == "diffusers"]
|
||||
default = 0
|
||||
return (model_names, default)
|
||||
|
||||
def marshall_arguments(self) -> dict:
|
||||
@ -326,7 +332,7 @@ class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
|
||||
|
||||
class MyApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self, saved_args=None):
|
||||
def __init__(self, saved_args: Optional[Dict[str, str]] = None):
|
||||
super().__init__()
|
||||
self.ti_arguments = None
|
||||
self.saved_args = saved_args
|
||||
@ -341,11 +347,12 @@ class MyApplication(npyscreen.NPSAppManaged):
|
||||
)
|
||||
|
||||
|
||||
def copy_to_embeddings_folder(args: dict):
|
||||
def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
|
||||
"""
|
||||
Copy learned_embeds.bin into the embeddings folder, and offer to
|
||||
delete the full model and checkpoints.
|
||||
"""
|
||||
assert config is not None
|
||||
source = Path(args["output_dir"], "learned_embeds.bin")
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = config.root_dir / "embeddings" / dest_dir_name
|
||||
@ -358,10 +365,11 @@ def copy_to_embeddings_folder(args: dict):
|
||||
logger.info(f'Keeping {args["output_dir"]}')
|
||||
|
||||
|
||||
def save_args(args: dict):
|
||||
def save_args(args: dict) -> None:
|
||||
"""
|
||||
Save the current argument values to an omegaconf file
|
||||
"""
|
||||
assert config is not None
|
||||
dest_dir = config.root_dir / TRAINING_DIR
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
conf_file = dest_dir / CONF_FILE
|
||||
@ -373,6 +381,7 @@ def previous_args() -> dict:
|
||||
"""
|
||||
Get the previous arguments used.
|
||||
"""
|
||||
assert config is not None
|
||||
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
|
||||
try:
|
||||
conf = OmegaConf.load(conf_file)
|
||||
@ -383,24 +392,26 @@ def previous_args() -> dict:
|
||||
return conf
|
||||
|
||||
|
||||
def do_front_end(args: Namespace):
|
||||
def do_front_end() -> None:
|
||||
global config
|
||||
saved_args = previous_args()
|
||||
myapplication = MyApplication(saved_args=saved_args)
|
||||
myapplication.run()
|
||||
|
||||
if args := myapplication.ti_arguments:
|
||||
os.makedirs(args["output_dir"], exist_ok=True)
|
||||
if my_args := myapplication.ti_arguments:
|
||||
os.makedirs(my_args["output_dir"], exist_ok=True)
|
||||
|
||||
# Automatically add angle brackets around the trigger
|
||||
if not re.match("^<.+>$", args["placeholder_token"]):
|
||||
args["placeholder_token"] = f"<{args['placeholder_token']}>"
|
||||
if not re.match("^<.+>$", my_args["placeholder_token"]):
|
||||
my_args["placeholder_token"] = f"<{my_args['placeholder_token']}>"
|
||||
|
||||
args["only_save_embeds"] = True
|
||||
save_args(args)
|
||||
my_args["only_save_embeds"] = True
|
||||
save_args(my_args)
|
||||
|
||||
try:
|
||||
do_textual_inversion_training(InvokeAIAppConfig.get_config(), **args)
|
||||
copy_to_embeddings_folder(args)
|
||||
print(my_args)
|
||||
do_textual_inversion_training(config, **my_args)
|
||||
copy_to_embeddings_folder(my_args)
|
||||
except Exception as e:
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
logger.error(str(e))
|
||||
@ -408,11 +419,12 @@ def do_front_end(args: Namespace):
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
def main():
|
||||
def main() -> None:
|
||||
global config
|
||||
|
||||
args = parse_args()
|
||||
args: Namespace = parse_args()
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args([])
|
||||
|
||||
# change root if needed
|
||||
if args.root_dir:
|
||||
@ -420,7 +432,7 @@ def main():
|
||||
|
||||
try:
|
||||
if args.front_end:
|
||||
do_front_end(args)
|
||||
do_front_end()
|
||||
else:
|
||||
do_textual_inversion_training(config, **vars(args))
|
||||
except AssertionError as e:
|
||||
|
454
invokeai/frontend/training/textual_inversion2.py
Normal file
454
invokeai/frontend/training/textual_inversion2.py
Normal file
@ -0,0 +1,454 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
This is the frontend to "textual_inversion_training.py".
|
||||
|
||||
Copyright (c) 2023-24 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
|
||||
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import npyscreen
|
||||
from npyscreen import widget
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.install.install_helper import initialize_installer
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.training import do_textual_inversion_training, parse_args
|
||||
|
||||
TRAINING_DATA = "text-inversion-training-data"
|
||||
TRAINING_DIR = "text-inversion-output"
|
||||
CONF_FILE = "preferences.conf"
|
||||
config = None
|
||||
|
||||
|
||||
class textualInversionForm(npyscreen.FormMultiPageAction):
|
||||
resolutions = [512, 768, 1024]
|
||||
lr_schedulers = [
|
||||
"linear",
|
||||
"cosine",
|
||||
"cosine_with_restarts",
|
||||
"polynomial",
|
||||
"constant",
|
||||
"constant_with_warmup",
|
||||
]
|
||||
precisions = ["no", "fp16", "bf16"]
|
||||
learnable_properties = ["object", "style"]
|
||||
|
||||
def __init__(self, parentApp: npyscreen.NPSAppManaged, name: str, saved_args: Optional[Dict[str, str]] = None):
|
||||
self.saved_args = saved_args or {}
|
||||
super().__init__(parentApp, name)
|
||||
|
||||
def afterEditing(self) -> None:
|
||||
self.parentApp.setNextForm(None)
|
||||
|
||||
def create(self) -> None:
|
||||
self.model_names, default = self.get_model_names()
|
||||
default_initializer_token = "★"
|
||||
default_placeholder_token = ""
|
||||
saved_args = self.saved_args
|
||||
|
||||
assert config is not None
|
||||
|
||||
try:
|
||||
default = self.model_names.index(saved_args["model"])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.",
|
||||
editable=False,
|
||||
)
|
||||
|
||||
self.model = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Model Name:",
|
||||
values=sorted(self.model_names),
|
||||
value=default,
|
||||
max_height=len(self.model_names) + 1,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.placeholder_token = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Trigger Term:",
|
||||
value="", # saved_args.get('placeholder_token',''), # to restore previous term
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.placeholder_token.when_value_edited = self.initializer_changed
|
||||
self.nextrely -= 1
|
||||
self.nextrelx += 30
|
||||
self.prompt_token = self.add_widget_intelligent(
|
||||
npyscreen.FixedText,
|
||||
name="Trigger term for use in prompt",
|
||||
value="",
|
||||
editable=False,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.nextrelx -= 30
|
||||
self.initializer_token = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Initializer:",
|
||||
value=saved_args.get("initializer_token", default_initializer_token),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.resume_from_checkpoint = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Resume from last saved checkpoint",
|
||||
value=False,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.learnable_property = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Learnable property:",
|
||||
values=self.learnable_properties,
|
||||
value=self.learnable_properties.index(saved_args.get("learnable_property", "object")),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.train_data_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="Data Training Directory:",
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"train_data_dir",
|
||||
config.root_dir / TRAINING_DATA / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.output_dir = self.add_widget_intelligent(
|
||||
npyscreen.TitleFilename,
|
||||
name="Output Destination Directory:",
|
||||
select_dir=True,
|
||||
must_exist=False,
|
||||
value=str(
|
||||
saved_args.get(
|
||||
"output_dir",
|
||||
config.root_dir / TRAINING_DIR / default_placeholder_token,
|
||||
)
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.resolution = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Image resolution (pixels):",
|
||||
values=self.resolutions,
|
||||
value=self.resolutions.index(saved_args.get("resolution", 512)),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.center_crop = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Center crop images before resizing to resolution",
|
||||
value=saved_args.get("center_crop", False),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.mixed_precision = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Mixed Precision:",
|
||||
values=self.precisions,
|
||||
value=self.precisions.index(saved_args.get("mixed_precision", "fp16")),
|
||||
max_height=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.num_train_epochs = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Number of training epochs:",
|
||||
out_of=1000,
|
||||
step=50,
|
||||
lowest=1,
|
||||
value=saved_args.get("num_train_epochs", 100),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.max_train_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Max Training Steps:",
|
||||
out_of=10000,
|
||||
step=500,
|
||||
lowest=1,
|
||||
value=saved_args.get("max_train_steps", 3000),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.train_batch_size = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Batch Size (reduce if you run out of memory):",
|
||||
out_of=50,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get("train_batch_size", 8),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.gradient_accumulation_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):",
|
||||
out_of=10,
|
||||
step=1,
|
||||
lowest=1,
|
||||
value=saved_args.get("gradient_accumulation_steps", 4),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lr_warmup_steps = self.add_widget_intelligent(
|
||||
npyscreen.TitleSlider,
|
||||
name="Warmup Steps:",
|
||||
out_of=100,
|
||||
step=1,
|
||||
lowest=0,
|
||||
value=saved_args.get("lr_warmup_steps", 0),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.learning_rate = self.add_widget_intelligent(
|
||||
npyscreen.TitleText,
|
||||
name="Learning Rate:",
|
||||
value=str(
|
||||
saved_args.get("learning_rate", "5.0e-04"),
|
||||
),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.scale_lr = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Scale learning rate by number GPUs, steps and batch size",
|
||||
value=saved_args.get("scale_lr", True),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
|
||||
npyscreen.Checkbox,
|
||||
name="Use xformers acceleration",
|
||||
value=saved_args.get("enable_xformers_memory_efficient_attention", False),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.lr_scheduler = self.add_widget_intelligent(
|
||||
npyscreen.TitleSelectOne,
|
||||
name="Learning rate scheduler:",
|
||||
values=self.lr_schedulers,
|
||||
max_height=7,
|
||||
value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")),
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.model.editing = True
|
||||
|
||||
def initializer_changed(self) -> None:
|
||||
placeholder = self.placeholder_token.value
|
||||
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
|
||||
self.train_data_dir.value = str(config.root_dir / TRAINING_DATA / placeholder)
|
||||
self.output_dir.value = str(config.root_dir / TRAINING_DIR / placeholder)
|
||||
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
|
||||
|
||||
def on_ok(self):
|
||||
if self.validate_field_values():
|
||||
self.parentApp.setNextForm(None)
|
||||
self.editing = False
|
||||
self.parentApp.ti_arguments = self.marshall_arguments()
|
||||
npyscreen.notify("Launching textual inversion training. This will take a while...")
|
||||
else:
|
||||
self.editing = True
|
||||
|
||||
def ok_cancel(self):
|
||||
sys.exit(0)
|
||||
|
||||
def validate_field_values(self) -> bool:
|
||||
bad_fields = []
|
||||
if self.model.value is None:
|
||||
bad_fields.append("Model Name must correspond to a known model in models.yaml")
|
||||
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
|
||||
bad_fields.append("Trigger term must only contain alphanumeric characters, the dot and hyphen")
|
||||
if self.train_data_dir.value is None:
|
||||
bad_fields.append("Data Training Directory cannot be empty")
|
||||
if self.output_dir.value is None:
|
||||
bad_fields.append("The Output Destination Directory cannot be empty")
|
||||
if len(bad_fields) > 0:
|
||||
message = "The following problems were detected and must be corrected:"
|
||||
for problem in bad_fields:
|
||||
message += f"\n* {problem}"
|
||||
npyscreen.notify_confirm(message)
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def get_model_names(self) -> Tuple[List[str], int]:
|
||||
global config
|
||||
assert config is not None
|
||||
installer = initialize_installer(config)
|
||||
store = installer.record_store
|
||||
main_models = store.search_by_attr(model_type=ModelType.Main)
|
||||
model_names = [f"{x.base.value}/{x.type.value}/{x.name}" for x in main_models if x.format == "diffusers"]
|
||||
default = 0
|
||||
return (model_names, default)
|
||||
|
||||
def marshall_arguments(self) -> dict:
|
||||
args = {}
|
||||
|
||||
# the choices
|
||||
args.update(
|
||||
model=self.model_names[self.model.value[0]],
|
||||
resolution=self.resolutions[self.resolution.value[0]],
|
||||
lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]],
|
||||
mixed_precision=self.precisions[self.mixed_precision.value[0]],
|
||||
learnable_property=self.learnable_properties[self.learnable_property.value[0]],
|
||||
)
|
||||
|
||||
# all the strings and booleans
|
||||
for attr in (
|
||||
"initializer_token",
|
||||
"placeholder_token",
|
||||
"train_data_dir",
|
||||
"output_dir",
|
||||
"scale_lr",
|
||||
"center_crop",
|
||||
"enable_xformers_memory_efficient_attention",
|
||||
):
|
||||
args[attr] = getattr(self, attr).value
|
||||
|
||||
# all the integers
|
||||
for attr in (
|
||||
"train_batch_size",
|
||||
"gradient_accumulation_steps",
|
||||
"num_train_epochs",
|
||||
"max_train_steps",
|
||||
"lr_warmup_steps",
|
||||
):
|
||||
args[attr] = int(getattr(self, attr).value)
|
||||
|
||||
# the floats (just one)
|
||||
args.update(learning_rate=float(self.learning_rate.value))
|
||||
|
||||
# a special case
|
||||
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
|
||||
args["resume_from_checkpoint"] = "latest"
|
||||
|
||||
return args
|
||||
|
||||
|
||||
class MyApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self, saved_args: Optional[Dict[str, str]] = None):
|
||||
super().__init__()
|
||||
self.ti_arguments = None
|
||||
self.saved_args = saved_args
|
||||
|
||||
def onStart(self):
|
||||
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
||||
self.main = self.addForm(
|
||||
"MAIN",
|
||||
textualInversionForm,
|
||||
name="Textual Inversion Settings",
|
||||
saved_args=self.saved_args,
|
||||
)
|
||||
|
||||
|
||||
def copy_to_embeddings_folder(args: Dict[str, str]) -> None:
|
||||
"""
|
||||
Copy learned_embeds.bin into the embeddings folder, and offer to
|
||||
delete the full model and checkpoints.
|
||||
"""
|
||||
assert config is not None
|
||||
source = Path(args["output_dir"], "learned_embeds.bin")
|
||||
dest_dir_name = args["placeholder_token"].strip("<>")
|
||||
destination = config.root_dir / "embeddings" / dest_dir_name
|
||||
os.makedirs(destination, exist_ok=True)
|
||||
logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
|
||||
shutil.copy(source, destination)
|
||||
if (input("Delete training logs and intermediate checkpoints? [y] ") or "y").startswith(("y", "Y")):
|
||||
shutil.rmtree(Path(args["output_dir"]))
|
||||
else:
|
||||
logger.info(f'Keeping {args["output_dir"]}')
|
||||
|
||||
|
||||
def save_args(args: dict) -> None:
|
||||
"""
|
||||
Save the current argument values to an omegaconf file
|
||||
"""
|
||||
assert config is not None
|
||||
dest_dir = config.root_dir / TRAINING_DIR
|
||||
os.makedirs(dest_dir, exist_ok=True)
|
||||
conf_file = dest_dir / CONF_FILE
|
||||
conf = OmegaConf.create(args)
|
||||
OmegaConf.save(config=conf, f=conf_file)
|
||||
|
||||
|
||||
def previous_args() -> dict:
|
||||
"""
|
||||
Get the previous arguments used.
|
||||
"""
|
||||
assert config is not None
|
||||
conf_file = config.root_dir / TRAINING_DIR / CONF_FILE
|
||||
try:
|
||||
conf = OmegaConf.load(conf_file)
|
||||
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
|
||||
except Exception:
|
||||
conf = None
|
||||
|
||||
return conf
|
||||
|
||||
|
||||
def do_front_end() -> None:
|
||||
global config
|
||||
saved_args = previous_args()
|
||||
myapplication = MyApplication(saved_args=saved_args)
|
||||
myapplication.run()
|
||||
|
||||
if my_args := myapplication.ti_arguments:
|
||||
os.makedirs(my_args["output_dir"], exist_ok=True)
|
||||
|
||||
# Automatically add angle brackets around the trigger
|
||||
if not re.match("^<.+>$", my_args["placeholder_token"]):
|
||||
my_args["placeholder_token"] = f"<{my_args['placeholder_token']}>"
|
||||
|
||||
my_args["only_save_embeds"] = True
|
||||
save_args(my_args)
|
||||
|
||||
try:
|
||||
print(my_args)
|
||||
do_textual_inversion_training(config, **my_args)
|
||||
copy_to_embeddings_folder(my_args)
|
||||
except Exception as e:
|
||||
logger.error("An exception occurred during training. The exception was:")
|
||||
logger.error(str(e))
|
||||
logger.error("DETAILS:")
|
||||
logger.error(traceback.format_exc())
|
||||
|
||||
|
||||
def main() -> None:
|
||||
global config
|
||||
|
||||
args: Namespace = parse_args()
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args([])
|
||||
|
||||
# change root if needed
|
||||
if args.root_dir:
|
||||
config.root = args.root_dir
|
||||
|
||||
try:
|
||||
if args.front_end:
|
||||
do_front_end()
|
||||
else:
|
||||
do_textual_inversion_training(config, **vars(args))
|
||||
except AssertionError as e:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
except (widget.NotEnoughSpaceForWidget, Exception) as e:
|
||||
if str(e).startswith("Height of 1 allocated"):
|
||||
logger.error("You need to have at least one diffusers models defined in models.yaml in order to train")
|
||||
elif str(e).startswith("addwstr"):
|
||||
logger.error("Not enough window space for the interface. Please make your window larger and try again.")
