mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
cbac95b02a
- New and improved web api - Author: @Kyle0654
252 lines
6.8 KiB
Python
252 lines
6.8 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from base64 import urlsafe_b64encode
|
|
import json
|
|
import string
|
|
from copy import deepcopy
|
|
from datetime import datetime, timezone
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Union
|
|
from uuid import uuid4
|
|
|
|
|
|
class DreamBase():
|
|
# Id
|
|
id: str
|
|
|
|
# Initial Image
|
|
enable_init_image: bool
|
|
initimg: string = None
|
|
|
|
# Img2Img
|
|
enable_img2img: bool # TODO: support this better
|
|
strength: float = 0 # TODO: name this something related to img2img to make it clearer?
|
|
fit = None # Fit initial image dimensions
|
|
|
|
# Generation
|
|
enable_generate: bool
|
|
prompt: string = ""
|
|
seed: int = 0 # 0 is random
|
|
steps: int = 10
|
|
width: int = 512
|
|
height: int = 512
|
|
cfg_scale: float = 7.5
|
|
sampler_name: string = 'klms'
|
|
seamless: bool = False
|
|
model: str = None # The model to use (currently unused)
|
|
embeddings = None # The embeddings to use (currently unused)
|
|
progress_images: bool = False
|
|
|
|
# GFPGAN
|
|
enable_gfpgan: bool
|
|
gfpgan_strength: float = 0
|
|
|
|
# Upscale
|
|
enable_upscale: bool
|
|
upscale: None
|
|
upscale_level: int = None
|
|
upscale_strength: float = 0.75
|
|
|
|
# Embiggen
|
|
enable_embiggen: bool
|
|
embiggen: Union[None, List[float]] = None
|
|
embiggen_tiles: Union[None, List[int]] = None
|
|
|
|
# Metadata
|
|
time: int
|
|
|
|
def __init__(self):
|
|
self.id = urlsafe_b64encode(uuid4().bytes).decode('ascii')
|
|
|
|
def parse_json(self, j, new_instance=False):
|
|
# Id
|
|
if 'id' in j and not new_instance:
|
|
self.id = j.get('id')
|
|
|
|
# Initial Image
|
|
self.enable_init_image = 'enable_init_image' in j and bool(j.get('enable_init_image'))
|
|
if self.enable_init_image:
|
|
self.initimg = j.get('initimg')
|
|
|
|
# Img2Img
|
|
self.enable_img2img = 'enable_img2img' in j and bool(j.get('enable_img2img'))
|
|
if self.enable_img2img:
|
|
self.strength = float(j.get('strength'))
|
|
self.fit = 'fit' in j
|
|
|
|
# Generation
|
|
self.enable_generate = 'enable_generate' in j and bool(j.get('enable_generate'))
|
|
if self.enable_generate:
|
|
self.prompt = j.get('prompt')
|
|
self.seed = int(j.get('seed'))
|
|
self.steps = int(j.get('steps'))
|
|
self.width = int(j.get('width'))
|
|
self.height = int(j.get('height'))
|
|
self.cfg_scale = float(j.get('cfgscale') or j.get('cfg_scale'))
|
|
self.sampler_name = j.get('sampler') or j.get('sampler_name')
|
|
# model: str = None # The model to use (currently unused)
|
|
# embeddings = None # The embeddings to use (currently unused)
|
|
self.seamless = 'seamless' in j
|
|
self.progress_images = 'progress_images' in j
|
|
|
|
# GFPGAN
|
|
self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan'))
|
|
if self.enable_gfpgan:
|
|
self.gfpgan_strength = float(j.get('gfpgan_strength'))
|
|
|
|
# Upscale
|
|
self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale'))
|
|
if self.enable_upscale:
|
|
self.upscale_level = j.get('upscale_level')
|
|
self.upscale_strength = j.get('upscale_strength')
|
|
self.upscale = None if self.upscale_level in {None,''} else [int(self.upscale_level),float(self.upscale_strength)]
|
|
|
|
# Embiggen
|
|
self.enable_embiggen = 'enable_embiggen' in j and bool(j.get('enable_embiggen'))
|
|
if self.enable_embiggen:
|
|
self.embiggen = j.get('embiggen')
|
|
self.embiggen_tiles = j.get('embiggen_tiles')
|
|
|
|
# Metadata
|
|
self.time = int(j.get('time')) if ('time' in j and not new_instance) else int(datetime.now(timezone.utc).timestamp())
