InvokeAI/invokeai/app/invocations/control_adapter.py
2023-09-05 11:37:12 +12:00

185 lines
7.6 KiB
Python

from builtins import bool, float
from typing import Dict, List, Literal, Optional, Union
from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.primitives import ImageField
from ...backend.model_management import BaseModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
InputField,
Input,
InvocationContext,
OutputField,
UIType,
invocation,
invocation_output,
)
CONTROL_ADAPTER_TYPES = Literal["ControlNet", "IP-Adapter", "T2I-Adapter"]
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
class ControlNetModelField(BaseModel):
"""ControlNet model field"""
model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model")
class ControlField(BaseModel):
control_type: CONTROL_ADAPTER_TYPES = Field(default="ControlNet", description="The type of control adapter")
image: ImageField = Field(description="The control image")
# control_model and ip_adapter_models are both optional
# but must be on the two present
# if control_type == "ControlNet", then mus be control_model
# if control_type == "IP-Adapter", then must be ip_adapter_model
control_model: Optional[ControlNetModelField] = Field(description="The ControlNet model to use")
ip_adapter_model: Optional[str] = Field(description="The IP-Adapter model to use")
image_encoder_model: Optional[str] = Field(description="The clip_image_encoder model to use")
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@validator("control_weight")
def validate_control_weight(cls, v):
"""Validate that all control weights in the valid range"""
if isinstance(v, list):
for i in v:
if i < -1 or i > 2:
raise ValueError("Control weights must be within -1 to 2 range")
else:
if v < -1 or v > 2:
raise ValueError("Control weights must be within -1 to 2 range")
return v
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
type: Literal["control_output"] = "control_output"
# Outputs
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
type: Literal["controlnet"] = "controlnet"
# Inputs
image: ImageField = InputField(description="The control image")
control_model: ControlNetModelField = InputField(
default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
)
begin_step_percent: float = InputField(
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
)
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
control_type="ControlNet",
image=self.image,
control_model=self.control_model,
# ip_adapter_model is currently optional
# must be either a control_model or ip_adapter_model
# ip_adapter_model=None,
control_weight=self.control_weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
control_mode=self.control_mode,
resize_mode=self.resize_mode,
),
)
IP_ADAPTER_MODELS = Literal[
"models_ip_adapter/models/ip-adapter_sd15.bin",
"models_ip_adapter/models/ip-adapter-plus_sd15.bin",
"models_ip_adapter/models/ip-adapter-plus-face_sd15.bin",
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin",
]
IP_ADAPTER_IMAGE_ENCODER_MODELS = Literal[
"models_ip_adapter/models/image_encoder/",
"./models_ip_adapter/models/image_encoder/",
"models_ip_adapter/sdxl_models/image_encoder/",
]
@invocation("ipadapter", title="IP-Adapter", tags=["ipadapter"], category="ipadapter")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes"""
type: Literal["ipadapter"] = "ipadapter"
# Inputs
image: ImageField = InputField(description="The control image")
# control_model: ControlNetModelField = InputField(
# default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
# )
ip_adapter_model: IP_ADAPTER_MODELS = InputField(
default="./models_ip_adapter/models/ip-adapter_sd15.bin", description="The IP-Adapter model"
)
image_encoder_model: IP_ADAPTER_IMAGE_ENCODER_MODELS = InputField(
default="./models_ip_adapter/models/image_encoder/", description="The image encoder model"
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
)
# begin_step_percent: float = InputField(
# default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
# )
# end_step_percent: float = InputField(
# default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
# )
# control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
# resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
def invoke(self, context: InvocationContext) -> ControlOutput:
return ControlOutput(
control=ControlField(
control_type="IP-Adapter",
image=self.image,
# control_model is currently optional
# must be either a control_model or ip_adapter_model
# control_model=None,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=self.image_encoder_model,
control_weight=self.control_weight,
# rest are currently ignored
# begin_step_percent=self.begin_step_percent,
# end_step_percent=self.end_step_percent,
# control_mode=self.control_mode,
# resize_mode=self.resize_mode,
),
)