InvokeAI/docs/features/INPAINTING.md
Lincoln Stein 7b46d5f823 complete inpaint/outpaint documentation
- still need to write INSTALLING-MODELS.md documentation.
2022-10-27 18:43:17 -04:00

295 lines
12 KiB
Markdown

---
title: Inpainting
---
# :octicons-paintbrush-16: Inpainting
## **Creating Transparent Regions for Inpainting**
Inpainting is really cool. To do it, you start with an initial image
and use a photoeditor to make one or more regions transparent
(i.e. they have a "hole" in them). You then provide the path to this
image at the dream> command line using the `-I` switch. Stable
Diffusion will only paint within the transparent region.
There's a catch. In the current implementation, you have to prepare
the initial image correctly so that the underlying colors are
preserved under the transparent area. Many imaging editing
applications will by default erase the color information under the
transparent pixels and replace them with white or black, which will
lead to suboptimal inpainting. It often helps to apply incomplete
transparency, such as any value between 1 and 99%
You also must take care to export the PNG file in such a way that the
color information is preserved. There is often an option in the export
dialog that lets you specify this.
If your photoeditor is erasing the underlying color information,
`dream.py` will give you a big fat warning. If you can't find a way to
coax your photoeditor to retain color values under transparent areas,
then you can combine the `-I` and `-M` switches to provide both the
original unedited image and the masked (partially transparent) image:
```bash
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
```
If you are using Photoshop to make your transparent masks, here is a
protocol contributed by III_Communication36 (Discord name):
Create your alpha channel for mask in photoshop, then run
image/adjust/threshold on that channel. Export as Save a copy using
superpng (3rd party free download plugin) making sure alpha channel
is selected. Then masking works as it should for the img2img
process 100%. Can feed just one image this way without needing to
feed the -M mask behind it
## **Masking using Text**
You can also create a mask using a text prompt to select the part of
the image you want to alter, using the <a
href="https://github.com/timojl/clipseg">clipseg</a> algorithm. This
works on any image, not just ones generated by InvokeAI.
The `--text_mask` (short form `-tm`) option takes two arguments. The
first argument is a text description of the part of the image you wish
to mask (paint over). If the text description contains a space, you must
surround it with quotation marks. The optional second argument is the
minimum threshold for the mask classifier's confidence score, described
in more detail below.
To see how this works in practice, here's an image of a still life
painting that I got off the web.
<img src="../assets/still-life-scaled.jpg">
You can selectively mask out the
orange and replace it with a baseball in this way:
~~~
invoke> a baseball -I /path/to/still_life.png -tm orange
~~~
<img src="../assets/still-life-inpainted.png">
The clipseg classifier produces a confidence score for each region it
identifies. Generally regions that score above 0.5 are reliable, but
if you are getting too much or too little masking you can adjust the
threshold down (to get more mask), or up (to get less). In this
example, by passing `-tm` a higher value, we are insisting on a tigher
mask. However, if you make it too high, the orange may not be picked
up at all!
~~~
invoke> a baseball -I /path/to/breakfast.png -tm orange 0.6
~~~
The `!mask` command may be useful for debugging problems with the
text2mask feature. The syntax is `!mask /path/to/image.png -tm <text>
<threshold>`
It will generate three files:
- The image with the selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.selected.png
- The image with the un-selected area highlighted.
- it will be named XXXXX.<imagename>.<prompt>.deselected.png
- The image with the selected area converted into a black and white
image according to the threshold level
- it will be named XXXXX.<imagename>.<prompt>.masked.png
The `.masked.png` file can then be directly passed to the `invoke>`
prompt in the CLI via the `-M` argument. Do not attempt this with
the `selected.png` or `deselected.png` files, as they contain some
transparency throughout the image and will not produce the desired
results.
Here is an example of how `!mask` works:
```
invoke> !mask ./test-pictures/curly.png -tm hair 0.5
>> generating masks from ./test-pictures/curly.png
>> Initializing clipseg model for text to mask inference
Outputs:
[941.1] outputs/img-samples/000019.curly.hair.deselected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.2] outputs/img-samples/000019.curly.hair.selected.png: !mask ./test-pictures/curly.png -tm hair 0.5
[941.3] outputs/img-samples/000019.curly.hair.masked.png: !mask ./test-pictures/curly.png -tm hair 0.5
```
**Original image "curly.png"**
<img src="../assets/outpainting/curly.png">
**000019.curly.hair.selected.png**
<img src="../assets/inpainting/000019.curly.hair.selected.png">
**000019.curly.hair.deselected.png**
<img src="../assets/inpainting/000019.curly.hair.deselected.png">
**000019.curly.hair.masked.png**
<img src="../assets/inpainting/000019.curly.hair.masked.png">
It looks like we selected the hair pretty well at the 0.5 threshold
(which is the default, so we didn't actually have to specify it), so
let's have some fun:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -M 000019.curly.hair.masked.png -C20
>> loaded input image of size 512x512 from ./test-pictures/curly.png
...
Outputs:
[946] outputs/img-samples/000024.801380492.png: "medusa with cobras" -s 50 -S 801380492 -W 512 -H 512 -C 20.0 -I ./test-pictures/curly.png -A k_lms -f 0.75
```
<img src="../assets/inpainting/000024.801380492.png">
You can also skip the `!mask` creation step and just select the masked
region directly:
```
invoke> medusa with cobras -I ./test-pictures/curly.png -tm hair -C20
```
## Using the RunwayML inpainting model
The [RunwayML Inpainting Model
v1.5](https://huggingface.co/runwayml/stable-diffusion-inpainting) is
a specialized version of [Stable Diffusion
v1.5](https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5)
that contains extra channels specifically designed to enhance
inpainting and outpainting. While it can do regular `txt2img` and
`img2img`, it really shines when filling in missing regions. It has an
almost uncanny ability to blend the new regions with existing ones in
a semantically coherent way.
