Compare commits

..

31 Commits

Author SHA1 Message Date
a105da6304 chore: v4.0.0 2024-04-02 09:10:53 +11:00
4049217728 feat(db): back up database before running migrations
Just in case.
2024-04-02 09:10:53 +11:00
59b4a23479 feat(mm): use same pattern for vae converter as others
Add `dump_path` arg to the converter function & save the model to disk inside the conversion function. This is the same pattern as in the other conversion functions.
2024-04-01 12:34:49 +11:00
13f410478a fix(mm): typing issues in vae loader 2024-04-01 12:34:49 +11:00
25ff0bf80f fix(mm): return converted vae model instead of path
This was missed in #6072.
2024-04-01 12:34:49 +11:00
f83edcf990 feat(nodes): simplify processor loop with an early continue
Prefer an early return/continue to reduce the indentation of the processor loop. Easier to read.

There are other ways to improve its structure but at first glance, they seem to involve changing the logic in scarier ways.
2024-04-01 08:39:25 +11:00
a6dd50aeaf fix(nodes): 100% cpu usage when processor paused
Should be waiting on the resume event instead of checking it in a loop
2024-04-01 08:39:25 +11:00
1badf0f32f refactor if/else logic slightly 2024-03-31 12:42:39 -04:00
3c9c58e0fa fix 100% CPU load in session_processor_default._process() 2024-03-31 12:42:39 -04:00
9a1b35fa37 fix(queue): pause & resume
This must not have been tested after the processors were unified. Needed to shift the logic around so the resume event is handled correctly. Clear and easy fix.
2024-03-30 08:25:33 -04:00
5be69f191d remove debug statement 2024-03-29 17:37:04 -04:00
3d6d89feb4 [mm] Do not write diffuser model to disk when convert_cache set to zero (#6072)
* pass model config to _load_model

* make conversion work again

* do not write diffusers to disk when convert_cache set to 0

* adding same model to cache twice is a no-op, not an assertion error

* fix issues identified by psychedelicious during pr review

* following conversion, avoid redundant read of cached submodels

* fix error introduced while merging

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-03-29 16:11:08 -04:00
0ac1c0f339 use is_relative_to() rather than relying on string matching to determine relative directory positioning 2024-03-29 10:56:06 -04:00
c308654442 migrate legacy conf files that were incorrectly relative to root 2024-03-29 10:56:06 -04:00
b0ffe36d21 feat(mm): update v3 models.yaml migration logic to handle relative paths for legacy config files 2024-03-29 10:56:06 -04:00
6b3fdb8a93 fix(mm): handle relative model paths in _register_orphaned_models 2024-03-29 10:56:06 -04:00
7639e05dd2 feat(mm): add migration for RC users to migrate their dbs 2024-03-29 10:56:06 -04:00
6d261a5a13 fix(mm): handle relative conversion config paths
I have tested main, controlnet and vae checkpoint conversions.
2024-03-29 10:56:06 -04:00
31e9cf1f06 tests: update model install tests for change to paths 2024-03-29 10:56:06 -04:00
c5d1bd1360 feat(mm): use relative paths for invoke-managed models
We switched all model paths to be absolute in #5900. In hindsight, this is a mistake, because it makes the `models_dir` non-portable.

This change reverts to the previous model pathing:
- Invoke-managed models (in the `models_dir`) are stored with relative paths
- Non-invoke-managed models (outside the `models_dir`, i.e. in-place installed models) still have absolute paths.

## Why absolute paths make things non-portable

Let's say my `models_dir` is `/media/rhino/invokeai/models/`. In the DB, all model paths will be absolute children of this path, like this:

- `/media/rhino/invokeai/models/sd-1/main/model1.ckpt`

I want to change my `models_dir` to `/home/bat/invokeai/models/`. I update my `invokeai.yaml` file and physically move the files to that directory.

On startup, the app checks for missing models. Because all of my model paths were absolute, they now point to a nonexistent path. All models are broken.

There are a couple options to recover from this situation, neither of which are reasonable:

1. The user must manually update every model's path. Unacceptable UX.
2. On startup, we check for missing models. For each missing model, we compare its path with the last-known models dir. If there is a match, we replace that portion of the path with the new models dir. Then we re-check to see if the path exists. If it does, we update the models DB entry. Brittle and requires a new DB entry for last-known models dir.

It's better to use relative paths for Invoke-managed models.
2024-03-29 10:56:06 -04:00
3409711ed3 close #6080 2024-03-28 22:51:45 -04:00
3681e34d5a Use defaults for db_dir and outdir since config no longer writes defaults to invokeai.yaml 2024-03-28 22:39:48 -04:00
2526ef52c5 fix(nodes): workaround seamless multi gpu error #6010
The seamless logic errors when a second GPU is selected. I don't understand why, but a workaround is to skip the model patching when there there are no seamless axes specified.

This is also just a good practice regardless - don't patch the model unless we need to. Probably a negligible perf impact.

Closes #6010
2024-03-29 08:56:38 +11:00
43bcedee10 Run ruff 2024-03-29 08:45:34 +11:00
98cc9b963c Only cancel session processor if current generating queue item is cancelled 2024-03-29 08:45:34 +11:00
e8eb9fd533 fix(scripts): handle multiple pages in get_external_contributions.py 2024-03-28 07:58:01 -04:00
250def76de docs: update RELEASE.md troubleshooting info
Add some notes for troubleshooting the release workflow
2024-03-28 07:58:01 -04:00
b2fb108414 docs: update RELEASE.md publish GH release section
Clarify steps & mention the `get_external_contributions.py` script
2024-03-28 07:58:01 -04:00
383f8908be docs: update RELEASE.md sanity check section
Add instructions for testing the installer w/ wheel
2024-03-28 07:58:01 -04:00
ec233e30fb ci: fix name of installer build artifact
The build workflow was naming the file `InvokeAI-installer-v4.0.0rc6.zip.zip` (note the double ".zip"). This caused some confusion when creating releases on GitHub.

Name the build artifact `installer`. This results in `installer.zip`, which it's clear needs to be extracted first before uploading to the GH release.
2024-03-28 07:58:01 -04:00
018121330a feat(scripts): helper to get all external contributions
`scripts/get_external_contributions.py` gets all commits between two refs and outputs a summary.