|
||||
else:
|
||||
logger.error(e)
|
||||
sys.exit(-1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,131 +1,26 @@
|
||||
module.exports = {
|
||||
env: {
|
||||
browser: true,
|
||||
es6: true,
|
||||
node: true,
|
||||
},
|
||||
extends: [
|
||||
'eslint:recommended',
|
||||
'plugin:@typescript-eslint/recommended',
|
||||
'plugin:react/recommended',
|
||||
'plugin:react-hooks/recommended',
|
||||
'plugin:react/jsx-runtime',
|
||||
'prettier',
|
||||
'plugin:storybook/recommended',
|
||||
],
|
||||
parser: '@typescript-eslint/parser',
|
||||
parserOptions: {
|
||||
ecmaFeatures: {
|
||||
jsx: true,
|
||||
},
|
||||
ecmaVersion: 2018,
|
||||
sourceType: 'module',
|
||||
},
|
||||
plugins: [
|
||||
'react',
|
||||
'@typescript-eslint',
|
||||
'eslint-plugin-react-hooks',
|
||||
'i18next',
|
||||
'path',
|
||||
'unused-imports',
|
||||
'simple-import-sort',
|
||||
'eslint-plugin-import',
|
||||
// These rules are too strict for normal usage, but are useful for optimizing rerenders
|
||||
// '@arthurgeron/react-usememo',
|
||||
],
|
||||
root: true,
|
||||
extends: ['@invoke-ai/eslint-config-react'],
|
||||
plugins: ['path', 'i18next'],
|
||||
rules: {
|
||||
// TODO(psyche): Enable this rule. Requires no default exports in components - many changes.
|
||||
'react-refresh/only-export-components': 'off',
|
||||
// TODO(psyche): Enable this rule. Requires a lot of eslint-disable-next-line comments.
|
||||
'@typescript-eslint/consistent-type-assertions': 'off',
|
||||
// https://github.com/qdanik/eslint-plugin-path
|
||||
'path/no-relative-imports': ['error', { maxDepth: 0 }],
|
||||
curly: 'error',
|
||||
'i18next/no-literal-string': 'warn',
|
||||
'react/jsx-no-bind': ['error', { allowBind: true }],
|
||||
'react/jsx-curly-brace-presence': [
|
||||
'error',
|
||||
{ props: 'never', children: 'never' },
|
||||
],
|
||||
'react-hooks/exhaustive-deps': 'error',
|
||||
'no-var': 'error',
|
||||
'brace-style': 'error',
|
||||
'prefer-template': 'error',
|
||||
'import/no-duplicates': 'error',
|
||||
radix: 'error',
|
||||
'space-before-blocks': 'error',
|
||||
'import/prefer-default-export': 'off',
|
||||
'@typescript-eslint/no-unused-vars': 'off',
|
||||
'unused-imports/no-unused-imports': 'error',
|
||||
'unused-imports/no-unused-vars': [
|
||||
'warn',
|
||||
{
|
||||
vars: 'all',
|
||||
varsIgnorePattern: '^_',
|
||||
args: 'after-used',
|
||||
argsIgnorePattern: '^_',
|
||||
},
|
||||
],
|
||||
// These rules are too strict for normal usage, but are useful for optimizing rerenders
|
||||
// '@arthurgeron/react-usememo/require-usememo': [
|
||||
// 'warn',
|
||||
// {
|
||||
// strict: false,
|
||||
// checkHookReturnObject: false,
|
||||
// fix: { addImports: true },
|
||||
// checkHookCalls: false,
|
||||
|
||||
// },
|
||||
// ],
|
||||
// '@arthurgeron/react-usememo/require-memo': 'warn',
|
||||
'@typescript-eslint/ban-ts-comment': 'warn',
|
||||
'@typescript-eslint/no-explicit-any': 'warn',
|
||||
'@typescript-eslint/no-empty-interface': [
|
||||
'error',
|
||||
{
|
||||
allowSingleExtends: true,
|
||||
},
|
||||
],
|
||||
'@typescript-eslint/consistent-type-imports': [
|
||||
'error',
|
||||
{
|
||||
prefer: 'type-imports',
|
||||
fixStyle: 'separate-type-imports',
|
||||
disallowTypeAnnotations: true,
|
||||
},
|
||||
],
|
||||
'@typescript-eslint/no-import-type-side-effects': 'error',
|
||||
'simple-import-sort/imports': 'error',
|
||||
'simple-import-sort/exports': 'error',
|
||||
// Prefer @invoke-ai/ui components over chakra
|
||||
'no-restricted-imports': 'off',
|
||||
'@typescript-eslint/no-restricted-imports': [
|
||||
'warn',
|
||||
{
|
||||
paths: [
|
||||
{
|
||||
name: '@chakra-ui/react',
|
||||
message: "Please import from '@invoke-ai/ui' instead.",
|
||||
},
|
||||
{
|
||||
name: '@chakra-ui/layout',
|
||||
message: "Please import from '@invoke-ai/ui' instead.",
|
||||
},
|
||||
{
|
||||
name: '@chakra-ui/portal',
|
||||
message: "Please import from '@invoke-ai/ui' instead.",
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
// https://github.com/edvardchen/eslint-plugin-i18next/blob/HEAD/docs/rules/no-literal-string.md
|
||||
'i18next/no-literal-string': 'error',
|
||||
},
|
||||
overrides: [
|
||||
/**
|
||||
* Overrides for stories
|
||||
*/
|
||||
{
|
||||
files: ['*.stories.tsx'],
|
||||
rules: {
|
||||
// We may not have i18n available in stories.
|
||||
'i18next/no-literal-string': 'off',
|
||||
},
|
||||
},
|
||||
],
|
||||
settings: {
|
||||
react: {
|
||||
version: 'detect',
|
||||
},
|
||||
},
|
||||
};
|
||||
|
@ -1,9 +1,5 @@
|
||||
module.exports = {
|
||||
trailingComma: 'es5',
|
||||
tabWidth: 2,
|
||||
semi: true,
|
||||
singleQuote: true,
|
||||
endOfLine: 'auto',
|
||||
...require('@invoke-ai/prettier-config-react'),
|
||||
overrides: [
|
||||
{
|
||||
files: ['public/locales/*.json'],
|
||||
|
@ -1,7 +1,7 @@
|
||||
import { PropsWithChildren, memo, useEffect } from 'react';
|
||||
import { modelChanged } from '../src/features/parameters/store/generationSlice';
|
||||
import { useAppDispatch } from '../src/app/store/storeHooks';
|
||||
import { useGlobalModifiersInit } from '@invoke-ai/ui';
|
||||
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
|
||||
/**
|
||||
* Initializes some state for storybook. Must be in a different component
|
||||
* so that it is run inside the redux context.
|
||||
|
@ -1,13 +1,7 @@
|
||||
{
|
||||
"entry": ["src/main.tsx"],
|
||||
"extensions": [".ts", ".tsx"],
|
||||
"ignorePatterns": [
|
||||
"**/node_modules/**",
|
||||
"dist/**",
|
||||
"public/**",
|
||||
"**/*.stories.tsx",
|
||||
"config/**"
|
||||
],
|
||||
"ignorePatterns": ["**/node_modules/**", "dist/**", "public/**", "**/*.stories.tsx", "config/**"],
|
||||
"ignoreUnresolved": [],
|
||||
"ignoreUnimported": ["src/i18.d.ts", "vite.config.ts", "src/vite-env.d.ts"],
|
||||
"respectGitignore": true,
|
||||
|
150
invokeai/frontend/web/README.md
Normal file
150
invokeai/frontend/web/README.md
Normal file
@ -0,0 +1,150 @@
|
||||
# Invoke UI
|
||||
|
||||
<!-- @import "[TOC]" {cmd="toc" depthFrom=2 depthTo=3 orderedList=false} -->
|
||||
|
||||
<!-- code_chunk_output -->
|
||||
|
||||
- [Dev environment](#dev-environment)
|
||||
- [Setup](#setup)
|
||||
- [Package scripts](#package-scripts)
|
||||
- [Type generation](#type-generation)
|
||||
- [Localization](#localization)
|
||||
- [VSCode](#vscode)
|
||||
- [Contributing](#contributing)
|
||||
- [Check in before investing your time](#check-in-before-investing-your-time)
|
||||
- [Commit format](#commit-format)
|
||||
- [Submitting a PR](#submitting-a-pr)
|
||||
- [Other docs](#other-docs)
|
||||
|
||||
<!-- /code_chunk_output -->
|
||||
|
||||
Invoke's UI is made possible by many contributors and open-source libraries. Thank you!
|
||||
|
||||
## Dev environment
|
||||
|
||||
### Setup
|
||||
|
||||
1. Install [node] and [pnpm].
|
||||
1. Run `pnpm i` to install all packages.
|
||||
|
||||
#### Run in dev mode
|
||||
|
||||
1. From `invokeai/frontend/web/`, run `pnpm dev`.
|
||||
1. From repo root, run `python scripts/invokeai-web.py`.
|
||||
1. Point your browser to the dev server address, e.g. <http://localhost:5173/>
|
||||
|
||||
### Package scripts
|
||||
|
||||
- `dev`: run the frontend in dev mode, enabling hot reloading
|
||||
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
|
||||
- `typegen`: generate types from the OpenAPI schema (see [Type generation])
|
||||
- `lint:madge`: check frontend for circular dependencies
|
||||
- `lint:eslint`: check frontend for code quality
|
||||
- `lint:prettier`: check frontend for code formatting
|
||||
- `lint:tsc`: check frontend for type issues
|
||||
- `lint`: run all checks concurrently
|
||||
- `fix`: run `eslint` and `prettier`, fixing fixable issues
|
||||
|
||||
### Type generation
|
||||
|
||||
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
|
||||
|
||||
The generated types are committed to the repo in [schema.ts].
|
||||
|
||||
```sh
|
||||
# from the repo root, start the server
|
||||
python scripts/invokeai-web.py
|
||||
# from invokeai/frontend/web/, run the script
|
||||
pnpm typegen
|
||||
```
|
||||
|
||||
### Localization
|
||||
|
||||
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
|
||||
|
||||
Only the English source strings should be changed on this repo.
|
||||
|
||||
### VSCode
|
||||
|
||||
#### Example debugger config
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"type": "chrome",
|
||||
"request": "launch",
|
||||
"name": "Invoke UI",
|
||||
"url": "http://localhost:5173",
|
||||
"webRoot": "${workspaceFolder}/invokeai/frontend/web",
|
||||
},
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
#### Remote dev
|
||||
|
||||
We've noticed an intermittent timeout issue with the VSCode remote dev port forwarding.
|
||||
|
||||
We suggest disabling the editor's port forwarding feature and doing it manually via SSH:
|
||||
|
||||
```sh
|
||||
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
|
||||
```
|
||||
|
||||
## Contributing Guidelines
|
||||
|
||||
Thanks for your interest in contributing to the Invoke Web UI!
|
||||
|
||||
Please follow these guidelines when contributing.
|
||||
|
||||
### Check in before investing your time
|
||||
|
||||
Please check in before you invest your time on anything besides a trivial fix, in case it conflicts with ongoing work or isn't aligned with the vision for the app.
|
||||
|
||||
If a feature request or issue doesn't already exist for the thing you want to work on, please create one.
|
||||
|
||||
Ping `@psychedelicious` on [discord] in the `#frontend-dev` channel or in the feature request / issue you want to work on - we're happy chat.
|
||||
|
||||
### Code conventions
|
||||
|
||||
- This is a fairly complex app with a deep component tree. Please use memoization (`useCallback`, `useMemo`, `memo`) with enthusiasm.
|
||||
- If you need to add some global, ephemeral state, please use [nanostores] if possible.
|
||||
- Be careful with your redux selectors. If they need to be parameterized, consider creating them inside a `useMemo`.
|
||||
- Feel free to use `lodash` (via `lodash-es`) to make the intent of your code clear.
|
||||
- Please add comments describing the "why", not the "how" (unless it is really arcane).
|
||||
|
||||
### Commit format
|
||||
|
||||
Please use the [conventional commits] spec for the web UI, with a scope of "ui":
|
||||
|
||||
- `chore(ui): bump deps`
|
||||
- `chore(ui): lint`
|
||||
- `feat(ui): add some cool new feature`
|
||||
- `fix(ui): fix some bug`
|
||||
|
||||
### Submitting a PR
|
||||
|
||||
- Ensure your branch is tidy. Use an interactive rebase to clean up the commit history and reword the commit messages if they are not descriptive.
|
||||
- Run `pnpm lint`. Some issues are auto-fixable with `pnpm fix`.
|
||||
- Fill out the PR form when creating the PR.
|
||||
- It doesn't need to be super detailed, but a screenshot or video is nice if you changed something visually.
|
||||
- If a section isn't relevant, delete it. There are no UI tests at this time.
|
||||
|
||||
## Other docs
|
||||
|
||||
- [Workflows - Design and Implementation]
|
||||
- [State Management]
|
||||
|
||||
[node]: https://nodejs.org/en/download/
|
||||
[pnpm]: https://github.com/pnpm/pnpm
|
||||
[discord]: https://discord.gg/ZmtBAhwWhy
|
||||
[i18next]: https://github.com/i18next/react-i18next
|
||||
[Weblate]: https://hosted.weblate.org/engage/invokeai/
|
||||
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
|
||||
[Type generation]: #type-generation
|
||||
[schema.ts]: ../src/services/api/schema.ts
|
||||
[conventional commits]: https://www.conventionalcommits.org/en/v1.0.0/
|
||||
[Workflows - Design and Implementation]: ./docs/WORKFLOWS_DESIGN_IMPLEMENTATION.md
|
||||
[State Management]: ./docs/STATE_MGMT.md
|
@ -22,12 +22,13 @@ export const packageConfig: UserConfig = {
|
||||
fileName: (format) => `invoke-ai-ui.${format}.js`,
|
||||
},
|
||||
rollupOptions: {
|
||||
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react'],
|
||||
external: ['react', 'react-dom', '@emotion/react', '@chakra-ui/react', '@invoke-ai/ui-library'],
|
||||
output: {
|
||||
globals: {
|
||||
react: 'React',
|
||||
'react-dom': 'ReactDOM',
|
||||
'@emotion/react': 'EmotionReact',
|
||||
'@invoke-ai/ui-library': 'UiLibrary',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -1,111 +0,0 @@
|
||||
# Invoke UI
|
||||
|
||||
<!-- @import "[TOC]" {cmd="toc" depthFrom=1 depthTo=6 orderedList=false} -->
|
||||
|
||||
<!-- code_chunk_output -->
|
||||
|
||||
- [Invoke UI](#invoke-ui)
|
||||
- [Core Libraries](#core-libraries)
|
||||
- [Package Scripts](#package-scripts)
|
||||
- [Client Types Generation](#client-types-generation)
|
||||
- [Contributing](#contributing)
|
||||
- [Localization](#localization)
|
||||
- [Dev Environment](#dev-environment)
|
||||
- [VSCode Remote Dev](#vscode-remote-dev)
|
||||
|
||||
<!-- /code_chunk_output -->
|
||||
|
||||
## Core Libraries
|
||||
|
||||
Invoke's UI is made possible by a number of excellent open-source libraries. The most heavily-used are listed below, but there are many others.
|
||||
|
||||
- [Redux Toolkit]
|
||||
- [redux-remember]
|
||||
- [Socket.IO]
|
||||
- [Chakra UI]
|
||||
- [KonvaJS]
|
||||
- [Vite]
|
||||
- [openapi-typescript]
|
||||
- [reactflow]
|
||||
- [zod]
|
||||
|
||||
## Package Scripts
|
||||
|
||||
See `package.json` for all scripts.
|
||||
|
||||
Run with `pnpm <script name>`.
|
||||
|
||||
- `dev`: run the frontend in dev mode, enabling hot reloading
|
||||
- `build`: run all checks (madge, eslint, prettier, tsc) and then build the frontend
|
||||
- `typegen`: generate types from the OpenAPI schema (see [Client Types Generation])
|
||||
- `lint:madge`: check frontend for circular dependencies
|
||||
- `lint:eslint`: check frontend for code quality
|
||||
- `lint:prettier`: check frontend for code formatting
|
||||
- `lint:tsc`: check frontend for type issues
|
||||
- `lint`: run all checks concurrently
|
||||
- `fix`: run `eslint` and `prettier`, fixing fixable issues
|
||||
|
||||
### Client Types Generation
|
||||
|
||||
We use [openapi-typescript] to generate types from the app's OpenAPI schema.
|
||||
|
||||
The generated types are written to `invokeai/frontend/web/src/services/api/schema.d.ts`. This file is committed to the repo.
|
||||
|
||||
The server must be started and available at <http://127.0.0.1:9090>.
|
||||
|
||||
```sh
|
||||
# from the repo root, start the server
|
||||
python scripts/invokeai-web.py
|
||||
# from invokeai/frontend/web/, run the script
|
||||
pnpm typegen
|
||||
```
|
||||
|
||||
## Contributing
|
||||
|
||||
Thanks for your interest in contributing to the Invoke Web UI!
|
||||
|
||||
We encourage you to ping @psychedelicious and @blessedcoolant on [discord] if you want to contribute, just to touch base and ensure your work doesn't conflict with anything else going on. The project is very active.
|
||||
|
||||
### Localization
|
||||
|
||||
We use [i18next] for localization, but translation to languages other than English happens on our [Weblate] project.
|
||||
|
||||
**Only the English source strings should be changed on this repo.**
|
||||
|
||||
### Dev Environment
|
||||
|
||||
Install [node] and [pnpm].
|
||||
|
||||
From `invokeai/frontend/web/` run `pnpm i` to get everything set up.
|
||||
|
||||
Start everything in dev mode:
|
||||
|
||||
1. From `invokeai/frontend/web/`: `pnpm dev`
|
||||
2. From repo root: `python scripts/invokeai-web.py`
|
||||
3. Point your browser to the dev server address e.g. <http://localhost:5173/>
|
||||
|
||||
### VSCode Remote Dev
|
||||
|
||||
We've noticed an intermittent issue with the VSCode Remote Dev port forwarding. If you use this feature of VSCode, you may intermittently click the Invoke button and then get nothing until the request times out.