To install the inpainting model, follow the
[instructions](INSTALLING-MODELS.md) for installing a new model. You
may use either the CLI (`invoke.py` script) or directly edit the
`configs/models.yaml` configuration file to do this. The main thing to
watch out for is that the the model `config` option must be set up to
use `v1-inpainting-inference.yaml` rather than the `v1-inference.yaml`
file that is used by Stable Diffusion 1.4 and 1.5.
After installation, your `models.yaml` should contain an entry that
looks like this one:
inpainting-1.5:
weights: models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt
description: SD inpainting v1.5
config: configs/stable-diffusion/v1-inpainting-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
As shown in the example, you may include a VAE fine-tuning weights
file as well. This is strongly recommended.
To use the custom inpainting model, launch `invoke.py` with the
argument `--model inpainting-1.5` or alternatively from within the
script use the `!switch inpainting-1.5` command to load and switch to
the inpainting model.
You can now do inpainting and outpainting exactly as described above,
but there will (likely) be a noticeable improvement in
coherence. Txt2img and Img2img will work as well.
There are a few caveats to be aware of:
1. The inpainting model is larger than the standard model, and will
use nearly 4 GB of GPU VRAM. This makes it unlikely to run on
a 4 GB graphics card.
2. When operating in Img2img mode, the inpainting model is much less
steerable than the standard model. It is great for making small
changes, such as changing the pattern of a fabric, or slightly
changing a subject's expression or hair, but the model will
resist making the dramatic alterations that the standard
model lets you do.
3. While the `--hires` option works fine with the inpainting model,
some special features, such as `--embiggen` are disabled.
4. Prompt weighting (`banana++ sushi`) and merging work well with
the inpainting model, but prompt swapping (a ("fluffy cat").swap("smiling dog") eating a hotdog`)
will not have any effect due to the way the model is set up.
You may use text masking (with `-tm thing-to-mask`) as an
effective replacement.
5. The model tends to oversharpen image if you use high step or CFG
values. If you need to do large steps, use the standard model.
6. The `--strength` (`-f`) option has no effect on the inpainting
model due to its fundamental differences with the standard
model. It will always take the full number of steps you specify.
## Troubleshooting
Here are some troubleshooting tips for inpainting and outpainting.
## Inpainting is not changing the masked region enough!
One of the things to understand about how inpainting works is that it
is equivalent to running img2img on just the masked (transparent)
area. img2img builds on top of the existing image data, and therefore
will attempt to preserve colors, shapes and textures to the best of
its ability. Unfortunately this means that if you want to make a
dramatic change in the inpainted region, for example replacing a red
wall with a blue one, the algorithm will fight you.
You have a couple of options. The first is to increase the values of
the requested steps (`-sXXX`), strength (`-f0.XX`), and/or
condition-free guidance (`-CXX.X`). If this is not working for you, a
more extreme step is to provide the `--inpaint_replace 0.X` (`-r0.X`)
option. This value ranges from 0.0 to 1.0. The higher it is the less
attention the algorithm will pay to the data underneath the masked
region. At high values this will enable you to replace colored regions
entirely, but beware that the masked region mayl not blend in with the
surrounding unmasked regions as well.
---
## Recipe for GIMP
[GIMP](https://www.gimp.org/) is a popular Linux photoediting tool.
1. Open image in GIMP.
2. Layer->Transparency->Add Alpha Channel
3. Use lasso tool to select region to mask
4. Choose Select -> Float to create a floating selection
5. Open the Layers toolbar (^L) and select "Floating Selection"
6. Set opacity to a value between 0% and 99%
7. Export as PNG
8. In the export dialogue, Make sure the "Save colour values from
transparent pixels" checkbox is selected.
---
## Recipe for Adobe Photoshop
1. Open image in Photoshop
<div align="center" markdown>![step1](../assets/step1.png)</div>
2. Use any of the selection tools (Marquee, Lasso, or Wand) to select the area you desire to inpaint.
<div align="center" markdown>![step2](../assets/step2.png)</div>
3. Because we'll be applying a mask over the area we want to preserve, you should now select the inverse by using the ++shift+ctrl+i++ shortcut, or right clicking and using the "Select Inverse" option.
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the underlying image, or your inpainting results will be dramatically impacted.
<div align="center" markdown>![step4](../assets/step4.png)</div>
5. Make sure to hide any background layers that are present. You should see the mask applied to your image layer, and the image on your canvas should display the checkered background.
<div align="center" markdown>![step5](../assets/step5.png)</div>
6. Save the image as a transparent PNG by using `File`-->`Save a Copy` from the menu bar, or by using the keyboard shortcut ++alt+ctrl+s++
<div align="center" markdown>![step6](../assets/step6.png)</div>
7. After following the inpainting instructions above (either through the CLI or the Web UI), marvel at your newfound ability to selectively invoke. Lookin' good!
<div align="center" markdown>![step7](../assets/step7.png)</div>
8. In the export dialogue, Make sure the "Save colour values from transparent pixels" checkbox is selected.