Useful for getting all external contributions for release notes.
2024-03-28 07:58:01 -04:00
29 changed files with 656 additions and 303 deletions

View File

@ -41,5 +41,5 @@ jobs:
- name: upload installer artifact
uses: actions/upload-artifact@v4
with:
name: ${{ steps.create_installer.outputs.INSTALLER_FILENAME }}
name: installer
path: ${{ steps.create_installer.outputs.INSTALLER_PATH }}

View File

@ -61,11 +61,33 @@ This sets up both python and frontend dependencies and builds the python package
#### Sanity Check & Smoke Test
At this point, the release workflow pauses as the remaining publish jobs require approval.
At this point, the release workflow pauses as the remaining publish jobs require approval. Time to test the installer.
A maintainer should go to the **Summary** tab of the workflow, download the installer and test it. Ensure the app loads and generates.
Because the installer pulls from PyPI, and we haven't published to PyPI yet, you will need to install from the wheel:
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation of the `invokeai` package from any of these methods.
- Download and unzip `dist.zip` and the installer from the **Summary** tab of the workflow
- Run the installer script using the `--wheel` CLI arg, pointing at the wheel:
```sh
./install.sh --wheel ../InvokeAI-4.0.0rc6-py3-none-any.whl
```
- Install to a temporary directory so you get the new user experience
- Download a model and generate
> The same wheel file is bundled in the installer and in the `dist` artifact, which is uploaded to PyPI. You should end up with the exactly the same installation as if the installer got the wheel from PyPI.
##### Something isn't right
If testing reveals any issues, no worries. Cancel the workflow, which will cancel the pending publish jobs (you didn't approve them prematurely, right?).
Now you can start from the top:
- Fix the issues and PR the fixes per usual
- Get the PR approved and merged per usual
- Switch to `main` and pull in the fixes
- Run `make tag-release` to move the tag to `HEAD` (which has the fixes) and kick off the release workflow again
- Re-do the sanity check
#### PyPI Publish Jobs
@ -81,6 +103,12 @@ Both jobs require a maintainer to approve them from the workflow's **Summary** t
> **If the version already exists on PyPI, the publish jobs will fail.** PyPI only allows a given version to be published once - you cannot change it. If version published on PyPI has a problem, you'll need to "fail forward" by bumping the app version and publishing a followup release.
##### Failing PyPI Publish
Check the [python infrastructure status page] for incidents.
If there are no incidents, contact @hipsterusername or @lstein, who have owner access to GH and PyPI, to see if access has expired or something like that.
#### `publish-testpypi` Job
Publishes the distribution on the [Test PyPI] index, using the `testpypi` GitHub environment.
@ -110,11 +138,13 @@ Publishes the distribution on the production PyPI index, using the `pypi` GitHub
Once the release is published to PyPI, it's time to publish the GitHub release.
1. [Draft a new release] on GitHub, choosing the tag that triggered the release.
2. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
3. Upload the zip file created in **`build`** job into the Assets section of the release notes. You can also upload the zip into the body of the release notes, since it can be hard for users to find the Assets section.
4. Check the **Set as a pre-release** and **Create a discussion for this release** checkboxes at the bottom of the release page.
5. Publish the pre-release.
6. Announce the pre-release in Discord.
1. Write the release notes, describing important changes. The **Generate release notes** button automatically inserts the changelog and new contributors, and you can copy/paste the intro from previous releases.
1. Use `scripts/get_external_contributions.py` to get a list of external contributions to shout out in the release notes.
1. Upload the zip file created in **`build`** job into the Assets section of the release notes.
1. Check **Set as a pre-release** if it's a pre-release.
1. Check **Create a discussion for this release**.
1. Publish the release.
1. Announce the release in Discord.
> **TODO** Workflows can create a GitHub release from a template and upload release assets. One popular action to handle this is [ncipollo/release-action]. A future enhancement to the release process could set this up.
@ -140,3 +170,4 @@ This functionality is available as a fallback in case something goes wonky. Typi
[trusted publishers]: https://docs.pypi.org/trusted-publishers/
[samuelcolvin/check-python-version]: https://github.com/samuelcolvin/check-python-version
[manually]: #manual-release
[python infrastructure status page]: https://status.python.org/

View File

@ -614,8 +614,8 @@ async def convert_model(
The return value is the model configuration for the converted model.
"""
model_manager = ApiDependencies.invoker.services.model_manager
loader = model_manager.load
logger = ApiDependencies.invoker.services.logger
loader = ApiDependencies.invoker.services.model_manager.load
store = ApiDependencies.invoker.services.model_manager.store
installer = ApiDependencies.invoker.services.model_manager.install
@ -630,7 +630,13 @@ async def convert_model(
raise HTTPException(400, f"The model with key {key} is not a main checkpoint model.")
# loading the model will convert it into a cached diffusers file
model_manager.load.load_model(model_config, submodel_type=SubModelType.Scheduler)
try:
cc_size = loader.convert_cache.max_size
if cc_size == 0: # temporary set the convert cache to a positive number so that cached model is written
loader._convert_cache.max_size = 1.0
loader.load_model(model_config, submodel_type=SubModelType.Scheduler)
finally:
loader._convert_cache.max_size = cc_size
# Get the path of the converted model from the loader
cache_path = loader.convert_cache.cache_path(key)

View File

@ -348,8 +348,13 @@ class ModelInstallService(ModelInstallServiceBase):
config: dict[str, Any] = {}
config["name"] = model_name
config["description"] = stanza.get("description")
config["config_path"] = stanza.get("config")
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
try:
id = self.register_path(model_path=model_path, config=config)
self._logger.info(f"Migrated {model_name} with id {id}")
@ -368,11 +373,13 @@ class ModelInstallService(ModelInstallServiceBase):
def delete(self, key: str) -> None: # noqa D102
"""Unregister the model. Delete its files only if they are within our models directory."""
model = self.record_store.get_model(key)
models_dir = self.app_config.models_path
model_path = models_dir / Path(model.path) # handle legacy relative model paths
if model_path.is_relative_to(models_dir):
model_path = self.app_config.models_path / model.path
if model_path.is_relative_to(self.app_config.models_path):
# If the models is in the Invoke-managed models dir, we delete it
self.unconditionally_delete(key)
else:
# Else we only unregister it, leaving the file in place
self.unregister(key)
def unconditionally_delete(self, key: str) -> None: # noqa D102
@ -500,9 +507,9 @@ class ModelInstallService(ModelInstallServiceBase):
def _scan_for_missing_models(self) -> list[AnyModelConfig]:
"""Scan the models directory for missing models and return a list of them."""
missing_models: list[AnyModelConfig] = []
for x in self.record_store.all_models():
if not Path(x.path).resolve().exists():
missing_models.append(x)
for model_config in self.record_store.all_models():
if not (self.app_config.models_path / model_config.path).resolve().exists():
missing_models.append(model_config)
return missing_models
def _register_orphaned_models(self) -> None:
@ -512,7 +519,9 @@ class ModelInstallService(ModelInstallServiceBase):
only situations in which we may have orphaned models in the models directory.
"""
installed_model_paths = {Path(x.path).resolve() for x in self.record_store.all_models()}
installed_model_paths = {
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
}
# The bool returned by this callback determines if the model is added to the list of models found by the search
def on_model_found(model_path: Path) -> bool:
@ -548,10 +557,11 @@ class ModelInstallService(ModelInstallServiceBase):
May raise an UnknownModelException.
"""
model = self.record_store.get_model(key)
old_path = Path(model.path).resolve()
models_dir = self.app_config.models_path.resolve()
models_dir = self.app_config.models_path
old_path = self.app_config.models_path / model.path
if not old_path.is_relative_to(models_dir):
# The model is not in the models directory - we don't need to move it.
return model
new_path = (models_dir / model.base.value / model.type.value / model.name).with_suffix(old_path.suffix)
@ -561,7 +571,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Moving {model.name} to {new_path}.")
new_path = self._move_model(old_path, new_path)
model.path = new_path.as_posix()
model.path = new_path.relative_to(models_dir).as_posix()
self.record_store.update_model(key, ModelRecordChanges(path=model.path))
return model
@ -600,12 +610,19 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = model_path.resolve()
# Models in the Invoke-managed models dir should use relative paths.
if model_path.is_relative_to(self.app_config.models_path):
model_path = model_path.relative_to(self.app_config.models_path)
info.path = model_path.as_posix()
# Checkpoints have a config file needed for conversion - resolve this to an absolute path
if isinstance(info, CheckpointConfigBase):
legacy_conf = (self.app_config.legacy_conf_path / info.config_path).resolve()
info.config_path = legacy_conf.as_posix()
# Checkpoints have a config file needed for conversion. Same handling as the model weights - if it's in the
# invoke-managed legacy config dir, we use a relative path.
legacy_config_path = self.app_config.legacy_conf_path / info.config_path
if legacy_config_path.is_relative_to(self.app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self.app_config.legacy_conf_path)
info.config_path = legacy_config_path.as_posix()
self.record_store.add_model(info)
return info.key