|
||||
|
||||
We suggest disabling the IDE's port forwarding feature and doing it manually via SSH:
|
||||
|
||||
```sh
|
||||
ssh -L 9090:localhost:9090 -L 5173:localhost:5173 user@host
|
||||
```
|
||||
|
||||
[node]: https://nodejs.org/en/download/
|
||||
[pnpm]: https://github.com/pnpm/pnpm
|
||||
[discord]: https://discord.gg/ZmtBAhwWhy
|
||||
[Redux Toolkit]: https://github.com/reduxjs/redux-toolkit
|
||||
[redux-remember]: https://github.com/zewish/redux-remember
|
||||
[Socket.IO]: https://github.com/socketio/socket.io
|
||||
[Chakra UI]: https://github.com/chakra-ui/chakra-ui
|
||||
[KonvaJS]: https://github.com/konvajs/react-konva
|
||||
[Vite]: https://github.com/vitejs/vite
|
||||
[i18next]: https://github.com/i18next/react-i18next
|
||||
[Weblate]: https://hosted.weblate.org/engage/invokeai/
|
||||
[openapi-typescript]: https://github.com/drwpow/openapi-typescript
|
||||
[reactflow]: https://github.com/xyflow/xyflow
|
||||
[zod]: https://github.com/colinhacks/zod
|
||||
[Client Types Generation]: #client-types-generation
|
38
invokeai/frontend/web/docs/STATE_MGMT.md
Normal file
38
invokeai/frontend/web/docs/STATE_MGMT.md
Normal file
@ -0,0 +1,38 @@
|
||||
# State Management
|
||||
|
||||
The app makes heavy use of Redux Toolkit, its Query library, and `nanostores`.
|
||||
|
||||
## Redux
|
||||
|
||||
TODO
|
||||
|
||||
## `nanostores`
|
||||
|
||||
[nanostores] is a tiny state management library. It provides both imperative and declarative APIs.
|
||||
|
||||
### Example
|
||||
|
||||
```ts
|
||||
export const $myStringOption = atom<string | null>(null);
|
||||
|
||||
// Outside a component, or within a callback for performance-critical logic
|
||||
$myStringOption.get();
|
||||
$myStringOption.set('new value');
|
||||
|
||||
// Inside a component
|
||||
const myStringOption = useStore($myStringOption);
|
||||
```
|
||||
|
||||
### Where to put nanostores
|
||||
|
||||
- For global application state, export your stores from `invokeai/frontend/web/src/app/store/nanostores/`.
|
||||
- For feature state, create a file for the stores next to the redux slice definition (e.g. `invokeai/frontend/web/src/features/myFeature/myFeatureNanostores.ts`).
|
||||
- For hooks with global state, export the store from the same file the hook is in, or put it next to the hook.
|
||||
|
||||
### When to use nanostores
|
||||
|
||||
- For non-serializable data that needs to be available throughout the app, use `nanostores` instead of a global.
|
||||
- For ephemeral global state (i.e. state that does not need to be persisted), use `nanostores` instead of redux.
|
||||
- For performance-critical code and in callbacks, redux selectors can be problematic due to the declarative reactivity system. Consider refactoring to use `nanostores` if there's a **measurable** performance issue.
|
||||
|
||||
[nanostores]: https://github.com/nanostores/nanostores/
|
@ -19,8 +19,8 @@
|
||||
"dist"
|
||||
],
|
||||
"scripts": {
|
||||
"dev": "concurrently \"vite dev\" \"pnpm run theme:watch\"",
|
||||
"dev:host": "concurrently \"vite dev --host\" \"pnpm run theme:watch\"",
|
||||
"dev": "vite dev",
|
||||
"dev:host": "vite dev --host",
|
||||
"build": "pnpm run lint && vite build",
|
||||
"typegen": "node scripts/typegen.js",
|
||||
"preview": "vite preview",
|
||||
@ -31,9 +31,6 @@
|
||||
"lint": "concurrently -g -n eslint,prettier,tsc,madge -c cyan,green,magenta,yellow \"pnpm run lint:eslint\" \"pnpm run lint:prettier\" \"pnpm run lint:tsc\" \"pnpm run lint:madge\"",
|
||||
"fix": "eslint --fix . && prettier --log-level warn --write .",
|
||||
"preinstall": "npx only-allow pnpm",
|
||||
"postinstall": "pnpm run theme",
|
||||
"theme": "chakra-cli tokens node_modules/@invoke-ai/ui",
|
||||
"theme:watch": "chakra-cli tokens node_modules/@invoke-ai/ui --watch",
|
||||
"storybook": "storybook dev -p 6006",
|
||||
"build-storybook": "storybook build",
|
||||
"unimported": "npx unimported"
|
||||
@ -55,9 +52,10 @@
|
||||
"@chakra-ui/react-use-size": "^2.1.0",
|
||||
"@dagrejs/graphlib": "^2.1.13",
|
||||
"@dnd-kit/core": "^6.1.0",
|
||||
"@dnd-kit/sortable": "^8.0.0",
|
||||
"@dnd-kit/utilities": "^3.2.2",
|
||||
"@fontsource-variable/inter": "^5.0.16",
|
||||
"@invoke-ai/ui": "0.0.13",
|
||||
"@invoke-ai/ui-library": "^0.0.18",
|
||||
"@mantine/form": "6.0.21",
|
||||
"@nanostores/react": "^0.7.1",
|
||||
"@reduxjs/toolkit": "2.0.1",
|
||||
@ -107,7 +105,6 @@
|
||||
"zod-validation-error": "^3.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@chakra-ui/cli": "^2.4.1",
|
||||
"@chakra-ui/react": "^2.8.2",
|
||||
"react": "^18.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
@ -115,7 +112,8 @@
|
||||
},
|
||||
"devDependencies": {
|
||||
"@arthurgeron/eslint-plugin-react-usememo": "^2.2.3",
|
||||
"@chakra-ui/cli": "^2.4.1",
|
||||
"@invoke-ai/eslint-config-react": "^0.0.13",
|
||||
"@invoke-ai/prettier-config-react": "^0.0.6",
|
||||
"@storybook/addon-docs": "^7.6.10",
|
||||
"@storybook/addon-essentials": "^7.6.10",
|
||||
"@storybook/addon-interactions": "^7.6.10",
|
||||
@ -155,7 +153,7 @@
|
||||
"storybook": "^7.6.10",
|
||||
"ts-toolbelt": "^9.6.0",
|
||||
"typescript": "^5.3.3",
|
||||
"vite": "^5.0.11",
|
||||
"vite": "^5.0.12",
|
||||
"vite-plugin-css-injected-by-js": "^3.3.1",
|
||||
"vite-plugin-dts": "^3.7.1",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
|
486
invokeai/frontend/web/pnpm-lock.yaml
generated
486
invokeai/frontend/web/pnpm-lock.yaml
generated
@ -22,15 +22,18 @@ dependencies:
|
||||
'@dnd-kit/core':
|
||||
specifier: ^6.1.0
|
||||
version: 6.1.0(react-dom@18.2.0)(react@18.2.0)
|
||||
'@dnd-kit/sortable':
|
||||
specifier: ^8.0.0
|
||||
version: 8.0.0(@dnd-kit/core@6.1.0)(react@18.2.0)
|
||||
'@dnd-kit/utilities':
|
||||
specifier: ^3.2.2
|
||||
version: 3.2.2(react@18.2.0)
|
||||
'@fontsource-variable/inter':
|
||||
specifier: ^5.0.16
|
||||
version: 5.0.16
|
||||
'@invoke-ai/ui':
|
||||
specifier: 0.0.13
|
||||
version: 0.0.13(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.0.16)(@internationalized/date@3.5.1)(@types/react@18.2.48)(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0)
|
||||
'@invoke-ai/ui-library':
|
||||
specifier: ^0.0.18
|
||||
version: 0.0.18(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.0.16)(@internationalized/date@3.5.1)(@types/react@18.2.48)(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0)
|
||||
'@mantine/form':
|
||||
specifier: 6.0.21
|
||||
version: 6.0.21(react@18.2.0)
|
||||
@ -177,9 +180,12 @@ devDependencies:
|
||||
'@arthurgeron/eslint-plugin-react-usememo':
|
||||
specifier: ^2.2.3
|
||||
version: 2.2.3
|
||||
'@chakra-ui/cli':
|
||||
specifier: ^2.4.1
|
||||
version: 2.4.1
|
||||
'@invoke-ai/eslint-config-react':
|
||||
specifier: ^0.0.13
|
||||
version: 0.0.13(@typescript-eslint/eslint-plugin@6.19.0)(@typescript-eslint/parser@6.19.0)(eslint-config-prettier@9.1.0)(eslint-plugin-import@2.29.1)(eslint-plugin-react-hooks@4.6.0)(eslint-plugin-react-refresh@0.4.5)(eslint-plugin-react@7.33.2)(eslint-plugin-simple-import-sort@10.0.0)(eslint-plugin-storybook@0.6.15)(eslint-plugin-unused-imports@3.0.0)(eslint@8.56.0)
|
||||
'@invoke-ai/prettier-config-react':
|
||||
specifier: ^0.0.6
|
||||
version: 0.0.6(prettier@3.2.4)
|
||||
'@storybook/addon-docs':
|
||||
specifier: ^7.6.10
|
||||
version: 7.6.10(@types/react-dom@18.2.18)(@types/react@18.2.48)(react-dom@18.2.0)(react@18.2.0)
|
||||
@ -206,7 +212,7 @@ devDependencies:
|
||||
version: 7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)
|
||||
'@storybook/react-vite':
|
||||
specifier: ^7.6.10
|
||||
version: 7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)(vite@5.0.11)
|
||||
version: 7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)(vite@5.0.12)
|
||||
'@storybook/test':
|
||||
specifier: ^7.6.10
|
||||
version: 7.6.10
|
||||
@ -239,7 +245,7 @@ devDependencies:
|
||||
version: 6.19.0(eslint@8.56.0)(typescript@5.3.3)
|
||||
'@vitejs/plugin-react-swc':
|
||||
specifier: ^3.5.0
|
||||
version: 3.5.0(vite@5.0.11)
|
||||
version: 3.5.0(vite@5.0.12)
|
||||
concurrently:
|
||||
specifier: ^8.2.2
|
||||
version: 8.2.2
|
||||
@ -298,20 +304,20 @@ devDependencies:
|
||||
specifier: ^5.3.3
|
||||
version: 5.3.3
|
||||
vite:
|
||||
specifier: ^5.0.11
|
||||
version: 5.0.11(@types/node@20.11.5)
|
||||
specifier: ^5.0.12
|
||||
version: 5.0.12(@types/node@20.11.5)
|
||||
vite-plugin-css-injected-by-js:
|
||||
specifier: ^3.3.1
|
||||
version: 3.3.1(vite@5.0.11)
|
||||
version: 3.3.1(vite@5.0.12)
|
||||
vite-plugin-dts:
|
||||
specifier: ^3.7.1
|
||||
version: 3.7.1(@types/node@20.11.5)(typescript@5.3.3)(vite@5.0.11)
|
||||
version: 3.7.1(@types/node@20.11.5)(typescript@5.3.3)(vite@5.0.12)
|
||||
vite-plugin-eslint:
|
||||
specifier: ^1.8.1
|
||||
version: 1.8.1(eslint@8.56.0)(vite@5.0.11)
|
||||
version: 1.8.1(eslint@8.56.0)(vite@5.0.12)
|
||||
vite-tsconfig-paths:
|
||||
specifier: ^4.3.1
|
||||
version: 4.3.1(typescript@5.3.3)(vite@5.0.11)
|
||||
version: 4.3.1(typescript@5.3.3)(vite@5.0.12)
|
||||
|
||||
packages:
|
||||
|
||||
@ -1852,19 +1858,6 @@ packages:
|
||||
react: 18.2.0
|
||||
dev: false
|
||||
|
||||
/@chakra-ui/cli@2.4.1:
|
||||
resolution: {integrity: sha512-GZZuHUA1cXJWpmYNiVTLPihvY4VhIssRl+AXgw/0IbeodTMop3jWlIioPKLAQeXu5CwvRA6iESyGjnu1V8Zykg==}
|
||||
hasBin: true
|
||||
dependencies:
|
||||
chokidar: 3.5.3
|
||||
cli-check-node: 1.3.4
|
||||
cli-handle-unhandled: 1.1.1
|
||||
cli-welcome: 2.2.2
|
||||
commander: 9.5.0
|
||||
esbuild: 0.17.19
|
||||
prettier: 2.8.8
|
||||
dev: true
|
||||
|
||||
/@chakra-ui/clickable@2.1.0(react@18.2.0):
|
||||
resolution: {integrity: sha512-flRA/ClPUGPYabu+/GLREZVZr9j2uyyazCAUHAdrTUEdDYCr31SVGhgh7dgKdtq23bOvAQJpIJjw/0Bs0WvbXw==}
|
||||
peerDependencies:
|
||||
@ -2894,6 +2887,18 @@ packages:
|
||||
tslib: 2.6.2
|
||||
dev: false
|
||||
|
||||
/@dnd-kit/sortable@8.0.0(@dnd-kit/core@6.1.0)(react@18.2.0):
|
||||
resolution: {integrity: sha512-U3jk5ebVXe1Lr7c2wU7SBZjcWdQP+j7peHJfCspnA81enlu88Mgd7CC8Q+pub9ubP7eKVETzJW+IBAhsqbSu/g==}
|
||||
peerDependencies:
|
||||
'@dnd-kit/core': ^6.1.0
|
||||
react: '>=16.8.0'
|
||||
dependencies:
|
||||
'@dnd-kit/core': 6.1.0(react-dom@18.2.0)(react@18.2.0)
|
||||
'@dnd-kit/utilities': 3.2.2(react@18.2.0)
|
||||
react: 18.2.0
|
||||
tslib: 2.6.2
|
||||
dev: false
|
||||
|
||||
/@dnd-kit/utilities@3.2.2(react@18.2.0):
|
||||
resolution: {integrity: sha512-+MKAJEOfaBe5SmV6t34p80MMKhjvUz0vRrvVJbPT0WElzaOJ/1xs+D+KDv+tD/NE5ujfrChEcshd4fLn0wpiqg==}
|
||||
peerDependencies:
|
||||
@ -2907,7 +2912,7 @@ packages:
|
||||
resolution: {integrity: sha512-m4HEDZleaaCH+XgDDsPF15Ht6wTLsgDTeR3WYj9Q/k76JtWhrJjcP4+/XlG8LGT/Rol9qUfOIztXeA84ATpqPQ==}
|
||||
dependencies:
|
||||
'@babel/helper-module-imports': 7.22.15
|
||||
'@babel/runtime': 7.23.6
|
||||
'@babel/runtime': 7.23.8
|
||||
'@emotion/hash': 0.9.1
|
||||
'@emotion/memoize': 0.8.1
|
||||
'@emotion/serialize': 1.1.3
|
||||
@ -2966,7 +2971,7 @@ packages:
|
||||
'@types/react':
|
||||
optional: true
|
||||
dependencies:
|
||||
'@babel/runtime': 7.23.6
|
||||
'@babel/runtime': 7.23.8
|
||||
'@emotion/babel-plugin': 11.11.0
|
||||
'@emotion/cache': 11.11.0
|
||||
'@emotion/serialize': 1.1.3
|
||||
@ -3041,15 +3046,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-arm64@0.17.19:
|
||||
resolution: {integrity: sha512-KBMWvEZooR7+kzY0BtbTQn0OAYY7CsiydT63pVEaPtVYF0hXbUaOyZog37DKxK7NF3XacBJOpYT4adIJh+avxA==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm64]
|
||||
os: [android]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-arm64@0.18.20:
|
||||
resolution: {integrity: sha512-Nz4rJcchGDtENV0eMKUNa6L12zz2zBDXuhj/Vjh18zGqB44Bi7MBMSXjgunJgjRhCmKOjnPuZp4Mb6OKqtMHLQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3068,15 +3064,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-arm@0.17.19:
|
||||
resolution: {integrity: sha512-rIKddzqhmav7MSmoFCmDIb6e2W57geRsM94gV2l38fzhXMwq7hZoClug9USI2pFRGL06f4IOPHHpFNOkWieR8A==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm]
|
||||
os: [android]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-arm@0.18.20:
|
||||
resolution: {integrity: sha512-fyi7TDI/ijKKNZTUJAQqiG5T7YjJXgnzkURqmGj13C6dCqckZBLdl4h7bkhHt/t0WP+zO9/zwroDvANaOqO5Sw==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3095,15 +3082,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-x64@0.17.19:
|
||||
resolution: {integrity: sha512-uUTTc4xGNDT7YSArp/zbtmbhO0uEEK9/ETW29Wk1thYUJBz3IVnvgEiEwEa9IeLyvnpKrWK64Utw2bgUmDveww==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [android]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/android-x64@0.18.20:
|
||||
resolution: {integrity: sha512-8GDdlePJA8D6zlZYJV/jnrRAi6rOiNaCC/JclcXpB+KIuvfBN4owLtgzY2bsxnx666XjJx2kDPUmnTtR8qKQUg==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3122,15 +3100,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/darwin-arm64@0.17.19:
|
||||
resolution: {integrity: sha512-80wEoCfF/hFKM6WE1FyBHc9SfUblloAWx6FJkFWTWiCoht9Mc0ARGEM47e67W9rI09YoUxJL68WHfDRYEAvOhg==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm64]
|
||||