|
|
|
|
|
|
class DreamResult(DreamBase):
|
|
# Result
|
|
has_upscaled: False
|
|
has_gfpgan: False
|
|
|
|
# TODO: use something else for state tracking
|
|
images_generated: int = 0
|
|
images_upscaled: int = 0
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def clone_without_img(self):
|
|
copy = deepcopy(self)
|
|
copy.initimg = None
|
|
return copy
|
|
|
|
def to_json(self):
|
|
copy = deepcopy(self)
|
|
copy.initimg = None
|
|
j = json.dumps(copy.__dict__)
|
|
return j
|
|
|
|
@staticmethod
|
|
def from_json(j, newTime: bool = False):
|
|
d = DreamResult()
|
|
d.parse_json(j)
|
|
return d
|
|
|
|
|
|
# TODO: switch this to a pipelined request, with pluggable steps
|
|
# Will likely require generator code changes to accomplish
|
|
class JobRequest(DreamBase):
|
|
# Iteration
|
|
iterations: int = 1
|
|
variation_amount = None
|
|
with_variations = None
|
|
|
|
# Results
|
|
results: List[DreamResult] = []
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def newDreamResult(self) -> DreamResult:
|
|
result = DreamResult()
|
|
result.parse_json(self.__dict__, new_instance=True)
|
|
return result
|
|
|
|
@staticmethod
|
|
def from_json(j):
|
|
job = JobRequest()
|
|
job.parse_json(j)
|
|
|
|
# Metadata
|
|
job.time = int(j.get('time')) if ('time' in j) else int(datetime.now(timezone.utc).timestamp())
|
|
|
|
# Iteration
|
|
if job.enable_generate:
|
|
job.iterations = int(j.get('iterations'))
|
|
job.variation_amount = float(j.get('variation_amount'))
|
|
job.with_variations = j.get('with_variations')
|
|
|
|
return job
|
|
|
|
|
|
class ProgressType(Enum):
|
|
GENERATION = 1
|
|
UPSCALING_STARTED = 2
|
|
UPSCALING_DONE = 3
|
|
|
|
class Signal():
|
|
event: str
|
|
data = None
|
|
room: str = None
|
|
broadcast: bool = False
|
|
|
|
def __init__(self, event: str, data, room: str = None, broadcast: bool = False):
|
|
self.event = event
|
|
self.data = data
|
|
self.room = room
|
|
self.broadcast = broadcast
|
|
|
|
@staticmethod
|
|
def image_progress(jobId: str, dreamId: str, step: int, totalSteps: int, progressType: ProgressType = ProgressType.GENERATION, hasProgressImage: bool = False):
|
|
return Signal('dream_progress', {
|
|
'jobId': jobId,
|
|
'dreamId': dreamId,
|
|
'step': step,
|
|
'totalSteps': totalSteps,
|
|
'hasProgressImage': hasProgressImage,
|
|
'progressType': progressType.name
|
|
}, room=jobId, broadcast=True)
|
|
|
|
# TODO: use a result id or something? Like a sub-job
|
|
@staticmethod
|
|
def image_result(jobId: str, dreamId: str, dreamResult: DreamResult):
|
|
return Signal('dream_result', {
|
|
'jobId': jobId,
|
|
'dreamId': dreamId,
|
|
'dreamRequest': dreamResult.clone_without_img().__dict__
|
|
}, room=jobId, broadcast=True)
|
|
|
|
@staticmethod
|
|
def job_started(jobId: str):
|
|
return Signal('job_started', {
|
|
'jobId': jobId
|
|
}, room=jobId, broadcast=True)
|
|
|
|
@staticmethod
|
|
def job_done(jobId: str):
|
|
return Signal('job_done', {
|
|
'jobId': jobId
|
|
}, room=jobId, broadcast=True)
|
|
|
|
@staticmethod
|
|
def job_canceled(jobId: str):
|
|
return Signal('job_canceled', {
|
|
'jobId': jobId
|
|
}, room=jobId, broadcast=True)
|
|
|
|
|
|
class PaginatedItems():
|
|
items: List[Any]
|
|
page: int # Current Page
|
|
pages: int # Total number of pages
|
|
per_page: int # Number of items per page
|
|
total: int # Total number of items in result
|
|
|
|
def __init__(self, items: List[Any], page: int, pages: int, per_page: int, total: int):
|
|
self.items = items
|
|
self.page = page
|
|
self.pages = pages
|
|
self.per_page = per_page
|
|
self.total = total
|
|
|
|
def to_json(self):
|
|
return json.dumps(self.__dict__)
|