View File

@ -70,8 +70,18 @@ class DefaultSessionProcessor(SessionProcessorBase):
async def _on_queue_event(self, event: FastAPIEvent) -> None:
event_name = event[1]["event"]
if event_name == "session_canceled" or event_name == "queue_cleared":
# These both mean we should cancel the current session.
if (
event_name == "session_canceled"
and self._queue_item
and self._queue_item.item_id == event[1]["data"]["queue_item_id"]
):
self._cancel_event.set()
self._poll_now()
elif (
event_name == "queue_cleared"
and self._queue_item
and self._queue_item.queue_id == event[1]["data"]["queue_id"]
):
self._cancel_event.set()
self._poll_now()
elif event_name == "batch_enqueued":
@ -111,141 +121,146 @@ class DefaultSessionProcessor(SessionProcessorBase):
poll_now_event.clear()
# Middle processor try block; any unhandled exception is a non-fatal processor error
try:
# If we are paused, wait for resume event
resume_event.wait()
# Get the next session to process
self._queue_item = self._invoker.services.session_queue.dequeue()
if self._queue_item is not None and resume_event.is_set():
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=self._queue_item.session_id)
if self._queue_item is None:
# The queue was empty, wait for next polling interval or event to try again
self._invoker.services.logger.debug("Waiting for next polling interval or event")
poll_now_event.wait(self._polling_interval)
continue
# Prepare invocations and take the first
self._invocation = self._queue_item.session.next()
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
cancel_event.clear()
# Loop over invocations until the session is complete or canceled
while self._invocation is not None and not cancel_event.is_set():
# get the source node id to provide to clients (the prepared node id is not as useful)
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
# If profiling is enabled, start the profiler
if self._profiler is not None:
self._profiler.start(profile_id=self._queue_item.session_id)
# Send starting event
self._invoker.services.events.emit_invocation_started(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session_id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
)
# Prepare invocations and take the first
self._invocation = self._queue_item.session.next()
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
try:
with self._invoker.services.performance_statistics.collect_stats(
self._invocation, self._queue_item.session.id
):
# Build invocation context (the node-facing API)
data = InvocationContextData(
invocation=self._invocation,
source_invocation_id=source_invocation_id,
queue_item=self._queue_item,
)
context = build_invocation_context(
data=data,
services=self._invoker.services,
cancel_event=self._cancel_event,
)
# Loop over invocations until the session is complete or canceled
while self._invocation is not None and not cancel_event.is_set():
# get the source node id to provide to clients (the prepared node id is not as useful)
source_invocation_id = self._queue_item.session.prepared_source_mapping[self._invocation.id]
# Invoke the node
outputs = self._invocation.invoke_internal(
context=context, services=self._invoker.services
)
# Send starting event
self._invoker.services.events.emit_invocation_started(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session_id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
)
# Save outputs and history
self._queue_item.session.complete(self._invocation.id, outputs)
# Send complete event
self._invoker.services.events.emit_invocation_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
result=outputs.model_dump(),
)
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
self._queue_item.session.set_node_error(self._invocation.id, error)
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
# Innermost processor try block; any unhandled exception is an invocation error & will fail the graph
try:
with self._invoker.services.performance_statistics.collect_stats(
self._invocation, self._queue_item.session.id
):
# Build invocation context (the node-facing API)
data = InvocationContextData(
invocation=self._invocation,
source_invocation_id=source_invocation_id,
queue_item=self._queue_item,
)
context = build_invocation_context(
data=data,
services=self._invoker.services,
cancel_event=self._cancel_event,
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(
queue_batch_id=self._queue_item.session_id,
# Invoke the node
outputs = self._invocation.invoke_internal(
context=context, services=self._invoker.services
)
# Save outputs and history
self._queue_item.session.complete(self._invocation.id, outputs)
# Send complete event
self._invoker.services.events.emit_invocation_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
error_type=e.__class__.__name__,
error=error,
result=outputs.model_dump(),
)
pass
# The session is complete if the all invocations are complete or there was an error
if self._queue_item.session.is_complete() or cancel_event.is_set():
# Send complete event
self._invoker.services.events.emit_graph_execution_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
except KeyboardInterrupt:
# TODO(MM2): Create an event for this
pass
except CanceledException:
# When the user cancels the graph, we first set the cancel event. The event is checked
# between invocations, in this loop. Some invocations are long-running, and we need to
# be able to cancel them mid-execution.
#
# For example, denoising is a long-running invocation with many steps. A step callback
# is executed after each step. This step callback checks if the canceled event is set,
# then raises a CanceledException to stop execution immediately.
#
# When we get a CanceledException, we don't need to do anything - just pass and let the
# loop go to its next iteration, and the cancel event will be handled correctly.
pass
except Exception as e:
error = traceback.format_exc()
# Save error
self._queue_item.session.set_node_error(self._invocation.id, error)
self._invoker.services.logger.error(
f"Error while invoking session {self._queue_item.session_id}, invocation {self._invocation.id} ({self._invocation.get_type()}):\n{e}"
)
self._invoker.services.logger.error(error)
# Send error event
self._invoker.services.events.emit_invocation_error(
queue_batch_id=self._queue_item.session_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
node=self._invocation.model_dump(),
source_node_id=source_invocation_id,
error_type=e.__class__.__name__,
error=error,
)
pass
# The session is complete if the all invocations are complete or there was an error
if self._queue_item.session.is_complete() or cancel_event.is_set():
# Send complete event
self._invoker.services.events.emit_graph_execution_complete(
queue_batch_id=self._queue_item.batch_id,
queue_item_id=self._queue_item.item_id,
queue_id=self._queue_item.queue_id,
graph_execution_state_id=self._queue_item.session.id,
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
)
# If we are profiling, stop the profiler and dump the profile & stats
if self._profiler:
profile_path = self._profiler.stop()
stats_path = profile_path.with_suffix(".json")
self._invoker.services.performance_statistics.dump_stats(
graph_execution_state_id=self._queue_item.session.id, output_path=stats_path
)
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# We'll get a GESStatsNotFoundError if we try to log stats for an untracked graph, but in the processor
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._invoker.services.performance_statistics.log_stats(self._queue_item.session.id)
self._invoker.services.performance_statistics.reset_stats()
# Set the invocation to None to prepare for the next session
self._invocation = None
else:
# Prepare the next invocation
self._invocation = self._queue_item.session.next()
# The session is complete, immediately poll for next session
self._queue_item = None
poll_now_event.set()
# Set the invocation to None to prepare for the next session
self._invocation = None
else:
# Prepare the next invocation
self._invocation = self._queue_item.session.next()
else:
# The queue was empty, wait for next polling interval or event to try again
self._invoker.services.logger.debug("Waiting for next polling interval or event")