os: [darwin]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/darwin-arm64@0.18.20:
|
||||
resolution: {integrity: sha512-bxRHW5kHU38zS2lPTPOyuyTm+S+eobPUnTNkdJEfAddYgEcll4xkT8DB9d2008DtTbl7uJag2HuE5NZAZgnNEA==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3149,15 +3118,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/darwin-x64@0.17.19:
|
||||
resolution: {integrity: sha512-IJM4JJsLhRYr9xdtLytPLSH9k/oxR3boaUIYiHkAawtwNOXKE8KoU8tMvryogdcT8AU+Bflmh81Xn6Q0vTZbQw==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [darwin]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/darwin-x64@0.18.20:
|
||||
resolution: {integrity: sha512-pc5gxlMDxzm513qPGbCbDukOdsGtKhfxD1zJKXjCCcU7ju50O7MeAZ8c4krSJcOIJGFR+qx21yMMVYwiQvyTyQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3176,15 +3136,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/freebsd-arm64@0.17.19:
|
||||
resolution: {integrity: sha512-pBwbc7DufluUeGdjSU5Si+P3SoMF5DQ/F/UmTSb8HXO80ZEAJmrykPyzo1IfNbAoaqw48YRpv8shwd1NoI0jcQ==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm64]
|
||||
os: [freebsd]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/freebsd-arm64@0.18.20:
|
||||
resolution: {integrity: sha512-yqDQHy4QHevpMAaxhhIwYPMv1NECwOvIpGCZkECn8w2WFHXjEwrBn3CeNIYsibZ/iZEUemj++M26W3cNR5h+Tw==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3203,15 +3154,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/freebsd-x64@0.17.19:
|
||||
resolution: {integrity: sha512-4lu+n8Wk0XlajEhbEffdy2xy53dpR06SlzvhGByyg36qJw6Kpfk7cp45DR/62aPH9mtJRmIyrXAS5UWBrJT6TQ==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [freebsd]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/freebsd-x64@0.18.20:
|
||||
resolution: {integrity: sha512-tgWRPPuQsd3RmBZwarGVHZQvtzfEBOreNuxEMKFcd5DaDn2PbBxfwLcj4+aenoh7ctXcbXmOQIn8HI6mCSw5MQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3230,15 +3172,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-arm64@0.17.19:
|
||||
resolution: {integrity: sha512-ct1Tg3WGwd3P+oZYqic+YZF4snNl2bsnMKRkb3ozHmnM0dGWuxcPTTntAF6bOP0Sp4x0PjSF+4uHQ1xvxfRKqg==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm64]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-arm64@0.18.20:
|
||||
resolution: {integrity: sha512-2YbscF+UL7SQAVIpnWvYwM+3LskyDmPhe31pE7/aoTMFKKzIc9lLbyGUpmmb8a8AixOL61sQ/mFh3jEjHYFvdA==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3257,15 +3190,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-arm@0.17.19:
|
||||
resolution: {integrity: sha512-cdmT3KxjlOQ/gZ2cjfrQOtmhG4HJs6hhvm3mWSRDPtZ/lP5oe8FWceS10JaSJC13GBd4eH/haHnqf7hhGNLerA==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-arm@0.18.20:
|
||||
resolution: {integrity: sha512-/5bHkMWnq1EgKr1V+Ybz3s1hWXok7mDFUMQ4cG10AfW3wL02PSZi5kFpYKrptDsgb2WAJIvRcDm+qIvXf/apvg==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3284,15 +3208,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-ia32@0.17.19:
|
||||
resolution: {integrity: sha512-w4IRhSy1VbsNxHRQpeGCHEmibqdTUx61Vc38APcsRbuVgK0OPEnQ0YD39Brymn96mOx48Y2laBQGqgZ0j9w6SQ==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [ia32]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-ia32@0.18.20:
|
||||
resolution: {integrity: sha512-P4etWwq6IsReT0E1KHU40bOnzMHoH73aXp96Fs8TIT6z9Hu8G6+0SHSw9i2isWrD2nbx2qo5yUqACgdfVGx7TA==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3311,15 +3226,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-loong64@0.17.19:
|
||||
resolution: {integrity: sha512-2iAngUbBPMq439a+z//gE+9WBldoMp1s5GWsUSgqHLzLJ9WoZLZhpwWuym0u0u/4XmZ3gpHmzV84PonE+9IIdQ==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [loong64]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-loong64@0.18.20:
|
||||
resolution: {integrity: sha512-nXW8nqBTrOpDLPgPY9uV+/1DjxoQ7DoB2N8eocyq8I9XuqJ7BiAMDMf9n1xZM9TgW0J8zrquIb/A7s3BJv7rjg==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3338,15 +3244,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-mips64el@0.17.19:
|
||||
resolution: {integrity: sha512-LKJltc4LVdMKHsrFe4MGNPp0hqDFA1Wpt3jE1gEyM3nKUvOiO//9PheZZHfYRfYl6AwdTH4aTcXSqBerX0ml4A==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [mips64el]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-mips64el@0.18.20:
|
||||
resolution: {integrity: sha512-d5NeaXZcHp8PzYy5VnXV3VSd2D328Zb+9dEq5HE6bw6+N86JVPExrA6O68OPwobntbNJ0pzCpUFZTo3w0GyetQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3365,15 +3262,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-ppc64@0.17.19:
|
||||
resolution: {integrity: sha512-/c/DGybs95WXNS8y3Ti/ytqETiW7EU44MEKuCAcpPto3YjQbyK3IQVKfF6nbghD7EcLUGl0NbiL5Rt5DMhn5tg==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [ppc64]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-ppc64@0.18.20:
|
||||
resolution: {integrity: sha512-WHPyeScRNcmANnLQkq6AfyXRFr5D6N2sKgkFo2FqguP44Nw2eyDlbTdZwd9GYk98DZG9QItIiTlFLHJHjxP3FA==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3392,15 +3280,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-riscv64@0.17.19:
|
||||
resolution: {integrity: sha512-FC3nUAWhvFoutlhAkgHf8f5HwFWUL6bYdvLc/TTuxKlvLi3+pPzdZiFKSWz/PF30TB1K19SuCxDTI5KcqASJqA==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [riscv64]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-riscv64@0.18.20:
|
||||
resolution: {integrity: sha512-WSxo6h5ecI5XH34KC7w5veNnKkju3zBRLEQNY7mv5mtBmrP/MjNBCAlsM2u5hDBlS3NGcTQpoBvRzqBcRtpq1A==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3419,15 +3298,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-s390x@0.17.19:
|
||||
resolution: {integrity: sha512-IbFsFbxMWLuKEbH+7sTkKzL6NJmG2vRyy6K7JJo55w+8xDk7RElYn6xvXtDW8HCfoKBFK69f3pgBJSUSQPr+4Q==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [s390x]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-s390x@0.18.20:
|
||||
resolution: {integrity: sha512-+8231GMs3mAEth6Ja1iK0a1sQ3ohfcpzpRLH8uuc5/KVDFneH6jtAJLFGafpzpMRO6DzJ6AvXKze9LfFMrIHVQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3446,15 +3316,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-x64@0.17.19:
|
||||
resolution: {integrity: sha512-68ngA9lg2H6zkZcyp22tsVt38mlhWde8l3eJLWkyLrp4HwMUr3c1s/M2t7+kHIhvMjglIBrFpncX1SzMckomGw==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [linux]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/linux-x64@0.18.20:
|
||||
resolution: {integrity: sha512-UYqiqemphJcNsFEskc73jQ7B9jgwjWrSayxawS6UVFZGWrAAtkzjxSqnoclCXxWtfwLdzU+vTpcNYhpn43uP1w==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3473,15 +3334,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/netbsd-x64@0.17.19:
|
||||
resolution: {integrity: sha512-CwFq42rXCR8TYIjIfpXCbRX0rp1jo6cPIUPSaWwzbVI4aOfX96OXY8M6KNmtPcg7QjYeDmN+DD0Wp3LaBOLf4Q==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [netbsd]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/netbsd-x64@0.18.20:
|
||||
resolution: {integrity: sha512-iO1c++VP6xUBUmltHZoMtCUdPlnPGdBom6IrO4gyKPFFVBKioIImVooR5I83nTew5UOYrk3gIJhbZh8X44y06A==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3500,15 +3352,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/openbsd-x64@0.17.19:
|
||||
resolution: {integrity: sha512-cnq5brJYrSZ2CF6c35eCmviIN3k3RczmHz8eYaVlNasVqsNY+JKohZU5MKmaOI+KkllCdzOKKdPs762VCPC20g==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [openbsd]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/openbsd-x64@0.18.20:
|
||||
resolution: {integrity: sha512-e5e4YSsuQfX4cxcygw/UCPIEP6wbIL+se3sxPdCiMbFLBWu0eiZOJ7WoD+ptCLrmjZBK1Wk7I6D/I3NglUGOxg==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3527,15 +3370,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/sunos-x64@0.17.19:
|
||||
resolution: {integrity: sha512-vCRT7yP3zX+bKWFeP/zdS6SqdWB8OIpaRq/mbXQxTGHnIxspRtigpkUcDMlSCOejlHowLqII7K2JKevwyRP2rg==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [sunos]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/sunos-x64@0.18.20:
|
||||
resolution: {integrity: sha512-kDbFRFp0YpTQVVrqUd5FTYmWo45zGaXe0X8E1G/LKFC0v8x0vWrhOWSLITcCn63lmZIxfOMXtCfti/RxN/0wnQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3554,15 +3388,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-arm64@0.17.19:
|
||||
resolution: {integrity: sha512-yYx+8jwowUstVdorcMdNlzklLYhPxjniHWFKgRqH7IFlUEa0Umu3KuYplf1HUZZ422e3NU9F4LGb+4O0Kdcaag==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [arm64]
|
||||
os: [win32]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-arm64@0.18.20:
|
||||
resolution: {integrity: sha512-ddYFR6ItYgoaq4v4JmQQaAI5s7npztfV4Ag6NrhiaW0RrnOXqBkgwZLofVTlq1daVTQNhtI5oieTvkRPfZrePg==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3581,15 +3406,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-ia32@0.17.19:
|
||||
resolution: {integrity: sha512-eggDKanJszUtCdlVs0RB+h35wNlb5v4TWEkq4vZcmVt5u/HiDZrTXe2bWFQUez3RgNHwx/x4sk5++4NSSicKkw==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [ia32]
|
||||
os: [win32]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-ia32@0.18.20:
|
||||
resolution: {integrity: sha512-Wv7QBi3ID/rROT08SABTS7eV4hX26sVduqDOTe1MvGMjNd3EjOz4b7zeexIR62GTIEKrfJXKL9LFxTYgkyeu7g==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3608,15 +3424,6 @@ packages:
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-x64@0.17.19:
|
||||
resolution: {integrity: sha512-lAhycmKnVOuRYNtRtatQR1LPQf2oYCkRGkSFnseDAKPl8lu5SOsK/e1sXe5a0Pc5kHIHe6P2I/ilntNv2xf3cA==}
|
||||
engines: {node: '>=12'}
|
||||
cpu: [x64]
|
||||
os: [win32]
|
||||
requiresBuild: true
|
||||
dev: true
|
||||
optional: true
|
||||
|
||||
/@esbuild/win32-x64@0.18.20:
|
||||
resolution: {integrity: sha512-kTdfRcSiDfQca/y9QIkng02avJ+NCaQvrMejlsB3RRv5sE9rRoeBPISaZpKxHELzRxZyLvNts1P27W3wV+8geQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -3759,8 +3566,44 @@ packages:
|
||||
'@swc/helpers': 0.5.3
|
||||
dev: false
|
||||
|
||||
/@invoke-ai/ui@0.0.13(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.0.16)(@internationalized/date@3.5.1)(@types/react@18.2.48)(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0):
|
||||
resolution: {integrity: sha512-X4Txij2dMnzPUXTPhorBHezByJQ/ceyHxCM+zZ0gpFsSyXUieOFWjaSu+dAVpghS9y0dxFQGayHvNyX6VsX/PA==}
|
||||
/@invoke-ai/eslint-config-react@0.0.13(@typescript-eslint/eslint-plugin@6.19.0)(@typescript-eslint/parser@6.19.0)(eslint-config-prettier@9.1.0)(eslint-plugin-import@2.29.1)(eslint-plugin-react-hooks@4.6.0)(eslint-plugin-react-refresh@0.4.5)(eslint-plugin-react@7.33.2)(eslint-plugin-simple-import-sort@10.0.0)(eslint-plugin-storybook@0.6.15)(eslint-plugin-unused-imports@3.0.0)(eslint@8.56.0):
|
||||
resolution: {integrity: sha512-dfo9k+wPHdvpy1z6ABoYXR/Ttzs1FAnbC46ttIxVhZuqDq8K5cLWznivrOfl7f0hJb8Cb8HiuQb4pHDxhHBDqA==}
|
||||
peerDependencies:
|
||||
'@typescript-eslint/eslint-plugin': ^6.19.0
|
||||
'@typescript-eslint/parser': ^6.19.0
|
||||
eslint: ^8.56.0
|
||||
eslint-config-prettier: ^9.1.0
|
||||
eslint-plugin-import: ^2.29.1
|
||||
eslint-plugin-react: ^7.33.2
|
||||
eslint-plugin-react-hooks: ^4.6.0
|
||||
eslint-plugin-react-refresh: ^0.4.5
|
||||
eslint-plugin-simple-import-sort: ^10.0.0
|
||||
eslint-plugin-storybook: ^0.6.15
|
||||
eslint-plugin-unused-imports: ^3.0.0
|
||||
dependencies:
|
||||
'@typescript-eslint/eslint-plugin': 6.19.0(@typescript-eslint/parser@6.19.0)(eslint@8.56.0)(typescript@5.3.3)
|
||||
'@typescript-eslint/parser': 6.19.0(eslint@8.56.0)(typescript@5.3.3)
|
||||
eslint: 8.56.0
|
||||
eslint-config-prettier: 9.1.0(eslint@8.56.0)
|
||||
eslint-plugin-import: 2.29.1(@typescript-eslint/parser@6.19.0)(eslint@8.56.0)
|
||||
eslint-plugin-react: 7.33.2(eslint@8.56.0)
|
||||
eslint-plugin-react-hooks: 4.6.0(eslint@8.56.0)
|
||||
eslint-plugin-react-refresh: 0.4.5(eslint@8.56.0)
|
||||
eslint-plugin-simple-import-sort: 10.0.0(eslint@8.56.0)
|
||||
eslint-plugin-storybook: 0.6.15(eslint@8.56.0)(typescript@5.3.3)
|
||||
eslint-plugin-unused-imports: 3.0.0(@typescript-eslint/eslint-plugin@6.19.0)(eslint@8.56.0)
|
||||
dev: true
|
||||
|
||||
/@invoke-ai/prettier-config-react@0.0.6(prettier@3.2.4):
|
||||
resolution: {integrity: sha512-qHE6GAw/Aka/8TLTN9U1U+8pxjaFe5irDv/uSgzqmrBR1rGiVyMp19pEficWRRt+03zYdquiiDjTmoabWQxY0Q==}
|
||||
peerDependencies:
|
||||
prettier: ^3.2.4
|
||||
dependencies:
|
||||
prettier: 3.2.4
|
||||
dev: true
|
||||
|
||||
/@invoke-ai/ui-library@0.0.18(@chakra-ui/form-control@2.2.0)(@chakra-ui/icon@3.2.0)(@chakra-ui/media-query@3.3.0)(@chakra-ui/menu@2.2.1)(@chakra-ui/spinner@2.1.0)(@chakra-ui/system@2.6.2)(@fontsource-variable/inter@5.0.16)(@internationalized/date@3.5.1)(@types/react@18.2.48)(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0):
|
||||
resolution: {integrity: sha512-Yme+2+pzYy3TPb7ZT0hYmBwahH29ZRSVIxLKSexh3BsbJXbTzGssRQU78QvK6Ymxemgbso3P8Rs+IW0zNhQKjQ==}
|
||||
peerDependencies:
|
||||
'@fontsource-variable/inter': ^5.0.16
|
||||
react: ^18.2.0
|
||||
@ -3782,11 +3625,12 @@ packages:
|
||||
framer-motion: 10.18.0(react-dom@18.2.0)(react@18.2.0)
|
||||
lodash-es: 4.17.21
|
||||
nanostores: 0.9.5
|
||||
overlayscrollbars: 2.4.6
|
||||
overlayscrollbars-react: 0.5.3(overlayscrollbars@2.4.6)(react@18.2.0)
|
||||
overlayscrollbars: 2.4.7
|
||||
overlayscrollbars-react: 0.5.4(overlayscrollbars@2.4.7)(react@18.2.0)
|
||||
react: 18.2.0
|
||||
react-dom: 18.2.0(react@18.2.0)
|
||||
react-i18next: 14.0.0(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0)
|
||||
react-i18next: 14.0.1(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0)
|
||||
react-icons: 5.0.1(react@18.2.0)
|
||||
react-select: 5.8.0(@types/react@18.2.48)(react-dom@18.2.0)(react@18.2.0)
|
||||
transitivePeerDependencies:
|
||||
- '@chakra-ui/form-control'
|
||||
@ -3882,7 +3726,7 @@ packages:
|
||||
chalk: 4.1.2
|
||||
dev: true
|
||||
|
||||
/@joshwooding/vite-plugin-react-docgen-typescript@0.3.0(typescript@5.3.3)(vite@5.0.11):
|
||||
/@joshwooding/vite-plugin-react-docgen-typescript@0.3.0(typescript@5.3.3)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-2D6y7fNvFmsLmRt6UCOFJPvFoPMJGT0Uh1Wg0RaigUp7kdQPs6yYn8Dmx6GZkOH/NW0yMTwRz/p0SRMMRo50vA==}
|
||||
peerDependencies:
|
||||
typescript: '>= 4.3.x'
|
||||
@ -3896,7 +3740,7 @@ packages:
|
||||
magic-string: 0.27.0
|
||||
react-docgen-typescript: 2.2.2(typescript@5.3.3)
|
||||
typescript: 5.3.3
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
dev: true
|
||||
|
||||
/@jridgewell/gen-mapping@0.3.3:
|
||||
@ -5131,7 +4975,7 @@ packages:
|
||||
- supports-color
|
||||
dev: true
|
||||
|
||||
/@storybook/builder-vite@7.6.10(typescript@5.3.3)(vite@5.0.11):
|
||||
/@storybook/builder-vite@7.6.10(typescript@5.3.3)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-qxe19axiNJVdIKj943e1ucAmADwU42fTGgMSdBzzrvfH3pSOmx2057aIxRzd8YtBRnj327eeqpgCHYIDTunMYQ==}
|
||||
peerDependencies:
|
||||
'@preact/preset-vite': '*'
|
||||
@ -5163,7 +5007,7 @@ packages:
|
||||
magic-string: 0.30.5
|
||||
rollup: 3.29.4
|
||||
typescript: 5.3.3
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
transitivePeerDependencies:
|
||||
- encoding
|
||||
- supports-color
|
||||
@ -5519,7 +5363,7 @@ packages:
|
||||
react-dom: 18.2.0(react@18.2.0)
|
||||
dev: true
|
||||
|
||||
/@storybook/react-vite@7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)(vite@5.0.11):
|
||||
/@storybook/react-vite@7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-YE2+J1wy8nO+c6Nv/hBMu91Edew3K184L1KSnfoZV8vtq2074k1Me/8pfe0QNuq631AncpfCYNb37yBAXQ/80w==}
|
||||
engines: {node: '>=16'}
|
||||
peerDependencies:
|
||||
@ -5527,16 +5371,16 @@ packages:
|
||||
react-dom: ^16.8.0 || ^17.0.0 || ^18.0.0
|
||||
vite: ^3.0.0 || ^4.0.0 || ^5.0.0
|
||||
dependencies:
|
||||
'@joshwooding/vite-plugin-react-docgen-typescript': 0.3.0(typescript@5.3.3)(vite@5.0.11)
|
||||
'@joshwooding/vite-plugin-react-docgen-typescript': 0.3.0(typescript@5.3.3)(vite@5.0.12)
|
||||
'@rollup/pluginutils': 5.1.0
|
||||
'@storybook/builder-vite': 7.6.10(typescript@5.3.3)(vite@5.0.11)
|
||||
'@storybook/builder-vite': 7.6.10(typescript@5.3.3)(vite@5.0.12)
|
||||
'@storybook/react': 7.6.10(react-dom@18.2.0)(react@18.2.0)(typescript@5.3.3)
|
||||
'@vitejs/plugin-react': 3.1.0(vite@5.0.11)
|
||||
'@vitejs/plugin-react': 3.1.0(vite@5.0.12)
|
||||
magic-string: 0.30.5
|
||||
react: 18.2.0
|
||||
react-docgen: 7.0.3
|
||||
react-dom: 18.2.0(react@18.2.0)
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
transitivePeerDependencies:
|
||||
- '@preact/preset-vite'
|
||||
- encoding
|
||||
@ -6611,18 +6455,18 @@ packages:
|
||||
resolution: {integrity: sha512-zuVdFrMJiuCDQUMCzQaD6KL28MjnqqN8XnAqiEq9PNm/hCPTSGfrXCOfwj1ow4LFb/tNymJPwsNbVePc1xFqrQ==}
|
||||
dev: true
|
||||
|
||||
/@vitejs/plugin-react-swc@3.5.0(vite@5.0.11):
|
||||
/@vitejs/plugin-react-swc@3.5.0(vite@5.0.12):
|
||||
resolution: {integrity: sha512-1PrOvAaDpqlCV+Up8RkAh9qaiUjoDUcjtttyhXDKw53XA6Ve16SOp6cCOpRs8Dj8DqUQs6eTW5YkLcLJjrXAig==}
|
||||
peerDependencies:
|
||||
vite: ^4 || ^5
|
||||
dependencies:
|
||||
'@swc/core': 1.3.101
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
transitivePeerDependencies:
|
||||
- '@swc/helpers'
|
||||
dev: true
|
||||
|
||||
/@vitejs/plugin-react@3.1.0(vite@5.0.11):
|
||||
/@vitejs/plugin-react@3.1.0(vite@5.0.12):
|
||||
resolution: {integrity: sha512-AfgcRL8ZBhAlc3BFdigClmTUMISmmzHn7sB2h9U1odvc5U/MjWXsAaz18b/WoppUTDBzxOJwo2VdClfUcItu9g==}
|
||||
engines: {node: ^14.18.0 || >=16.0.0}
|
||||
peerDependencies:
|
||||
@ -6633,7 +6477,7 @@ packages:
|
||||
'@babel/plugin-transform-react-jsx-source': 7.23.3(@babel/core@7.23.7)
|
||||
magic-string: 0.27.0
|
||||
react-refresh: 0.14.0
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
dev: true
|
||||
@ -7640,7 +7484,7 @@ packages:
|
||||
resolution: {integrity: sha512-Cg7TFGpIr01vOQNODXOOaGz2NpCU5gl8x1qJFbb6hbZxR7XrcE2vtbAsTAbJ7/xwJtUuJEw8K8Zr/AE0LHlesg==}
|
||||
engines: {node: '>=10', npm: '>=6'}
|
||||
dependencies:
|
||||
'@babel/runtime': 7.23.6
|
||||
'@babel/runtime': 7.23.8
|
||||
cosmiconfig: 7.1.0
|
||||
resolve: 1.22.8
|
||||
dev: false
|
||||
@ -7959,17 +7803,6 @@ packages:
|
||||
engines: {node: '>=6'}
|
||||
dev: true
|
||||
|
||||
/clear-any-console@1.16.2:
|
||||
resolution: {integrity: sha512-OL/7wZpNy9x0GBSzz3poWja84Nr7iaH8aYNsJ5Uet2BVLj6Lm1zvWpZN/yH46Vv3ae7YfHmLLMmfHj911fshJg==}
|
||||
dev: true
|
||||
|
||||
/cli-check-node@1.3.4:
|
||||
resolution: {integrity: sha512-iLGgQXm82iP8eH3R67qbOWs5qqUOLmNnMy5Lzl/RybcMh3y+H2zWU5POzuQ6oDUOdz4XWuxcFhP75szqd6frLg==}
|
||||
dependencies:
|
||||
chalk: 3.0.0
|
||||
log-symbols: 3.0.0
|
||||
dev: true
|
||||
|
||||
/cli-cursor@3.1.0:
|
||||
resolution: {integrity: sha512-I/zHAwsKf9FqGoXM4WWRACob9+SNukZTd94DWF57E4toouRulbCxcUh6RKUEOQlYTHJnzkPMySvPNaaSLNfLZw==}
|
||||
engines: {node: '>=8'}
|
||||
@ -7977,19 +7810,6 @@ packages:
|
||||
restore-cursor: 3.1.0
|
||||
dev: true
|
||||
|
||||
/cli-handle-error@4.4.0:
|
||||
resolution: {integrity: sha512-RyBCnKlc7xVr79cKb9RfBq+4fjwQeX8HKeNzIPnI/W+DWWIUUKh2ur576DpwJ3kZt2UGHlIAOF7N9txy+mgZsA==}
|
||||
dependencies:
|
||||
chalk: 3.0.0
|
||||
log-symbols: 3.0.0
|
||||
dev: true
|
||||
|
||||
/cli-handle-unhandled@1.1.1:
|
||||
resolution: {integrity: sha512-Em91mJvU7VdgT2MxQpyY633vW1tDzRjPDbii6ZjEBHHLLh0xDoVkFt/wjvi9nSvJcz9rJmvtJSK8KL/hvF0Stg==}
|
||||
dependencies:
|
||||
cli-handle-error: 4.4.0
|
||||
dev: true
|
||||
|
||||
/cli-spinners@2.9.2:
|
||||
resolution: {integrity: sha512-ywqV+5MmyL4E7ybXgKys4DugZbX0FC6LnwrhjuykIjnK9k8OQacQ7axGKnjDXWNhns0xot3bZI5h55H8yo9cJg==}
|
||||
engines: {node: '>=6'}
|
||||
@ -8004,14 +7824,6 @@ packages:
|
||||
'@colors/colors': 1.5.0
|
||||
dev: true
|
||||
|
||||
/cli-welcome@2.2.2:
|
||||
resolution: {integrity: sha512-LgDGS0TW4nIf8v81wpuZzfOEDPcy68u0jKR0Fy5IaWftqdminI6FoDiMFt1mjPylqKGNv/wFsZ7fCs93IeDMIw==}
|
||||
dependencies:
|
||||
chalk: 2.4.2
|
||||
clear-any-console: 1.16.2
|
||||
prettier: 2.8.8
|
||||
dev: true
|
||||
|
||||
/cliui@8.0.1:
|
||||
resolution: {integrity: sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==}
|
||||
engines: {node: '>=12'}
|
||||
@ -8606,7 +8418,7 @@ packages:
|
||||
dependencies:
|
||||
debug: 4.3.4
|
||||
is-url: 1.2.4
|
||||
postcss: 8.4.32
|
||||
postcss: 8.4.33
|
||||
postcss-values-parser: 2.0.1
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
@ -8617,8 +8429,8 @@ packages:
|
||||
engines: {node: ^12.0.0 || ^14.0.0 || >=16.0.0}
|
||||
dependencies:
|
||||
is-url: 1.2.4
|
||||
postcss: 8.4.32
|
||||
postcss-values-parser: 6.0.2(postcss@8.4.32)
|
||||
postcss: 8.4.33
|
||||
postcss-values-parser: 6.0.2(postcss@8.4.33)
|
||||
dev: true
|
||||
|
||||
/detective-sass@3.0.2:
|
||||
@ -8968,36 +8780,6 @@ packages:
|
||||
- supports-color
|
||||
dev: true
|
||||
|
||||
/esbuild@0.17.19:
|
||||
resolution: {integrity: sha512-XQ0jAPFkK/u3LcVRcvVHQcTIqD6E2H1fvZMA5dQPSOWb3suUbWbfbRf94pjc0bNzRYLfIrDRQXr7X+LHIm5oHw==}
|
||||
engines: {node: '>=12'}
|
||||
hasBin: true
|
||||
requiresBuild: true
|
||||
optionalDependencies:
|
||||
'@esbuild/android-arm': 0.17.19
|
||||
'@esbuild/android-arm64': 0.17.19
|
||||
'@esbuild/android-x64': 0.17.19
|
||||
'@esbuild/darwin-arm64': 0.17.19
|
||||
'@esbuild/darwin-x64': 0.17.19
|
||||
'@esbuild/freebsd-arm64': 0.17.19
|
||||
'@esbuild/freebsd-x64': 0.17.19
|
||||
'@esbuild/linux-arm': 0.17.19
|
||||
'@esbuild/linux-arm64': 0.17.19
|
||||
'@esbuild/linux-ia32': 0.17.19
|
||||
'@esbuild/linux-loong64': 0.17.19
|
||||
'@esbuild/linux-mips64el': 0.17.19
|
||||
'@esbuild/linux-ppc64': 0.17.19
|
||||
'@esbuild/linux-riscv64': 0.17.19
|
||||
'@esbuild/linux-s390x': 0.17.19
|
||||
'@esbuild/linux-x64': 0.17.19
|
||||
'@esbuild/netbsd-x64': 0.17.19
|
||||
'@esbuild/openbsd-x64': 0.17.19
|
||||
'@esbuild/sunos-x64': 0.17.19
|
||||
'@esbuild/win32-arm64': 0.17.19
|
||||
'@esbuild/win32-ia32': 0.17.19
|
||||
'@esbuild/win32-x64': 0.17.19
|
||||
dev: true
|
||||
|
||||
/esbuild@0.18.20:
|
||||
resolution: {integrity: sha512-ceqxoedUrcayh7Y7ZX6NdbbDzGROiyVBgC4PriJThBKSVPWnnFHZAkfI1lJT8QFkOwH4qOS2SJkS4wvpGl8BpA==}
|
||||
engines: {node: '>=12'}
|
||||
@ -9198,6 +8980,14 @@ packages:
|
||||
eslint: 8.56.0
|
||||
dev: true
|
||||
|
||||
/eslint-plugin-react-refresh@0.4.5(eslint@8.56.0):
|
||||
resolution: {integrity: sha512-D53FYKJa+fDmZMtriODxvhwrO+IOqrxoEo21gMA0sjHdU6dPVH4OhyFip9ypl8HOF5RV5KdTo+rBQLvnY2cO8w==}
|
||||
peerDependencies:
|
||||
eslint: '>=7'
|
||||
dependencies:
|
||||
eslint: 8.56.0
|
||||
dev: true
|
||||
|
||||
/eslint-plugin-react@7.33.2(eslint@8.56.0):
|
||||
resolution: {integrity: sha512-73QQMKALArI8/7xGLNI/3LylrEYrlKZSb5C9+q3OtOewTnMQi5cT+aE9E41sLCmli3I9PGGmD1yiZydyo4FEPw==}
|
||||
engines: {node: '>=4'}
|
||||
@ -10908,13 +10698,6 @@ packages:
|
||||
resolution: {integrity: sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==}
|
||||
dev: true
|
||||
|
||||
/log-symbols@3.0.0:
|
||||
resolution: {integrity: sha512-dSkNGuI7iG3mfvDzUuYZyvk5dD9ocYCYzNU6CYDE6+Xqd+gwme6Z00NS3dUh8mq/73HaEtT7m6W+yUPtU6BZnQ==}
|
||||
engines: {node: '>=8'}
|
||||
dependencies:
|
||||
chalk: 2.4.2
|
||||
dev: true
|
||||
|
||||
/log-symbols@4.1.0:
|
||||
resolution: {integrity: sha512-8XPvpAA8uyhfteu8pIvQxpJZ7SYYdpUivZpGy6sFsBuKRY/7rQGavedeB8aK+Zkyq6upMFVL/9AW6vOYzfRyLg==}
|
||||
engines: {node: '>=10'}
|
||||
@ -11565,10 +11348,24 @@ packages:
|
||||
react: 18.2.0
|
||||
dev: false
|
||||
|
||||
/overlayscrollbars-react@0.5.4(overlayscrollbars@2.4.7)(react@18.2.0):
|
||||
resolution: {integrity: sha512-FPKx9XnXovTnI4+2JXig5uEaTLSEJ6svOwPzIfBBXTHBRNsz2+WhYUmfM0K/BNYxjgDEwuPm+NQhEoOA0RoG1g==}
|
||||
peerDependencies:
|
||||
overlayscrollbars: ^2.0.0
|
||||
react: '>=16.8.0'
|
||||
dependencies:
|
||||
overlayscrollbars: 2.4.7
|
||||
react: 18.2.0
|
||||
dev: false
|
||||
|
||||
/overlayscrollbars@2.4.6:
|
||||
resolution: {integrity: sha512-C7tmhetwMv9frEvIT/RfkAVEgbjRNz/Gh2zE8BVmN+jl35GRaAnz73rlGQCMRoC2arpACAXyMNnJkzHb7GBrcA==}
|
||||
dev: false
|
||||
|
||||
/overlayscrollbars@2.4.7:
|
||||
resolution: {integrity: sha512-02X2/nHno35dzebCx+EO2tRDaKAOltZqUKdUqvq3Pt8htCuhJbYi+mjr0CYerVeGRRoZ2Uo6/8XrNg//DJJ+GA==}
|
||||
dev: false
|
||||
|
||||
/p-limit@2.3.0:
|
||||
resolution: {integrity: sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w==}
|
||||
engines: {node: '>=6'}
|
||||
@ -11774,7 +11571,7 @@ packages:
|
||||
uniq: 1.0.1
|
||||
dev: true
|
||||
|
||||
/postcss-values-parser@6.0.2(postcss@8.4.32):
|
||||
/postcss-values-parser@6.0.2(postcss@8.4.33):
|
||||
resolution: {integrity: sha512-YLJpK0N1brcNJrs9WatuJFtHaV9q5aAOj+S4DI5S7jgHlRfm0PIbDCAFRYMQD5SHq7Fy6xsDhyutgS0QOAs0qw==}
|
||||
engines: {node: '>=10'}
|
||||
peerDependencies:
|
||||
@ -11782,19 +11579,10 @@ packages:
|
||||
dependencies:
|
||||
color-name: 1.1.4
|
||||
is-url-superb: 4.0.0
|
||||
postcss: 8.4.32
|
||||
postcss: 8.4.33
|
||||
quote-unquote: 1.0.0
|
||||
dev: true
|
||||
|
||||
/postcss@8.4.32:
|
||||
resolution: {integrity: sha512-D/kj5JNu6oo2EIy+XL/26JEDTlIbB8hw85G8StOE6L74RQAVVP5rej6wxCNqyMbR4RkPfqvezVbPw81Ngd6Kcw==}
|
||||
engines: {node: ^10 || ^12 || >=14}
|
||||
dependencies:
|
||||
nanoid: 3.3.7
|
||||
picocolors: 1.0.0
|
||||
source-map-js: 1.0.2
|
||||
dev: true
|
||||
|
||||
/postcss@8.4.33:
|
||||
resolution: {integrity: sha512-Kkpbhhdjw2qQs2O2DGX+8m5OVqEcbB9HRBvuYM9pgrjEFUg30A9LmXNlTAUj4S9kgtGyrMbTzVjH7E+s5Re2yg==}
|
||||
engines: {node: ^10 || ^12 || >=14}
|
||||
@ -12207,6 +11995,26 @@ packages:
|
||||
react-dom: 18.2.0(react@18.2.0)
|
||||
dev: false
|
||||
|
||||
/react-i18next@14.0.1(i18next@23.7.16)(react-dom@18.2.0)(react@18.2.0):
|
||||
resolution: {integrity: sha512-TMV8hFismBmpMdIehoFHin/okfvgjFhp723RYgIqB4XyhDobVMyukyM3Z8wtTRmajyFMZrBl/OaaXF2P6WjUAw==}
|
||||
peerDependencies:
|
||||
i18next: '>= 23.2.3'
|
||||
react: '>= 16.8.0'
|
||||
react-dom: '*'
|
||||
react-native: '*'
|
||||
peerDependenciesMeta:
|
||||
react-dom:
|
||||
optional: true
|
||||
react-native:
|
||||
optional: true
|
||||
dependencies:
|
||||
'@babel/runtime': 7.23.8
|
||||
html-parse-stringify: 3.0.1
|
||||
i18next: 23.7.16
|
||||
react: 18.2.0
|
||||
react-dom: 18.2.0(react@18.2.0)
|
||||
dev: false
|
||||
|
||||
/react-icons@5.0.1(react@18.2.0):
|
||||
resolution: {integrity: sha512-WqLZJ4bLzlhmsvme6iFdgO8gfZP17rfjYEJ2m9RsZjZ+cc4k1hTzknEz63YS1MeT50kVzoa1Nz36f4BEx+Wigw==}
|
||||
peerDependencies:
|
||||
@ -14020,15 +13828,15 @@ packages:
|
||||
engines: {node: '>= 0.8'}