View File

@ -10,6 +10,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_4 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_5 import build_migration_5
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_6 import build_migration_6
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import build_migration_7
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@ -37,6 +38,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_5())
migrator.register_migration(build_migration_6())
migrator.register_migration(build_migration_7())
migrator.register_migration(build_migration_8(app_config=config))
migrator.run_migrations()
return db

View File

@ -11,7 +11,7 @@ class Migration7Callback:
def _drop_old_models_tables(self, cursor: sqlite3.Cursor) -> None:
"""Drops the old model_records, model_metadata, model_tags and tags tables."""
tables = ["model_records", "model_metadata", "model_tags", "tags"]
tables = ["model_config", "model_metadata", "model_tags", "tags"]
for table in tables:
cursor.execute(f"DROP TABLE IF EXISTS {table};")

View File

@ -0,0 +1,91 @@
import sqlite3
from pathlib import Path
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration8Callback:
def __init__(self, app_config: InvokeAIAppConfig) -> None:
self._app_config = app_config
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._drop_model_config_table(cursor)
self._migrate_abs_models_to_rel(cursor)
def _drop_model_config_table(self, cursor: sqlite3.Cursor) -> None:
"""Drops the old model_config table. This was missed in a previous migration."""
cursor.execute("DROP TABLE IF EXISTS model_config;")
def _migrate_abs_models_to_rel(self, cursor: sqlite3.Cursor) -> None:
"""Check all model paths & legacy config paths to determine if they are inside Invoke-managed directories. If
they are, update the paths to be relative to the managed directories.
This migration is a no-op for normal users (their paths will already be relative), but is necessary for users
who have been testing the RCs with their live databases. The paths were made absolute in the initial RC, but this
change was reverted. To smooth over the revert for our tests, we can migrate the paths back to relative.
"""
models_path = self._app_config.models_path
legacy_conf_path = self._app_config.legacy_conf_path
legacy_conf_dir = self._app_config.legacy_conf_dir
stmt = """---sql
SELECT
id,
path,
json_extract(config, '$.config_path') as config_path
FROM models;
"""
all_models = cursor.execute(stmt).fetchall()
for model_id, model_path, model_config_path in all_models:
# If the model path is inside the models directory, update it to be relative to the models directory.
if Path(model_path).is_relative_to(models_path):
new_path = Path(model_path).relative_to(models_path)
cursor.execute(
"""--sql
UPDATE models
SET config = json_set(config, '$.path', ?)
WHERE id = ?;
""",
(str(new_path), model_id),
)
# If the model has a legacy config path and it is inside the legacy conf directory, update it to be
# relative to the legacy conf directory. This also fixes up cases in which the config path was
# incorrectly relativized to the root directory. It will now be relativized to the legacy conf directory.
if model_config_path:
if Path(model_config_path).is_relative_to(legacy_conf_path):
new_config_path = Path(model_config_path).relative_to(legacy_conf_path)
elif Path(model_config_path).is_relative_to(legacy_conf_dir):
new_config_path = Path(*Path(model_config_path).parts[1:])
else:
new_config_path = None
if new_config_path:
cursor.execute(
"""--sql
UPDATE models
SET config = json_set(config, '$.config_path', ?)
WHERE id = ?;
""",
(str(new_config_path), model_id),
)
def build_migration_8(app_config: InvokeAIAppConfig) -> Migration:
"""
Build the migration from database version 7 to 8.
This migration does the following:
- Removes the `model_config` table.
- Migrates absolute model & legacy config paths to be relative to the models directory.
"""
migration_8 = Migration(
from_version=7,
to_version=8,
callback=Migration8Callback(app_config),
)
return migration_8

View File

@ -1,4 +1,6 @@
import sqlite3
from contextlib import closing
from datetime import datetime
from pathlib import Path
from typing import Optional
@ -32,6 +34,7 @@ class SqliteMigrator:
self._db = db
self._logger = db.logger
self._migration_set = MigrationSet()
self._backup_path: Optional[Path] = None
def register_migration(self, migration: Migration) -> None:
"""Registers a migration."""
@ -55,6 +58,18 @@ class SqliteMigrator:
return False
self._logger.info("Database update needed")
# Make a backup of the db if it needs to be updated and is a file db
if self._db.db_path is not None:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
self._backup_path = self._db.db_path.parent / f"{self._db.db_path.stem}_backup_{timestamp}.db"
self._logger.info(f"Backing up database to {str(self._backup_path)}")
# Use SQLite to do the backup
with closing(sqlite3.connect(self._backup_path)) as backup_conn:
self._db.conn.backup(backup_conn)
else:
self._logger.info("Using in-memory database, no backup needed")
next_migration = self._migration_set.get(from_version=self._get_current_version(cursor))
while next_migration is not None:
self._run_migration(next_migration)