|
||||
dev: true
|
||||
|
||||
/vite-plugin-css-injected-by-js@3.3.1(vite@5.0.11):
|
||||
/vite-plugin-css-injected-by-js@3.3.1(vite@5.0.12):
|
||||
resolution: {integrity: sha512-PjM/X45DR3/V1K1fTRs8HtZHEQ55kIfdrn+dzaqNBFrOYO073SeSNCxp4j7gSYhV9NffVHaEnOL4myoko0ePAg==}
|
||||
peerDependencies:
|
||||
vite: '>2.0.0-0'
|
||||
dependencies:
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
dev: true
|
||||
|
||||
/vite-plugin-dts@3.7.1(@types/node@20.11.5)(typescript@5.3.3)(vite@5.0.11):
|
||||
/vite-plugin-dts@3.7.1(@types/node@20.11.5)(typescript@5.3.3)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-VZJckNFpVfRAkmOxhGT5OgTUVWVXxkNQqLpBUuiNGAr9HbtvmvsPLo2JB3Xhn+o/Z9+CT6YZfYa4bX9SGR5hNw==}
|
||||
engines: {node: ^14.18.0 || >=16.0.0}
|
||||
peerDependencies:
|
||||
@ -14044,7 +13852,7 @@ packages:
|
||||
debug: 4.3.4
|
||||
kolorist: 1.8.0
|
||||
typescript: 5.3.3
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
vue-tsc: 1.8.27(typescript@5.3.3)
|
||||
transitivePeerDependencies:
|
||||
- '@types/node'
|
||||
@ -14052,7 +13860,7 @@ packages:
|
||||
- supports-color
|
||||
dev: true
|
||||
|
||||
/vite-plugin-eslint@1.8.1(eslint@8.56.0)(vite@5.0.11):
|
||||
/vite-plugin-eslint@1.8.1(eslint@8.56.0)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-PqdMf3Y2fLO9FsNPmMX+//2BF5SF8nEWspZdgl4kSt7UvHDRHVVfHvxsD7ULYzZrJDGRxR81Nq7TOFgwMnUang==}
|
||||
peerDependencies:
|
||||
eslint: '>=7'
|
||||
@ -14062,10 +13870,10 @@ packages:
|
||||
'@types/eslint': 8.56.0
|
||||
eslint: 8.56.0
|
||||
rollup: 2.79.1
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
dev: true
|
||||
|
||||
/vite-tsconfig-paths@4.3.1(typescript@5.3.3)(vite@5.0.11):
|
||||
/vite-tsconfig-paths@4.3.1(typescript@5.3.3)(vite@5.0.12):
|
||||
resolution: {integrity: sha512-cfgJwcGOsIxXOLU/nELPny2/LUD/lcf1IbfyeKTv2bsupVbTH/xpFtdQlBmIP1GEK2CjjLxYhFfB+QODFAx5aw==}
|
||||
peerDependencies:
|
||||
vite: '*'
|
||||
@ -14076,14 +13884,14 @@ packages:
|
||||
debug: 4.3.4
|
||||
globrex: 0.1.2
|
||||
tsconfck: 3.0.1(typescript@5.3.3)
|
||||
vite: 5.0.11(@types/node@20.11.5)
|
||||
vite: 5.0.12(@types/node@20.11.5)
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
- typescript
|
||||
dev: true
|
||||
|
||||
/vite@5.0.11(@types/node@20.11.5):
|
||||
resolution: {integrity: sha512-XBMnDjZcNAw/G1gEiskiM1v6yzM4GE5aMGvhWTlHAYYhxb7S3/V1s3m2LDHa8Vh6yIWYYB0iJwsEaS523c4oYA==}
|
||||
/vite@5.0.12(@types/node@20.11.5):
|
||||
resolution: {integrity: sha512-4hsnEkG3q0N4Tzf1+t6NdN9dg/L3BM+q8SWgbSPnJvrgH2kgdyzfVJwbR1ic69/4uMJJ/3dqDZZE5/WwqW8U1w==}
|
||||
engines: {node: ^18.0.0 || >=20.0.0}
|
||||
hasBin: true
|
||||
peerDependencies:
|
||||
|
@ -7,7 +7,6 @@
|
||||
"img2img": "صورة إلى صورة",
|
||||
"unifiedCanvas": "لوحة موحدة",
|
||||
"nodes": "عقد",
|
||||
"langArabic": "العربية",
|
||||
"nodesDesc": "نظام مبني على العقد لإنتاج الصور قيد التطوير حاليًا. تبقى على اتصال مع تحديثات حول هذه الميزة المذهلة.",
|
||||
"postProcessing": "معالجة بعد الإصدار",
|
||||
"postProcessDesc1": "Invoke AI توفر مجموعة واسعة من ميزات المعالجة بعد الإصدار. تحسين الصور واستعادة الوجوه متاحين بالفعل في واجهة الويب. يمكنك الوصول إليهم من الخيارات المتقدمة في قائمة الخيارات في علامة التبويب Text To Image و Image To Image. يمكن أيضًا معالجة الصور مباشرةً باستخدام أزرار الإجراء على الصورة فوق عرض الصورة الحالي أو في العارض.",
|
||||
|
5
invokeai/frontend/web/public/locales/az.json
Normal file
5
invokeai/frontend/web/public/locales/az.json
Normal file
@ -0,0 +1,5 @@
|
||||
{
|
||||
"accessibility": {
|
||||
"about": "Haqqında"
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -86,6 +86,7 @@
|
||||
"back": "Back",
|
||||
"batch": "Batch Manager",
|
||||
"cancel": "Cancel",
|
||||
"copy": "Copy",
|
||||
"copyError": "$t(gallery.copy) Error",
|
||||
"close": "Close",
|
||||
"on": "On",
|
||||
@ -117,24 +118,7 @@
|
||||
"inpaint": "inpaint",
|
||||
"input": "Input",
|
||||
"installed": "Installed",
|
||||
"langArabic": "العربية",
|
||||
"langBrPortuguese": "Português do Brasil",
|
||||
"langDutch": "Nederlands",
|
||||
"langEnglish": "English",
|
||||
"langFrench": "Français",
|
||||
"langGerman": "German",
|
||||
"langHebrew": "Hebrew",
|
||||
"langItalian": "Italiano",
|
||||
"langJapanese": "日本語",
|
||||
"langKorean": "한국어",
|
||||
"langPolish": "Polski",
|
||||
"langPortuguese": "Português",
|
||||
"langRussian": "Русский",
|
||||
"langSimplifiedChinese": "简体中文",
|
||||
"langSpanish": "Español",
|
||||
"languagePickerLabel": "Language",
|
||||
"langUkranian": "Украї́нська",
|
||||
"lightMode": "Light Mode",
|
||||
"linear": "Linear",
|
||||
"load": "Load",
|
||||
"loading": "Loading",
|
||||
@ -191,6 +175,7 @@
|
||||
"statusUpscaling": "Upscaling",
|
||||
"statusUpscalingESRGAN": "Upscaling (ESRGAN)",
|
||||
"template": "Template",
|
||||
"toResolve": "To resolve",
|
||||
"training": "Training",
|
||||
"trainingDesc1": "A dedicated workflow for training your own embeddings and checkpoints using Textual Inversion and Dreambooth from the web interface.",
|
||||
"trainingDesc2": "InvokeAI already supports training custom embeddourings using Textual Inversion using the main script.",
|
||||
@ -251,6 +236,9 @@
|
||||
"fill": "Fill",
|
||||
"h": "H",
|
||||
"handAndFace": "Hand and Face",
|
||||
"face": "Face",
|
||||
"body": "Body",
|
||||
"hands": "Hands",
|
||||
"hed": "HED",
|
||||
"hedDescription": "Holistically-Nested Edge Detection",
|
||||
"hideAdvanced": "Hide Advanced",
|
||||
@ -277,8 +265,8 @@
|
||||
"noneDescription": "No processing applied",
|
||||
"normalBae": "Normal BAE",
|
||||
"normalBaeDescription": "Normal BAE processing",
|
||||
"openPose": "Openpose",
|
||||
"openPoseDescription": "Human pose estimation using Openpose",
|
||||
"dwOpenpose": "DW Openpose",
|
||||
"dwOpenposeDescription": "Human pose estimation using DW Openpose",
|
||||
"pidi": "PIDI",
|
||||
"pidiDescription": "PIDI image processing",
|
||||
"processor": "Processor",
|
||||
@ -913,6 +901,7 @@
|
||||
"doesNotExist": "does not exist",
|
||||
"downloadWorkflow": "Download Workflow JSON",
|
||||
"edge": "Edge",
|
||||
"editMode": "Edit in Workflow Editor",
|
||||
"enum": "Enum",
|
||||
"enumDescription": "Enums are values that may be one of a number of options.",
|
||||
"executionStateCompleted": "Completed",
|
||||
@ -1008,11 +997,16 @@
|
||||
"problemReadingMetadata": "Problem reading metadata from image",
|
||||
"problemReadingWorkflow": "Problem reading workflow from image",
|
||||
"problemSettingTitle": "Problem Setting Title",
|
||||
"resetToDefaultValue": "Reset to default value",
|
||||
"reloadNodeTemplates": "Reload Node Templates",
|
||||
"removeLinearView": "Remove from Linear View",
|
||||
"reorderLinearView": "Reorder Linear View",
|
||||
"newWorkflow": "New Workflow",
|
||||
"newWorkflowDesc": "Create a new workflow?",
|
||||
"newWorkflowDesc2": "Your current workflow has unsaved changes.",
|
||||
"clearWorkflow": "Clear Workflow",
|
||||
"clearWorkflowDesc": "Clear this workflow and start a new one?",
|
||||
"clearWorkflowDesc2": "Your current workflow has unsaved changes.",
|
||||
"scheduler": "Scheduler",
|
||||
"schedulerDescription": "TODO",
|
||||
"sDXLMainModelField": "SDXL Model",
|
||||
@ -1077,6 +1071,7 @@
|
||||
"vaeModelFieldDescription": "TODO",
|
||||
"validateConnections": "Validate Connections and Graph",
|
||||
"validateConnectionsHelp": "Prevent invalid connections from being made, and invalid graphs from being invoked",
|
||||
"viewMode": "Use in Linear View",
|
||||
"unableToGetWorkflowVersion": "Unable to get workflow schema version",
|
||||
"unrecognizedWorkflowVersion": "Unrecognized workflow schema version {{version}}",
|
||||
"version": "Version",
|
||||
@ -1372,6 +1367,7 @@
|
||||
"problemCopyingCanvasDesc": "Unable to export base layer",
|
||||
"problemCopyingImage": "Unable to Copy Image",
|
||||
"problemCopyingImageLink": "Unable to Copy Image Link",
|
||||
"problemDownloadingImage": "Unable to Download Image",
|
||||
"problemDownloadingCanvas": "Problem Downloading Canvas",
|
||||
"problemDownloadingCanvasDesc": "Unable to export base layer",
|
||||
"problemImportingMask": "Problem Importing Mask",
|
||||
@ -1428,9 +1424,8 @@
|
||||
"clipSkip": {
|
||||
"heading": "CLIP Skip",
|
||||
"paragraphs": [
|
||||
"Choose how many layers of the CLIP model to skip.",
|
||||
"Some models work better with certain CLIP Skip settings.",
|
||||
"A higher value typically results in a less detailed image."
|
||||
"How many layers of the CLIP model to skip.",
|
||||
"Certain models are better suited to be used with CLIP Skip."
|
||||
]
|
||||
},
|
||||
"paramNegativeConditioning": {
|
||||
@ -1450,7 +1445,8 @@
|
||||
"paramScheduler": {
|
||||
"heading": "Scheduler",
|
||||
"paragraphs": [
|
||||
"Scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output."
|
||||
"Scheduler used during the generation process.",
|
||||
"Each scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output."
|
||||
]
|
||||
},
|
||||
"compositingBlur": {
|
||||
@ -1463,61 +1459,55 @@
|
||||
},
|
||||
"compositingCoherencePass": {
|
||||
"heading": "Coherence Pass",
|
||||
"paragraphs": [
|
||||
"A second round of denoising helps to composite the Inpainted/Outpainted image."
|
||||
]
|
||||
"paragraphs": ["A second round of denoising helps to composite the Inpainted/Outpainted image."]
|
||||
},
|
||||
"compositingCoherenceMode": {
|
||||
"heading": "Mode",
|
||||
"paragraphs": ["The mode of the Coherence Pass."]
|
||||
"paragraphs": ["Method used to create a coherent image with the newly generated masked area."]
|
||||
},
|
||||
"compositingCoherenceSteps": {
|
||||
"heading": "Steps",
|
||||
"paragraphs": [
|
||||
"Number of denoising steps used in the Coherence Pass.",
|
||||
"Same as the main Steps parameter."
|
||||
]
|
||||
"paragraphs": ["Number of steps in the Coherence Pass.", "Similar to Generation Steps."]
|
||||
},
|
||||
"compositingStrength": {
|
||||
"heading": "Strength",
|
||||
"paragraphs": [
|
||||
"Denoising strength for the Coherence Pass.",
|
||||
"Same as the Image to Image Denoising Strength parameter."
|
||||
]
|
||||
"paragraphs": ["Amount of noise added for the Coherence Pass.", "Similar to Denoising Strength."]
|
||||
},
|
||||
"compositingMaskAdjustments": {
|
||||
"heading": "Mask Adjustments",
|
||||
"paragraphs": ["Adjust the mask."]
|
||||
},
|
||||
"controlNetBeginEnd": {
|
||||
"heading": "Begin / End Step Percentage",
|
||||
"paragraphs": [
|
||||
"Which steps of the denoising process will have the ControlNet applied.",
|
||||
"ControlNets applied at the beginning of the process guide composition, and ControlNets applied at the end guide details."
|
||||
]
|
||||
},
|
||||
"controlNetControlMode": {
|
||||
"heading": "Control Mode",
|
||||
"paragraphs": [
|
||||
"Lends more weight to either the prompt or ControlNet."
|
||||
]
|
||||
},
|
||||
"controlNetResizeMode": {
|
||||
"heading": "Resize Mode",
|
||||
"paragraphs": [
|
||||
"How the ControlNet image will be fit to the image output size."
|
||||
]
|
||||
},
|
||||
"controlNet": {
|
||||
"heading": "ControlNet",
|
||||
"paragraphs": [
|
||||
"ControlNets provide guidance to the generation process, helping create images with controlled composition, structure, or style, depending on the model selected."
|
||||
]
|
||||
},
|
||||
"controlNetBeginEnd": {
|
||||
"heading": "Begin / End Step Percentage",
|
||||
"paragraphs": [
|
||||
"The part of the of the denoising process that will have the Control Adapter applied.",
|
||||
"Generally, Control Adapters applied at the start of the process guide composition, and Control Adapters applied at the end guide details."
|
||||
]
|
||||
},
|
||||
"controlNetControlMode": {
|
||||
"heading": "Control Mode",
|
||||
"paragraphs": ["Lend more weight to either the prompt or ControlNet."]
|
||||
},
|
||||
"controlNetProcessor": {
|
||||
"heading": "Processor",
|
||||
"paragraphs": [
|
||||
"Method of processing the input image to guide the generation process. Different processors will providedifferent effects or styles in your generated images."
|
||||
]
|
||||
},
|
||||
"controlNetResizeMode": {
|
||||
"heading": "Resize Mode",
|
||||
"paragraphs": ["Method to fit Control Adapter's input image size to the output generation size."]
|
||||
},
|
||||
"controlNetWeight": {
|
||||
"heading": "Weight",
|
||||
"paragraphs": [
|
||||
"How strongly the ControlNet will impact the generated image."
|
||||
"Weight of the Control Adapter. Higher weight will lead to larger impacts on the final image."
|
||||
]
|
||||
},
|
||||
"dynamicPrompts": {
|
||||
@ -1530,9 +1520,7 @@
|
||||
},
|
||||
"dynamicPromptsMaxPrompts": {
|
||||
"heading": "Max Prompts",
|
||||
"paragraphs": [
|
||||
"Limits the number of prompts that can be generated by Dynamic Prompts."
|
||||
]
|
||||
"paragraphs": ["Limits the number of prompts that can be generated by Dynamic Prompts."]
|
||||
},
|
||||
"dynamicPromptsSeedBehaviour": {
|
||||
"heading": "Seed Behaviour",
|
||||
@ -1543,15 +1531,23 @@
|
||||
"Per Image will use a unique seed for each image. This provides more variation."
|
||||
]
|
||||
},
|
||||
"imageFit": {
|
||||
"heading": "Fit Initial Image to Output Size",
|
||||
"paragraphs": [
|
||||
"Resizes the initial image to the width and height of the output image. Recommended to enable."
|
||||
]
|
||||
},
|
||||
"infillMethod": {
|
||||
"heading": "Infill Method",
|
||||
"paragraphs": ["Method to infill the selected area."]
|
||||
"paragraphs": ["Method of infilling during the Outpainting or Inpainting process."]
|
||||
},
|
||||
"lora": {
|
||||
"heading": "LoRA Weight",
|
||||
"paragraphs": [
|
||||
"Higher LoRA weight will lead to larger impacts on the final image."
|
||||
]
|
||||
"heading": "LoRA",
|
||||
"paragraphs": ["Lightweight models that are used in conjunction with base models."]
|
||||
},
|
||||
"loraWeight": {
|
||||
"heading": "Weight",
|
||||
"paragraphs": ["Weight of the LoRA. Higher weight will lead to larger impacts on the final image."]
|
||||
},
|
||||
"noiseUseCPU": {
|
||||
"heading": "Use CPU Noise",
|
||||
@ -1561,16 +1557,25 @@
|
||||
"There is no performance impact to enabling CPU Noise."
|
||||
]
|
||||
},
|
||||
"paramAspect": {
|
||||
"heading": "Aspect",
|
||||
"paragraphs": [
|
||||
"Aspect ratio of the generated image. Changing the ratio will update the Width and Height accordingly.",
|
||||
"“Optimize” will set the Width and Height to optimal dimensions for the chosen model."
|
||||
]
|
||||
},
|
||||
"paramCFGScale": {
|
||||
"heading": "CFG Scale",
|
||||
"paragraphs": [
|
||||
"Controls how much your prompt influences the generation process."
|
||||
"Controls how much the prompt influences the generation process.",
|
||||
"High CFG Scale values can result in over-saturation and distorted generation results. "
|
||||
]
|
||||
},
|
||||
"paramCFGRescaleMultiplier": {
|
||||
"heading": "CFG Rescale Multiplier",
|
||||
"paragraphs": [
|
||||
"Rescale multiplier for CFG guidance, used for models trained using zero-terminal SNR (ztsnr). Suggested value 0.7."
|
||||
"Rescale multiplier for CFG guidance, used for models trained using zero-terminal SNR (ztsnr).",
|
||||
"Suggested value of 0.7 for these models."
|
||||
]
|
||||
},
|
||||
"paramDenoisingStrength": {
|
||||
@ -1580,6 +1585,16 @@
|
||||
"0 will result in an identical image, while 1 will result in a completely new image."
|
||||
]
|
||||
},
|
||||
"paramHeight": {
|
||||
"heading": "Height",
|
||||
"paragraphs": ["Height of the generated image. Must be a multiple of 8."]
|
||||
},
|
||||
"paramHrf": {
|
||||
"heading": "Enable High Resolution Fix",
|
||||
"paragraphs": [
|
||||
"Generate high quality images at a larger resolution than optimal for the model. Generally used to prevent duplication in the generated image."
|
||||
]
|
||||
},
|
||||
"paramIterations": {
|
||||
"heading": "Iterations",
|
||||
"paragraphs": [
|
||||
@ -1590,8 +1605,7 @@
|
||||
"paramModel": {
|
||||
"heading": "Model",
|
||||
"paragraphs": [
|
||||
"Model used for the denoising steps.",
|
||||
"Different models are typically trained to specialize in producing particular aesthetic results and content."
|
||||
"Model used for generation. Different models are trained to specialize in producing different aesthetic results and content."
|
||||
]
|
||||
},
|
||||
"paramRatio": {
|
||||
@ -1605,7 +1619,7 @@
|
||||
"heading": "Seed",
|
||||
"paragraphs": [
|
||||
"Controls the starting noise used for generation.",
|
||||
"Disable “Random Seed” to produce identical results with the same generation settings."
|
||||
"Disable the “Random” option to produce identical results with the same generation settings."
|
||||
]
|
||||
},
|
||||
"paramSteps": {
|
||||
@ -1615,23 +1629,93 @@
|
||||
"Higher step counts will typically create better images but will require more generation time."
|
||||
]
|
||||
},
|
||||
"paramUpscaleMethod": {
|
||||
"heading": "Upscale Method",
|
||||
"paragraphs": ["Method used to upscale the image for High Resolution Fix."]
|
||||
},
|
||||
"paramVAE": {
|
||||
"heading": "VAE",
|
||||
"paragraphs": [
|
||||
"Model used for translating AI output into the final image."
|
||||
]
|
||||
"paragraphs": ["Model used for translating AI output into the final image."]
|
||||
},
|
||||
"paramVAEPrecision": {
|
||||
"heading": "VAE Precision",
|
||||
"paragraphs": [
|
||||
"The precision used during VAE encoding and decoding. FP16/half precision is more efficient, at the expense of minor image variations."
|
||||
"The precision used during VAE encoding and decoding.",
|
||||
"Fp16/Half precision is more efficient, at the expense of minor image variations."
|
||||
]
|
||||
},
|
||||
"paramWidth": {
|
||||
"heading": "Width",
|
||||
"paragraphs": ["Width of the generated image. Must be a multiple of 8."]
|
||||
},
|
||||
"patchmatchDownScaleSize": {
|
||||
"heading": "Downscale",
|
||||
"paragraphs": [
|
||||
"How much downscaling occurs before infilling.",
|
||||
"Higher downscaling will improve performance and reduce quality."
|
||||
]
|
||||
},
|
||||
"refinerModel": {
|
||||
"heading": "Refiner Model",
|
||||
"paragraphs": [
|
||||
"Model used during the refiner portion of the generation process.",
|
||||
"Similar to the Generation Model."
|
||||
]
|
||||
},
|
||||
"refinerPositiveAestheticScore": {
|
||||
"heading": "Positive Aesthetic Score",
|
||||
"paragraphs": [
|
||||
"Weight generations to be more similar to images with a high aesthetic score, based on the training data."
|
||||
]
|
||||
},
|
||||
"refinerNegativeAestheticScore": {
|
||||
"heading": "Negative Aesthetic Score",
|
||||
"paragraphs": [
|
||||
"Weight generations to be more similar to images with a low aesthetic score, based on the training data."
|
||||
]
|
||||
},
|
||||
"refinerScheduler": {
|
||||
"heading": "Scheduler",
|
||||
"paragraphs": [
|
||||
"Scheduler used during the refiner portion of the generation process.",
|
||||
"Similar to the Generation Scheduler."
|
||||
]
|
||||
},
|
||||
"refinerStart": {
|
||||
"heading": "Refiner Start",
|
||||
"paragraphs": [
|
||||
"Where in the generation process the refiner will start to be used.",
|
||||
"0 means the refiner will be used for the entire generation process, 0.8 means the refiner will be used for the last 20% of the generation process."
|
||||
]
|
||||
},
|
||||
"refinerSteps": {
|
||||
"heading": "Steps",
|
||||
"paragraphs": [
|
||||
"Number of steps that will be performed during the refiner portion of the generation process.",
|
||||
"Similar to the Generation Steps."
|
||||
]
|
||||
},
|
||||
"refinerCfgScale": {
|
||||
"heading": "CFG Scale",
|
||||
"paragraphs": [
|
||||
"Controls how much the prompt influences the generation process.",
|
||||
"Similar to the Generation CFG Scale."
|
||||
]
|
||||
},
|
||||
"scaleBeforeProcessing": {
|
||||
"heading": "Scale Before Processing",
|
||||
"paragraphs": [
|
||||
"Scales the selected area to the size best suited for the model before the image generation process."
|
||||
"“Auto” scales the selected area to the size best suited for the model before the image generation process.",
|
||||
"“Manual” allows you to choose the width and height the selected area will be scaled to before the image generation process."
|
||||
]
|
||||
},
|
||||
"seamlessTilingXAxis": {
|
||||
"heading": "Seamless Tiling X Axis",
|
||||
"paragraphs": ["Seamlessly tile an image along the horizontal axis."]
|
||||
},
|
||||
"seamlessTilingYAxis": {
|
||||
"heading": "Seamless Tiling Y Axis",
|
||||
"paragraphs": ["Seamlessly tile an image along the vertical axis."]
|
||||
}
|
||||
},
|
||||
"ui": {
|
||||
@ -1716,6 +1800,7 @@
|
||||
"downloadWorkflow": "Save to File",
|
||||
"saveWorkflow": "Save Workflow",
|
||||
"saveWorkflowAs": "Save Workflow As",
|
||||
"saveWorkflowToProject": "Save Workflow to Project",
|
||||
"savingWorkflow": "Saving Workflow...",
|
||||
"problemSavingWorkflow": "Problem Saving Workflow",
|
||||
"workflowSaved": "Workflow Saved",
|
||||
@ -1730,6 +1815,7 @@
|
||||
"clearWorkflowSearchFilter": "Clear Workflow Search Filter",
|
||||
"workflowName": "Workflow Name",
|
||||
"newWorkflowCreated": "New Workflow Created",
|
||||
"workflowCleared": "Workflow Cleared",
|
||||
"workflowEditorMenu": "Workflow Editor Menu",
|
||||
"workflowIsOpen": "Workflow is Open"
|
||||
},
|
||||
|
@ -7,7 +7,6 @@
|
||||
"img2img": "Imagen a Imagen",
|
||||
"unifiedCanvas": "Lienzo Unificado",
|
||||
"nodes": "Editor del flujo de trabajo",
|
||||
"langSpanish": "Español",
|
||||
"nodesDesc": "Un sistema de generación de imágenes basado en nodos, actualmente se encuentra en desarrollo. Mantente pendiente a nuestras actualizaciones acerca de esta fabulosa funcionalidad.",
|
||||
"postProcessing": "Post-procesamiento",
|
||||
"postProcessDesc1": "Invoke AI ofrece una gran variedad de funciones de post-procesamiento, El aumento de tamaño y Restauración de Rostros ya se encuentran disponibles en la interfaz web, puedes acceder desde el menú de Opciones Avanzadas en las pestañas de Texto a Imagen y de Imagen a Imagen. También puedes acceder a estas funciones directamente mediante el botón de acciones en el menú superior de la imagen actual o en el visualizador.",
|
||||
@ -43,25 +42,10 @@
|
||||
"statusMergedModels": "Modelos combinados",
|
||||
"githubLabel": "Github",
|
||||
"discordLabel": "Discord",
|
||||
"langEnglish": "Inglés",
|
||||
"langDutch": "Holandés",
|
||||
"langFrench": "Francés",
|
||||
"langGerman": "Alemán",
|
||||
"langItalian": "Italiano",
|
||||
"langArabic": "Árabe",
|
||||
"langJapanese": "Japones",
|
||||
"langPolish": "Polaco",
|
||||
"langBrPortuguese": "Portugués brasileño",
|
||||
"langRussian": "Ruso",
|
||||
"langSimplifiedChinese": "Chino simplificado",
|
||||
"langUkranian": "Ucraniano",
|
||||
"back": "Atrás",
|
||||
"statusConvertingModel": "Convertir el modelo",
|
||||
"statusModelConverted": "Modelo adaptado",
|
||||
"statusMergingModels": "Fusionar modelos",
|
||||
"langPortuguese": "Portugués",
|
||||
"langKorean": "Coreano",
|
||||
"langHebrew": "Hebreo",
|
||||
"loading": "Cargando",
|
||||
"loadingInvokeAI": "Cargando invocar a la IA",
|
||||
"postprocessing": "Tratamiento posterior",
|
||||
@ -77,7 +61,6 @@
|
||||
"imagePrompt": "Indicación de imagen",
|
||||
"batch": "Administrador de lotes",
|
||||
"darkMode": "Modo oscuro",
|
||||
"lightMode": "Modo claro",
|
||||
"modelManager": "Administrador de modelos",
|
||||
"communityLabel": "Comunidad"
|
||||
},
|
||||
|
@ -27,22 +27,12 @@
|
||||
"statusModelChanged": "Malli vaihdettu",
|
||||
"statusConvertingModel": "Muunnetaan mallia",
|
||||
"statusModelConverted": "Malli muunnettu",
|
||||
"langFrench": "Ranska",
|
||||
"langItalian": "Italia",
|
||||
"languagePickerLabel": "Kielen valinta",
|
||||
"hotkeysLabel": "Pikanäppäimet",
|
||||
"reportBugLabel": "Raportoi Bugista",
|
||||
"langPolish": "Puola",
|
||||
"langDutch": "Hollanti",
|
||||
"settingsLabel": "Asetukset",
|
||||
"githubLabel": "Github",
|
||||
"langGerman": "Saksa",
|
||||
"langPortuguese": "Portugali",
|
||||
"discordLabel": "Discord",
|
||||
"langEnglish": "Englanti",
|
||||
"langRussian": "Venäjä",
|
||||
"langUkranian": "Ukraina",
|
||||
"langSpanish": "Espanja",
|
||||
"upload": "Lataa",
|
||||
"statusMergedModels": "Mallit yhdistelty",
|
||||
"img2img": "Kuva kuvaksi",
|
||||
|
@ -7,7 +7,6 @@
|
||||
"img2img": "Image en image",
|
||||
"unifiedCanvas": "Canvas unifié",
|
||||
"nodes": "Nœuds",
|
||||
"langFrench": "Français",
|
||||
"nodesDesc": "Un système basé sur les nœuds pour la génération d'images est actuellement en développement. Restez à l'écoute pour des mises à jour à ce sujet.",
|
||||
"postProcessing": "Post-traitement",
|
||||
"postProcessDesc1": "Invoke AI offre une grande variété de fonctionnalités de post-traitement. Le redimensionnement d'images et la restauration de visages sont déjà disponibles dans la WebUI. Vous pouvez y accéder à partir du menu 'Options avancées' des onglets 'Texte vers image' et 'Image vers image'. Vous pouvez également traiter les images directement en utilisant les boutons d'action d'image au-dessus de l'affichage d'image actuel ou dans le visualiseur.",
|
||||
@ -47,7 +46,6 @@
|
||||
"statusMergingModels": "Mélange des modèles",
|
||||
"loadingInvokeAI": "Chargement de Invoke AI",
|
||||
"cancel": "Annuler",
|
||||
"langEnglish": "Anglais",
|
||||
"statusConvertingModel": "Conversion du modèle",
|
||||
"statusModelConverted": "Modèle converti",
|
||||
"loading": "Chargement",
|
||||
|
@ -111,17 +111,6 @@
|
||||
"githubLabel": "גיטהאב",
|
||||
"discordLabel": "דיסקורד",
|
||||
"settingsLabel": "הגדרות",
|
||||
"langEnglish": "אנגלית",
|
||||
"langDutch": "הולנדית",
|
||||
"langArabic": "ערבית",
|
||||
"langFrench": "צרפתית",
|
||||
"langGerman": "גרמנית",
|
||||
"langJapanese": "יפנית",
|
||||
"langBrPortuguese": "פורטוגזית",
|
||||
"langRussian": "רוסית",
|
||||
"langSimplifiedChinese": "סינית",
|
||||
"langUkranian": "אוקראינית",
|
||||
"langSpanish": "ספרדית",
|
||||
"img2img": "תמונה לתמונה",
|
||||
"unifiedCanvas": "קנבס מאוחד",
|
||||
"nodes": "צמתים",
|
||||
@ -152,9 +141,7 @@
|
||||
"statusMergedModels": "מודלים מוזגו",
|
||||
"hotkeysLabel": "מקשים חמים",
|
||||
"reportBugLabel": "דווח באג",
|
||||
"langItalian": "איטלקית",
|
||||
"upload": "העלאה",
|
||||
"langPolish": "פולנית",
|
||||
"training": "אימון",
|
||||
"load": "טעינה",
|
||||
"back": "אחורה",
|
||||
|
@ -34,7 +34,6 @@
|
||||
"delete": "Törlés",
|
||||
"data": "Adat",
|
||||
"discordLabel": "Discord",
|
||||
"folder": "Mappa",
|
||||
"langEnglish": "Angol"
|
||||
"folder": "Mappa"
|
||||
}
|
||||
}
|
||||
|
@ -7,7 +7,6 @@
|
||||
"img2img": "Immagine a Immagine",
|
||||
"unifiedCanvas": "Tela unificata",
|
||||
"nodes": "Editor del flusso di lavoro",
|
||||
"langItalian": "Italiano",
|
||||
"nodesDesc": "Attualmente è in fase di sviluppo un sistema basato su nodi per la generazione di immagini. Resta sintonizzato per gli aggiornamenti su questa fantastica funzionalità.",
|
||||
"postProcessing": "Post-elaborazione",
|
||||
"postProcessDesc1": "Invoke AI offre un'ampia varietà di funzionalità di post-elaborazione. Ampliamento Immagine e Restaura Volti sono già disponibili nell'interfaccia Web. È possibile accedervi dal menu 'Opzioni avanzate' delle schede 'Testo a Immagine' e 'Immagine a Immagine'. È inoltre possibile elaborare le immagini direttamente, utilizzando i pulsanti di azione dell'immagine sopra la visualizzazione dell'immagine corrente o nel visualizzatore.",
|
||||
@ -43,26 +42,11 @@
|
||||
"statusModelChanged": "Modello cambiato",
|
||||
"githubLabel": "GitHub",
|
||||