View File

@ -33,42 +33,3 @@ __all__ = [
"SchedulerPredictionType",
"SubModelType",
]
########## to help populate the openapi_schema with format enums for each config ###########
# This code is no longer necessary?
# leave it here just in case
#
# import inspect
# from enum import Enum
# from typing import Any, Iterable, Dict, get_args, Set
# def _expand(something: Any) -> Iterable[type]:
# if isinstance(something, type):
# yield something
# else:
# for x in get_args(something):
# for y in _expand(x):
# yield y
# def _find_format(cls: type) -> Iterable[Enum]:
# if hasattr(inspect, "get_annotations"):
# fields = inspect.get_annotations(cls)
# else:
# fields = cls.__annotations__
# if "format" in fields:
# for x in get_args(fields["format"]):
# yield x
# for parent_class in cls.__bases__:
# for x in _find_format(parent_class):
# yield x
# return None
# def get_model_config_formats() -> Dict[str, Set[Enum]]:
# result: Dict[str, Set[Enum]] = {}
# for model_config in _expand(AnyModelConfig):
# for field in _find_format(model_config):
# if field is None:
# continue
# if not result.get(model_config.__qualname__):
# result[model_config.__qualname__] = set()
# result[model_config.__qualname__].add(field)
# return result

View File

@ -3,10 +3,10 @@
"""Conversion script for the Stable Diffusion checkpoints."""
from pathlib import Path
from typing import Dict
from typing import Optional
import torch
from diffusers import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
convert_ldm_vae_checkpoint,
create_vae_diffusers_config,
@ -15,11 +15,14 @@ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
)
from omegaconf import DictConfig
from . import AnyModel
def convert_ldm_vae_to_diffusers(
checkpoint: Dict[str, torch.Tensor],
checkpoint: torch.Tensor | dict[str, torch.Tensor],
vae_config: DictConfig,
image_size: int,
dump_path: Optional[Path] = None,
precision: torch.dtype = torch.float16,
) -> AutoencoderKL:
"""Convert a checkpoint-style VAE into a Diffusers VAE"""
@ -28,16 +31,21 @@ def convert_ldm_vae_to_diffusers(
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
return vae.to(precision)
vae.to(precision)
if dump_path:
vae.save_pretrained(dump_path, safe_serialization=True)
return vae
def convert_ckpt_to_diffusers(
checkpoint_path: str | Path,
dump_path: str | Path,
dump_path: Optional[str | Path] = None,
precision: torch.dtype = torch.float16,
use_safetensors: bool = True,
**kwargs,
):
) -> AnyModel:
"""
Takes all the arguments of download_from_original_stable_diffusion_ckpt(),
and in addition a path-like object indicating the location of the desired diffusers
@ -47,18 +55,20 @@ def convert_ckpt_to_diffusers(
pipe = pipe.to(precision)
# TO DO: save correct repo variant
pipe.save_pretrained(
dump_path,
safe_serialization=use_safetensors,
)
if dump_path:
pipe.save_pretrained(
dump_path,
safe_serialization=use_safetensors,
)
return pipe
def convert_controlnet_to_diffusers(
checkpoint_path: Path,
dump_path: Path,
dump_path: Optional[Path] = None,
precision: torch.dtype = torch.float16,
**kwargs,
):
) -> AnyModel:
"""
Takes all the arguments of download_controlnet_from_original_ckpt(),
and in addition a path-like object indicating the location of the desired diffusers
@ -68,4 +78,6 @@ def convert_controlnet_to_diffusers(
pipe = pipe.to(precision)
# TO DO: save correct repo variant
pipe.save_pretrained(dump_path, safe_serialization=True)
if dump_path:
pipe.save_pretrained(dump_path, safe_serialization=True)
return pipe

View File

@ -19,11 +19,20 @@ class ModelConvertCache(ModelConvertCacheBase):
self._cache_path = cache_path
self._max_size = max_size
# adjust cache size at startup in case it has been changed
if self._cache_path.exists():
self.make_room(0.0)
@property
def max_size(self) -> float:
"""Return the maximum size of this cache directory (GB)."""
return self._max_size
@max_size.setter
def max_size(self, value: float) -> None:
"""Set the maximum size of this cache directory (GB)."""
self._max_size = value
def cache_path(self, key: str) -> Path:
"""Return the path for a model with the indicated key."""
return self._cache_path / key

View File

@ -83,3 +83,15 @@ class ModelLoaderBase(ABC):
) -> int:
"""Return size in bytes of the model, calculated before loading."""
pass
@property
@abstractmethod
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the convert cache associated with this loader."""
pass
@property
@abstractmethod
def ram_cache(self) -> ModelCacheBase[AnyModel]:
"""Return the ram cache associated with this loader."""
pass

View File

@ -3,14 +3,13 @@
from logging import Logger
from pathlib import Path
from typing import Optional, Tuple
from typing import Optional
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
InvalidModelConfigException,
ModelRepoVariant,
SubModelType,
)
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
@ -54,51 +53,43 @@ class ModelLoader(ModelLoaderBase):
if model_config.type is ModelType.Main and not submodel_type:
raise InvalidModelConfigException("submodel_type is required when loading a main model")
model_path, model_config, submodel_type = self._get_model_path(model_config, submodel_type)
model_path = self._get_model_path(model_config)
if not model_path.exists():
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
model_path = self._convert_if_needed(model_config, model_path, submodel_type)
locker = self._load_if_needed(model_config, model_path, submodel_type)
with skip_torch_weight_init():
locker = self._convert_and_load(model_config, model_path, submodel_type)
return LoadedModel(config=model_config, _locker=locker)
def _get_model_path(
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
@property
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the convert cache associated with this loader."""
return self._convert_cache
@property
def ram_cache(self) -> ModelCacheBase[AnyModel]:
"""Return the ram cache associated with this loader."""
return self._ram_cache
def _get_model_path(self, config: AnyModelConfig) -> Path:
model_base = self._app_config.models_path
result = (model_base / config.path).resolve(), config, submodel_type
return result
return (model_base / config.path).resolve()
def _convert_if_needed(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
) -> Path:
cache_path: Path = self._convert_cache.cache_path(config.key)
if not self._needs_conversion(config, model_path, cache_path):
return cache_path if cache_path.exists() else model_path
self._convert_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
return self._convert_model(config, model_path, cache_path)
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
return False
def _load_if_needed(
def _convert_and_load(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
) -> ModelLockerBase:
# TO DO: This is not thread safe!
try:
return self._ram_cache.get(config.key, submodel_type)
except IndexError:
pass
model_variant = getattr(config, "repo_variant", None)
self._ram_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
# This is where the model is actually loaded!
with skip_torch_weight_init():
loaded_model = self._load_model(model_path, model_variant=model_variant, submodel_type=submodel_type)
cache_path: Path = self._convert_cache.cache_path(config.key)
if self._needs_conversion(config, model_path, cache_path):
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)
else:
config.path = str(cache_path) if cache_path.exists() else str(self._get_model_path(config))
loaded_model = self._load_model(config, submodel_type)
self._ram_cache.put(
config.key,
@ -123,15 +114,34 @@ class ModelLoader(ModelLoaderBase):
variant=config.repo_variant if isinstance(config, DiffusersConfigBase) else None,
)
def _do_convert(
self, config: AnyModelConfig, model_path: Path, cache_path: Path, submodel_type: Optional[SubModelType] = None
) -> AnyModel:
self.convert_cache.make_room(calc_model_size_by_fs(model_path))
pipeline = self._convert_model(config, model_path, cache_path if self.convert_cache.max_size > 0 else None)
if submodel_type:
# Proactively load the various submodels into the RAM cache so that we don't have to re-convert
# the entire pipeline every time a new submodel is needed.
for subtype in SubModelType:
if subtype == submodel_type:
continue
if submodel := getattr(pipeline, subtype.value, None):
self._ram_cache.put(
config.key, submodel_type=subtype, model=submodel, size=calc_model_size_by_data(submodel)
)
return getattr(pipeline, submodel_type.value) if submodel_type else pipeline
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:
return False
# This needs to be implemented in subclasses that handle checkpoints
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
raise NotImplementedError
# This needs to be implemented in the subclass
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
raise NotImplementedError

View File

@ -122,6 +122,11 @@ class ModelCache(ModelCacheBase[AnyModel]):
"""Return the cap on cache size."""
return self._max_cache_size
@max_cache_size.setter
def max_cache_size(self, value: float) -> None:
"""Set the cap on cache size."""
self._max_cache_size = value
@property
def stats(self) -> Optional[CacheStats]:
"""Return collected CacheStats object."""
@ -157,8 +162,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
assert key not in self._cached_models
if key in self._cached_models:
return
self.make_room(size)
cache_record = CacheRecord(key, model, size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
@ -405,6 +411,8 @@ class ModelCache(ModelCacheBase[AnyModel]):
#
# Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up
# immediately when their reference count hits 0.
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
torch.cuda.empty_cache()

View File

@ -2,8 +2,10 @@
"""Class for ControlNet model loading in InvokeAI."""
from pathlib import Path
from typing import Optional
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
@ -33,7 +35,7 @@ class ControlNetLoader(GenericDiffusersLoader):
else:
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
assert isinstance(config, CheckpointConfigBase)
image_size = (
512
@ -44,8 +46,8 @@ class ControlNetLoader(GenericDiffusersLoader):
)
self._logger.info(f"Converting {model_path} to diffusers format")
with open(self._app_config.root_path / config.config_path, "r") as config_stream:
convert_controlnet_to_diffusers(
with open(self._app_config.legacy_conf_path / config.config_path, "r") as config_stream:
result = convert_controlnet_to_diffusers(
model_path,
output_path,
original_config_file=config_stream,
@ -53,4 +55,4 @@ class ControlNetLoader(GenericDiffusersLoader):
precision=self._torch_dtype,
from_safetensors=model_path.suffix == ".safetensors",
)
return output_path
return result

View File

@ -10,13 +10,14 @@ from diffusers.models.modeling_utils import ModelMixin
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.config import DiffusersConfigBase
from .. import ModelLoader, ModelLoaderRegistry
@ -28,14 +29,15 @@ class GenericDiffusersLoader(ModelLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
model_path = Path(config.path)
model_class = self.get_hf_load_class(model_path)
if submodel_type is not None:
raise Exception(f"There are no submodels in models of type {model_class}")
variant = model_variant.value if model_variant else None
repo_variant = config.repo_variant if isinstance(config, DiffusersConfigBase) else None
variant = repo_variant.value if repo_variant else None
try:
result: AnyModel = model_class.from_pretrained(model_path, torch_dtype=self._torch_dtype, variant=variant)
except OSError as e:

View File

@ -9,13 +9,14 @@ import torch
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
from invokeai.backend.raw_model import RawModel
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
@ -24,13 +25,13 @@ class IPAdapterInvokeAILoader(ModelLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if submodel_type is not None:
raise ValueError("There are no submodels in an IP-Adapter model.")
model = build_ip_adapter(
model_path = Path(config.path)
model: RawModel = build_ip_adapter(
ip_adapter_ckpt_path=str(model_path / "ip_adapter.bin"),
device=torch.device("cpu"),
dtype=self._torch_dtype,

View File

@ -3,7 +3,7 @@
from logging import Logger
from pathlib import Path
from typing import Optional, Tuple
from typing import Optional
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.lora import LoRAModelRaw
@ -12,7 +12,6 @@ from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
@ -41,12 +40,12 @@ class LoRALoader(ModelLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if submodel_type is not None:
raise ValueError("There are no submodels in a LoRA model.")
model_path = Path(config.path)
assert self._model_base is not None
model = LoRAModelRaw.from_checkpoint(
file_path=model_path,
@ -56,12 +55,9 @@ class LoRALoader(ModelLoader):
return model
# override
def _get_model_path(
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
self._model_base = (
config.base
) # cheating a little - we remember this variable for using in the subsequent call to _load_model()
def _get_model_path(self, config: AnyModelConfig) -> Path:
# cheating a little - we remember this variable for using in the subsequent call to _load_model()
self._model_base = config.base
model_base_path = self._app_config.models_path
model_path = model_base_path / config.path
@ -73,5 +69,4 @@ class LoRALoader(ModelLoader):
model_path = path
break
result = model_path.resolve(), config, submodel_type
return result
return model_path.resolve()

View File

@ -7,9 +7,9 @@ from typing import Optional
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
@ -25,18 +25,19 @@ class OnnyxDiffusersModel(GenericDiffusersLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not submodel_type is not None:
raise Exception("A submodel type must be provided when loading onnx pipelines.")
model_path = Path(config.path)
load_class = self.get_hf_load_class(model_path, submodel_type)
variant = model_variant.value if model_variant else None
repo_variant = getattr(config, "repo_variant", None)
variant = repo_variant.value if repo_variant else None
model_path = model_path / submodel_type.value
result: AnyModel = load_class.from_pretrained(
model_path,
torch_dtype=self._torch_dtype,
variant=variant,
) # type: ignore
)
return result