"discordLabel": "Discord",
|
||||
"langArabic": "Arabo",
|
||||
"langEnglish": "Inglese",
|
||||
"langFrench": "Francese",
|
||||
"langGerman": "Tedesco",
|
||||
"langJapanese": "Giapponese",
|
||||
"langPolish": "Polacco",
|
||||
"langBrPortuguese": "Portoghese Basiliano",
|
||||
"langRussian": "Russo",
|
||||
"langUkranian": "Ucraino",
|
||||
"langSpanish": "Spagnolo",
|
||||
"statusMergingModels": "Fusione Modelli",
|
||||
"statusMergedModels": "Modelli fusi",
|
||||
"langSimplifiedChinese": "Cinese semplificato",
|
||||
"langDutch": "Olandese",
|
||||
"statusModelConverted": "Modello Convertito",
|
||||
"statusConvertingModel": "Conversione Modello",
|
||||
"langKorean": "Coreano",
|
||||
"langPortuguese": "Portoghese",
|
||||
"loading": "Caricamento in corso",
|
||||
"langHebrew": "Ebraico",
|
||||
"loadingInvokeAI": "Caricamento Invoke AI",
|
||||
"postprocessing": "Post Elaborazione",
|
||||
"txt2img": "Testo a Immagine",
|
||||
@ -76,7 +60,6 @@
|
||||
"dontAskMeAgain": "Non chiedermelo più",
|
||||
"imagePrompt": "Prompt Immagine",
|
||||
"darkMode": "Modalità scura",
|
||||
"lightMode": "Modalità chiara",
|
||||
"batch": "Gestione Lotto",
|
||||
"modelManager": "Gestore modello",
|
||||
"communityLabel": "Comunità",
|
||||
@ -125,7 +108,8 @@
|
||||
"localSystem": "Sistema locale",
|
||||
"green": "Verde",
|
||||
"blue": "Blu",
|
||||
"alpha": "Alfa"
|
||||
"alpha": "Alfa",
|
||||
"copy": "Copia"
|
||||
},
|
||||
"gallery": {
|
||||
"generations": "Generazioni",
|
||||
@ -384,7 +368,11 @@
|
||||
"desc": "Apre e chiude le opzioni e i pannelli della galleria",
|
||||
"title": "Attiva/disattiva le Opzioni e la Galleria"
|
||||
},
|
||||
"clearSearch": "Cancella ricerca"
|
||||
"clearSearch": "Cancella ricerca",
|
||||
"remixImage": {
|
||||
"desc": "Utilizza tutti i parametri tranne il seme dell'immagine corrente",
|
||||
"title": "Remixa l'immagine"
|
||||
}
|
||||
},
|
||||
"modelManager": {
|
||||
"modelManager": "Gestione Modelli",
|
||||
@ -670,7 +658,8 @@
|
||||
"aspect": "Aspetto",
|
||||
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (potrebbe essere troppo grande)",
|
||||
"boxBlur": "Box",
|
||||
"gaussianBlur": "Gaussian"
|
||||
"gaussianBlur": "Gaussian",
|
||||
"remixImage": "Remixa l'immagine"
|
||||
},
|
||||
"settings": {
|
||||
"models": "Modelli",
|
||||
@ -806,7 +795,8 @@
|
||||
"workflowDeleted": "Flusso di lavoro eliminato",
|
||||
"problemRetrievingWorkflow": "Problema nel recupero del flusso di lavoro",
|
||||
"resetInitialImage": "Reimposta l'immagine iniziale",
|
||||
"uploadInitialImage": "Carica l'immagine iniziale"
|
||||
"uploadInitialImage": "Carica l'immagine iniziale",
|
||||
"problemDownloadingImage": "Impossibile scaricare l'immagine"
|
||||
},
|
||||
"tooltip": {
|
||||
"feature": {
|
||||
@ -1145,7 +1135,14 @@
|
||||
"newWorkflow": "Nuovo flusso di lavoro",
|
||||
"newWorkflowDesc": "Creare un nuovo flusso di lavoro?",
|
||||
"newWorkflowDesc2": "Il flusso di lavoro attuale presenta modifiche non salvate.",
|
||||
"unsupportedAnyOfLength": "unione di troppi elementi ({{count}})"
|
||||
"unsupportedAnyOfLength": "unione di troppi elementi ({{count}})",
|
||||
"clearWorkflowDesc": "Cancellare questo flusso di lavoro e avviarne uno nuovo?",
|
||||
"clearWorkflow": "Cancella il flusso di lavoro",
|
||||
"clearWorkflowDesc2": "Il tuo flusso di lavoro attuale presenta modifiche non salvate.",
|
||||
"viewMode": "Utilizzare nella vista lineare",
|
||||
"reorderLinearView": "Riordina la vista lineare",
|
||||
"editMode": "Modifica nell'editor del flusso di lavoro",
|
||||
"resetToDefaultValue": "Ripristina il valore predefinito"
|
||||
},
|
||||
"boards": {
|
||||
"autoAddBoard": "Aggiungi automaticamente bacheca",
|
||||
@ -1202,7 +1199,6 @@
|
||||
"f": "F",
|
||||
"h": "A",
|
||||
"prompt": "Prompt",
|
||||
"openPoseDescription": "Stima della posa umana utilizzando Openpose",
|
||||
"resizeMode": "Ridimensionamento",
|
||||
"weight": "Peso",
|
||||
"selectModel": "Seleziona un modello",
|
||||
@ -1245,7 +1241,15 @@
|
||||
"scribble": "Scarabocchio",
|
||||
"amult": "Angolo di illuminazione",
|
||||
"coarse": "Approssimativo",
|
||||
"resizeSimple": "Ridimensiona (semplice)"
|
||||
"resizeSimple": "Ridimensiona (semplice)",
|
||||
"large": "Grande",
|
||||
"small": "Piccolo",
|
||||
"depthAnythingDescription": "Generazione di mappe di profondità utilizzando la tecnica Depth Anything",
|
||||
"modelSize": "Dimensioni del modello",
|
||||
"dwOpenposeDescription": "Stima della posa umana utilizzando DW Openpose",
|
||||
"face": "Viso",
|
||||
"body": "Corpo",
|
||||
"hands": "Mani"
|
||||
},
|
||||
"queue": {
|
||||
"queueFront": "Aggiungi all'inizio della coda",
|
||||
@ -1375,7 +1379,8 @@
|
||||
"popovers": {
|
||||
"paramScheduler": {
|
||||
"paragraphs": [
|
||||
"Il campionatore definisce come aggiungere in modo iterativo il rumore a un'immagine o come aggiornare un campione in base all'output di un modello."
|
||||
"Il campionatore utilizzato durante il processo di generazione.",
|
||||
"Ciascun campionatore definisce come aggiungere in modo iterativo il rumore a un'immagine o come aggiornare un campione in base all'output di un modello."
|
||||
],
|
||||
"heading": "Campionatore"
|
||||
},
|
||||
@ -1388,8 +1393,8 @@
|
||||
"compositingCoherenceSteps": {
|
||||
"heading": "Passi",
|
||||
"paragraphs": [
|
||||
"Numero di passi di riduzione del rumore utilizzati nel Passaggio di Coerenza.",
|
||||
"Uguale al parametro principale Passi."
|
||||
"Numero di passi utilizzati nel Passaggio di Coerenza.",
|
||||
"Simile ai passi di generazione."
|
||||
]
|
||||
},
|
||||
"compositingBlur": {
|
||||
@ -1401,14 +1406,13 @@
|
||||
"compositingCoherenceMode": {
|
||||
"heading": "Modalità",
|
||||
"paragraphs": [
|
||||
"La modalità del Passaggio di Coerenza."
|
||||
"Metodo utilizzato per creare un'immagine coerente con l'area mascherata appena generata."
|
||||
]
|
||||
},
|
||||
"clipSkip": {
|
||||
"paragraphs": [
|
||||
"Scegli quanti livelli del modello CLIP saltare.",
|
||||
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip.",
|
||||
"Un valore più alto in genere produce un'immagine meno dettagliata."
|
||||
"Alcuni modelli funzionano meglio con determinate impostazioni di CLIP Skip."
|
||||
]
|
||||
},
|
||||
"compositingCoherencePass": {
|
||||
@ -1420,8 +1424,8 @@
|
||||
"compositingStrength": {
|
||||
"heading": "Forza",
|
||||
"paragraphs": [
|
||||
"Intensità di riduzione del rumore per il passaggio di coerenza.",
|
||||
"Uguale al parametro intensità di riduzione del rumore da immagine a immagine."
|
||||
"Quantità di rumore aggiunta per il Passaggio di Coerenza.",
|
||||
"Simile alla forza di riduzione del rumore."
|
||||
]
|
||||
},
|
||||
"paramNegativeConditioning": {
|
||||
@ -1447,8 +1451,8 @@
|
||||
"controlNetBeginEnd": {
|
||||
"heading": "Percentuale passi Inizio / Fine",
|
||||
"paragraphs": [
|
||||
"A quali passi del processo di rimozione del rumore verrà applicato ControlNet.",
|
||||
"I ControlNet applicati all'inizio del processo guidano la composizione, mentre i ControlNet applicati alla fine guidano i dettagli."
|
||||
"La parte del processo di rimozione del rumore in cui verrà applicato l'adattatore di controllo.",
|
||||
"In genere, gli adattatori di controllo applicati all'inizio del processo guidano la composizione, mentre quelli applicati alla fine guidano i dettagli."
|
||||
]
|
||||
},
|
||||
"noiseUseCPU": {
|
||||
@ -1461,7 +1465,7 @@
|
||||
},
|
||||
"scaleBeforeProcessing": {
|
||||
"paragraphs": [
|
||||
"Ridimensiona l'area selezionata alla dimensione più adatta al modello prima del processo di generazione dell'immagine."
|
||||
"\"Auto\" ridimensiona l'area selezionata alla dimensione più adatta al modello prima del processo di generazione dell'immagine."
|
||||
],
|
||||
"heading": "Scala prima dell'elaborazione"
|
||||
},
|
||||
@ -1496,20 +1500,21 @@
|
||||
"paramVAEPrecision": {
|
||||
"heading": "Precisione VAE",
|
||||
"paragraphs": [
|
||||
"La precisione utilizzata durante la codifica e decodifica VAE. FP16/mezza precisione è più efficiente, a scapito di minori variazioni dell'immagine."
|
||||
"La precisione utilizzata durante la codifica e decodifica VAE.",
|
||||
"Fp16/Mezza precisione è più efficiente, a scapito di minori variazioni dell'immagine."
|
||||
]
|
||||
},
|
||||
"paramSeed": {
|
||||
"paragraphs": [
|
||||
"Controlla il rumore iniziale utilizzato per la generazione.",
|
||||
"Disabilita seme \"Casuale\" per produrre risultati identici con le stesse impostazioni di generazione."
|
||||
"Disabilita l'opzione \"Casuale\" per produrre risultati identici con le stesse impostazioni di generazione."
|
||||
],
|
||||
"heading": "Seme"
|
||||
},
|
||||
"controlNetResizeMode": {
|
||||
"heading": "Modalità ridimensionamento",
|
||||
"paragraphs": [
|
||||
"Come l'immagine ControlNet verrà adattata alle dimensioni di output dell'immagine."
|
||||
"Metodo per adattare le dimensioni dell'immagine in ingresso dell'adattatore di controllo alle dimensioni della generazione di output."
|
||||
]
|
||||
},
|
||||
"dynamicPromptsSeedBehaviour": {
|
||||
@ -1524,8 +1529,7 @@
|
||||
"paramModel": {
|
||||
"heading": "Modello",
|
||||
"paragraphs": [
|
||||
"Modello utilizzato per i passaggi di riduzione del rumore.",
|
||||
"Diversi modelli sono generalmente addestrati per specializzarsi nella produzione di particolari risultati e contenuti estetici."
|
||||
"Modello utilizzato per la generazione. Diversi modelli vengono addestrati per specializzarsi nella produzione di risultati e contenuti estetici diversi."
|
||||
]
|
||||
},
|
||||
"paramDenoisingStrength": {
|
||||
@ -1543,25 +1547,26 @@
|
||||
},
|
||||
"infillMethod": {
|
||||
"paragraphs": [
|
||||
"Metodo per riempire l'area selezionata."
|
||||
"Metodo di riempimento durante il processo di Outpainting o Inpainting."
|
||||
],
|
||||
"heading": "Metodo di riempimento"
|
||||
},
|
||||
"controlNetWeight": {
|
||||
"heading": "Peso",
|
||||
"paragraphs": [
|
||||
"Quanto forte sarà l'impatto di ControlNet sull'immagine generata."
|
||||
"Peso dell'adattatore di controllo. Un peso maggiore porterà a impatti maggiori sull'immagine finale."
|
||||
]
|
||||
},
|
||||
"paramCFGScale": {
|
||||
"heading": "Scala CFG",
|
||||
"paragraphs": [
|
||||
"Controlla quanto il tuo prompt influenza il processo di generazione."
|
||||
"Controlla quanto il prompt influenza il processo di generazione.",
|
||||
"Valori elevati della scala CFG possono provocare una saturazione eccessiva e distorsioni nei risultati della generazione. "
|
||||
]
|
||||
},
|
||||
"controlNetControlMode": {
|
||||
"paragraphs": [
|
||||
"Attribuisce più peso al prompt o a ControlNet."
|
||||
"Attribuisce più peso al prompt oppure a ControlNet."
|
||||
],
|
||||
"heading": "Modalità di controllo"
|
||||
},
|
||||
@ -1573,9 +1578,9 @@
|
||||
]
|
||||
},
|
||||
"lora": {
|
||||
"heading": "Peso LoRA",
|
||||
"heading": "LoRA",
|
||||
"paragraphs": [
|
||||
"Un peso LoRA più elevato porterà a impatti maggiori sull'immagine finale."
|
||||
"Modelli leggeri utilizzati insieme ai modelli base."
|
||||
]
|
||||
},
|
||||
"controlNet": {
|
||||
@ -1587,8 +1592,65 @@
|
||||
"paramCFGRescaleMultiplier": {
|
||||
"heading": "Moltiplicatore di riscala CFG",
|
||||
"paragraphs": [
|
||||
"Moltiplicatore di riscala per la guida CFG, utilizzato per modelli addestrati utilizzando SNR a terminale zero (ztsnr). Valore suggerito 0.7."
|
||||
"Moltiplicatore di riscala per la guida CFG, utilizzato per modelli addestrati utilizzando SNR a terminale zero (ztsnr).",
|
||||
"Valore suggerito di 0.7 per questi modelli."
|
||||
]
|
||||
},
|
||||
"controlNetProcessor": {
|
||||
"heading": "Processore",
|
||||
"paragraphs": [
|
||||
"Metodo di elaborazione dell'immagine di input per guidare il processo di generazione. Processori diversi forniranno effetti o stili diversi nelle immagini generate."
|
||||
]
|
||||
},
|
||||
"imageFit": {
|
||||
"heading": "Adatta l'immagine iniziale alle dimensioni di output",
|
||||
"paragraphs": [
|
||||
"Ridimensiona l'immagine iniziale in base alla larghezza e all'altezza dell'immagine di output. Si consiglia di abilitarlo."
|
||||
]
|
||||
},
|
||||
"loraWeight": {
|
||||
"heading": "Peso",
|
||||
"paragraphs": [
|
||||
"Peso del LoRA. Un peso maggiore comporterà un impatto maggiore sull'immagine finale."
|
||||
]
|
||||
},
|
||||
"paramAspect": {
|
||||
"heading": "Aspetto",
|
||||
"paragraphs": [
|
||||
"Proporzioni dell'immagine generata. La modifica del rapporto aggiornerà di conseguenza la larghezza e l'altezza.",
|
||||
"\"Ottimizza\" imposterà la larghezza e l'altezza alle dimensioni ottimali per il modello scelto."
|
||||
]
|
||||
},
|
||||
"paramHeight": {
|
||||
"heading": "Altezza",
|
||||
"paragraphs": [
|
||||
"Altezza dell'immagine generata. Deve essere un multiplo di 8."
|
||||
]
|
||||
},
|
||||
"paramHrf": {
|
||||
"heading": "Abilita correzione alta risoluzione",
|
||||
"paragraphs": [
|
||||
"Genera immagini di alta qualità con una risoluzione maggiore di quella ottimale per il modello. Generalmente utilizzato per impedire la duplicazione nell'immagine generata."
|
||||
]
|
||||
},
|
||||
"paramUpscaleMethod": {
|
||||
"heading": "Metodo di ampliamento",
|
||||
"paragraphs": [
|
||||
"Metodo utilizzato per eseguire l'ampliamento dell'immagine per la correzione ad alta risoluzione."
|
||||
]
|
||||
},
|
||||
"patchmatchDownScaleSize": {
|
||||
"heading": "Ridimensiona",
|
||||
"paragraphs": [
|
||||
"Quanto ridimensionamento avviene prima del riempimento.",
|
||||
"Un ridimensionamento più elevato migliorerà le prestazioni e ridurrà la qualità."
|
||||
]
|
||||
},
|
||||
"paramWidth": {
|
||||
"paragraphs": [
|
||||
"Larghezza dell'immagine generata. Deve essere un multiplo di 8."
|
||||
],
|
||||
"heading": "Larghezza"
|
||||
}
|
||||
},
|
||||
"sdxl": {
|
||||
@ -1677,7 +1739,11 @@
|
||||
"userWorkflows": "I miei flussi di lavoro",
|
||||
"newWorkflowCreated": "Nuovo flusso di lavoro creato",
|
||||
"downloadWorkflow": "Salva su file",
|
||||
"uploadWorkflow": "Carica da file"
|
||||
"uploadWorkflow": "Carica da file",
|
||||
"projectWorkflows": "Flussi di lavoro del progetto",
|
||||
"noWorkflows": "Nessun flusso di lavoro",
|
||||
"workflowCleared": "Flusso di lavoro cancellato",
|
||||
"saveWorkflowToProject": "Salva flusso di lavoro nel progetto"
|
||||
},
|
||||
"app": {
|
||||
"storeNotInitialized": "Il negozio non è inizializzato"
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user