View File

@ -9,12 +9,16 @@ from invokeai.backend.model_manager import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SchedulerPredictionType,
SubModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase, MainCheckpointConfig, ModelVariantType
from invokeai.backend.model_manager.config import (
CheckpointConfigBase,
DiffusersConfigBase,
MainCheckpointConfig,
ModelVariantType,
)
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
from .. import ModelLoaderRegistry
@ -41,14 +45,15 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not submodel_type is not None:
raise Exception("A submodel type must be provided when loading main pipelines.")
model_path = Path(config.path)
load_class = self.get_hf_load_class(model_path, submodel_type)
variant = model_variant.value if model_variant else None
repo_variant = config.repo_variant if isinstance(config, DiffusersConfigBase) else None
variant = repo_variant.value if repo_variant else None
model_path = model_path / submodel_type.value
try:
result: AnyModel = load_class.from_pretrained(
@ -78,7 +83,7 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
else:
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
assert isinstance(config, MainCheckpointConfig)
base = config.base
@ -94,11 +99,11 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
self._logger.info(f"Converting {model_path} to diffusers format")
convert_ckpt_to_diffusers(
loaded_model = convert_ckpt_to_diffusers(
model_path,
output_path,
model_type=self.model_base_to_model_type[base],
original_config_file=self._app_config.root_path / config.config_path,
original_config_file=self._app_config.legacy_conf_path / config.config_path,
extract_ema=True,
from_safetensors=model_path.suffix == ".safetensors",
precision=self._torch_dtype,
@ -108,4 +113,4 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
load_safety_checker=False,
num_in_channels=VARIANT_TO_IN_CHANNEL_MAP[config.variant],
)
return output_path
return loaded_model

View File

@ -2,14 +2,13 @@
"""Class for TI model loading in InvokeAI."""
from pathlib import Path
from typing import Optional, Tuple
from typing import Optional
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
@ -27,22 +26,19 @@ class TextualInversionLoader(ModelLoader):
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if submodel_type is not None:
raise ValueError("There are no submodels in a TI model.")
model = TextualInversionModelRaw.from_checkpoint(
file_path=model_path,
file_path=config.path,
dtype=self._torch_dtype,
)
return model
# override
def _get_model_path(
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
def _get_model_path(self, config: AnyModelConfig) -> Path:
model_path = self._app_config.models_path / config.path
if config.format == ModelFormat.EmbeddingFolder:
@ -53,4 +49,4 @@ class TextualInversionLoader(ModelLoader):
if not path.exists():
raise OSError(f"The embedding file at {path} was not found")
return path, config, submodel_type
return path

View File

@ -2,6 +2,7 @@
"""Class for VAE model loading in InvokeAI."""
from pathlib import Path
from typing import Optional
import torch
from omegaconf import DictConfig, OmegaConf
@ -13,7 +14,7 @@ from invokeai.backend.model_manager import (
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import CheckpointConfigBase
from invokeai.backend.model_manager.config import AnyModel, CheckpointConfigBase
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
from .. import ModelLoaderRegistry
@ -38,13 +39,13 @@ class VAELoader(GenericDiffusersLoader):
else:
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
# TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.root_path / config.config_path
config_file = self._app_config.legacy_conf_path / config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")
@ -63,6 +64,6 @@ class VAELoader(GenericDiffusersLoader):
vae_config=ckpt_config,
image_size=512,
precision=self._torch_dtype,
dump_path=output_path,
)
vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path
return vae_model

View File

@ -28,6 +28,10 @@ def _conv_forward_asymmetric(self, input, weight, bias):
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
try:

View File

@ -31,6 +31,9 @@ class ConfigMapper:
YAML_FILENAME = "invokeai.yaml"
DATABASE_FILENAME = "invokeai.db"
DEFAULT_OUTDIR = "outputs"
DEFAULT_DB_DIR = "databases"
database_path = None
database_backup_dir = None
outputs_path = None
@ -50,12 +53,18 @@ class ConfigMapper:
def __load_from_root_config(self, invoke_root):
"""Validate a yaml path exists, confirm the user wants to use it and load config."""
yaml_path = os.path.join(invoke_root, self.YAML_FILENAME)
if not os.path.exists(yaml_path):
print(f"Unable to find invokeai.yaml at {yaml_path}!")
return False
if os.path.exists(yaml_path):
db_dir, outdir = self.__load_paths_from_yaml_file(yaml_path)
if db_dir is None or outdir is None:
print("The invokeai.yaml file was found but is missing the db_dir and/or outdir setting!")
return False
if db_dir is None:
db_dir = self.DEFAULT_DB_DIR
print(f"The invokeai.yaml file was found but is missing the db_dir setting! Defaulting to {db_dir}")
if outdir is None:
outdir = self.DEFAULT_OUTDIR
print(f"The invokeai.yaml file was found but is missing the outdir setting! Defaulting to {outdir}")
if os.path.isabs(db_dir):
self.database_path = os.path.join(db_dir, self.DATABASE_FILENAME)

View File

@ -1 +1 @@
__version__ = "4.0.0rc6"
__version__ = "4.0.0"

View File

@ -0,0 +1,122 @@
import re
from argparse import ArgumentParser, RawTextHelpFormatter
from typing import Any
import requests
from attr import dataclass
from tqdm import tqdm
def get_author(commit: dict[str, Any]) -> str:
"""Gets the author of a commit.
If the author is not present, the committer is used instead and an asterisk appended to the name."""
return commit["author"]["login"] if commit["author"] else f"{commit['commit']['author']['name']}*"
@dataclass
class CommitInfo:
sha: str
url: str
author: str
is_username: bool
message: str
data: dict[str, Any]
def __str__(self) -> str:
return f"{self.sha}: {self.author}{'*' if not self.is_username else ''} - {self.message} ({self.url})"
@classmethod
def from_data(cls, commit: dict[str, Any]) -> "CommitInfo":
return CommitInfo(
sha=commit["sha"],
url=commit["url"],
author=commit["author"]["login"] if commit["author"] else commit["commit"]["author"]["name"],
is_username=bool(commit["author"]),
message=commit["commit"]["message"].split("\n")[0],
data=commit,
)
def fetch_commits_between_tags(
org_name: str, repo_name: str, from_ref: str, to_ref: str, token: str
) -> list[CommitInfo]:
"""Fetches all commits between two tags in a GitHub repository."""
commit_info: list[CommitInfo] = []
headers = {"Authorization": f"token {token}"} if token else None
# Get the total number of pages w/ an intial request - a bit hacky but it works...
response = requests.get(
f"https://api.github.com/repos/{org_name}/{repo_name}/compare/{from_ref}...{to_ref}?page=1&per_page=100",
headers=headers,
)
last_page_match = re.search(r'page=(\d+)&per_page=\d+>; rel="last"', response.headers["Link"])
last_page = int(last_page_match.group(1)) if last_page_match else 1
pbar = tqdm(range(1, last_page + 1), desc="Fetching commits", unit="page", leave=False)
for page in pbar:
compare_url = f"https://api.github.com/repos/{org_name}/{repo_name}/compare/{from_ref}...{to_ref}?page={page}&per_page=100"
response = requests.get(compare_url, headers=headers)
commits = response.json()["commits"]
commit_info.extend([CommitInfo.from_data(c) for c in commits])
return commit_info
def main():
description = """Fetch external contributions between two tags in the InvokeAI GitHub repository. Useful for generating a list of contributors to include in release notes.
When the GitHub username for a commit is not available, the committer name is used instead and an asterisk appended to the name.
Example output (note the second commit has an asterisk appended to the name):
171f2aa20ddfefa23c5edbeb2849c4bd601fe104: rohinish404 - fix(ui): image not getting selected (https://api.github.com/repos/invoke-ai/InvokeAI/commits/171f2aa20ddfefa23c5edbeb2849c4bd601fe104)
0bb0e226dcec8a17e843444ad27c29b4821dad7c: Mark E. Shoulson* - Flip default ordering of workflow library; #5477 (https://api.github.com/repos/invoke-ai/InvokeAI/commits/0bb0e226dcec8a17e843444ad27c29b4821dad7c)
"""
parser = ArgumentParser(description=description, formatter_class=RawTextHelpFormatter)
parser.add_argument("--token", dest="token", type=str, default=None, help="The GitHub token to use")
parser.add_argument("--from", dest="from_ref", type=str, help="The start reference (commit, tag, etc)")
parser.add_argument("--to", dest="to_ref", type=str, help="The end reference (commit, tag, etc)")
args = parser.parse_args()
org_name = "invoke-ai"
repo_name = "InvokeAI"
# List of members of the organization, including usernames and known display names,
# any of which may be used in the commit data. Used to filter out commits.
org_members = [
"blessedcoolant",
"brandonrising",
"chainchompa",
"ebr",
"Eugene Brodsky",
"hipsterusername",
"Kent Keirsey",
"lstein",
"Lincoln Stein",
"maryhipp",
"Mary Hipp Rogers",
"Mary Hipp",
"psychedelicious",
"RyanJDick",
"Ryan Dick",
]
all_commits = fetch_commits_between_tags(
org_name=org_name,
repo_name=repo_name,
from_ref=args.from_ref,
to_ref=args.to_ref,
token=args.token,
)
filtered_commits = filter(lambda x: x.author not in org_members, all_commits)
for commit in filtered_commits:
print(commit)
if __name__ == "__main__":
main()

View File

@ -43,8 +43,7 @@ def test_registration_meta(mm2_installer: ModelInstallServiceBase, embedding_fil
assert model_record is not None
assert model_record.name == "test_embedding"
assert model_record.type == ModelType.TextualInversion
assert model_record.path.endswith(embedding_file.as_posix())
assert Path(model_record.path).is_absolute()
assert Path(model_record.path) == embedding_file
assert Path(model_record.path).exists()
assert model_record.base == BaseModelType("sd-1")
assert model_record.description is not None
@ -77,8 +76,7 @@ def test_install(
key = mm2_installer.install_path(embedding_file)
model_record = store.get_model(key)
assert model_record.path.endswith("sd-1/embedding/test_embedding.safetensors")
assert Path(model_record.path).is_absolute()
assert Path(model_record.path).exists()
assert (mm2_app_config.models_path / model_record.path).exists()
assert model_record.source == embedding_file.as_posix()
@ -147,10 +145,7 @@ def test_background_install(
model_record = mm2_installer.record_store.get_model(key)
assert model_record is not None
assert model_record.path.endswith(destination)
assert Path(model_record.path).is_absolute()
assert Path(model_record.path).exists()
assert model_record.key != "<NOKEY>"
assert Path(model_record.path).exists()
assert (mm2_app_config.models_path / model_record.path).exists()
# see if metadata was properly passed through
assert model_record.description == description
@ -172,7 +167,7 @@ def test_not_inplace_install(
assert job is not None
assert job.config_out is not None
assert Path(job.config_out.path) != embedding_file
assert Path(job.config_out.path).exists()
assert (mm2_app_config.models_path / job.config_out.path).exists()
def test_inplace_install(
@ -184,16 +179,21 @@ def test_inplace_install(
assert job is not None
assert job.config_out is not None
assert Path(job.config_out.path) == embedding_file
assert Path(job.config_out.path).exists()
def test_delete_install(mm2_installer: ModelInstallServiceBase, embedding_file: Path) -> None:
def test_delete_install(
mm2_installer: ModelInstallServiceBase, embedding_file: Path, mm2_app_config: InvokeAIAppConfig
) -> None:
store = mm2_installer.record_store
key = mm2_installer.install_path(embedding_file)
model_record = store.get_model(key)
assert Path(model_record.path).exists()
assert (mm2_app_config.models_path / model_record.path).exists()
assert embedding_file.exists() # original should still be there after installation
mm2_installer.delete(key)
assert not Path(model_record.path).exists() # after deletion, installed copy should not exist
assert not (
mm2_app_config.models_path / model_record.path
).exists() # after deletion, installed copy should not exist
assert embedding_file.exists() # but original should still be there
with pytest.raises(UnknownModelException):
store.get_model(key)
@ -232,7 +232,7 @@ def test_simple_download(mm2_installer: ModelInstallServiceBase, mm2_app_config:
key = job.config_out.key
model_record = store.get_model(key)
assert Path(model_record.path).exists()
assert (mm2_app_config.models_path / model_record.path).exists()
assert len(bus.events) == 4
event_names = [x.event_name for x in bus.events]
@ -261,7 +261,7 @@ def test_huggingface_download(mm2_installer: ModelInstallServiceBase, mm2_app_co
key = job.config_out.key
model_record = store.get_model(key)
assert Path(model_record.path).exists()
assert (mm2_app_config.models_path / model_record.path).exists()
assert model_record.type == ModelType.Main
assert model_record.format == ModelFormat.Diffusers

View File

@ -250,6 +250,32 @@ def test_migrator_runs_all_migrations_file(logger: Logger) -> None:
db.conn.close()
def test_migrator_backs_up_db(logger: Logger) -> None:
with TemporaryDirectory() as tempdir:
original_db_path = Path(tempdir) / "invokeai.db"
db = SqliteDatabase(db_path=original_db_path, logger=logger, verbose=False)
# Write some data to the db to test for successful backup
temp_cursor = db.conn.cursor()
temp_cursor.execute("CREATE TABLE test (id INTEGER PRIMARY KEY);")
db.conn.commit()
# Set up the migrator
migrator = SqliteMigrator(db=db)
migrations = [Migration(from_version=i, to_version=i + 1, callback=create_migrate(i)) for i in range(0, 3)]
for migration in migrations:
migrator.register_migration(migration)
migrator.run_migrations()
# Must manually close else we get an error on Windows
db.conn.close()
assert original_db_path.exists()
# We should have a backup file when we migrated a file db
assert migrator._backup_path
# Check that the test table exists as a proxy for successful backup
with closing(sqlite3.connect(migrator._backup_path)) as backup_db_conn:
backup_db_cursor = backup_db_conn.cursor()
backup_db_cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='test';")
assert backup_db_cursor.fetchone() is not None
def test_migrator_makes_no_changes_on_failed_migration(
migrator: SqliteMigrator, migration_no_op: Migration, failing_migrate_callback: MigrateCallback
) -> None: