InvokeAI/ldm/dream/pngwriter.py

135 lines
5.0 KiB
Python

"""
Two helper classes for dealing with PNG images and their path names.
PngWriter -- Converts Images generated by T2I into PNGs, finds
appropriate names for them, and writes prompt metadata
into the PNG. Intended to be subclassable in order to
create more complex naming schemes, including using the
prompt for file/directory names.
PromptFormatter -- Utility for converting a Namespace of prompt parameters
back into a formatted prompt string with command-line switches.
"""
import os
import re
from math import sqrt, floor, ceil
from PIL import Image, PngImagePlugin
# -------------------image generation utils-----
class PngWriter:
def __init__(self, outdir, prompt=None, batch_size=1):
self.outdir = outdir
self.batch_size = batch_size
self.prompt = prompt
self.filepath = None
self.files_written = []
os.makedirs(outdir, exist_ok=True)
def write_image(self, image, seed, upscaled=False):
self.filepath = self.unique_filename(
seed, upscaled, self.filepath
) # will increment name in some sensible way
try:
prompt = f'{self.prompt} -S{seed}'
self.save_image_and_prompt_to_png(image, prompt, self.filepath)
except IOError as e:
print(e)
if not upscaled:
self.files_written.append([self.filepath, seed])
def unique_filename(self, seed, upscaled, previouspath=None):
revision = 1
if previouspath is None:
# sort reverse alphabetically until we find max+1
dirlist = sorted(os.listdir(self.outdir), reverse=True)
# find the first filename that matches our pattern or return 000000.0.png
filename = next(
(f for f in dirlist if re.match('^(\d+)\..*\.png', f)),
'0000000.0.png',
)
basecount = int(filename.split('.', 1)[0])
basecount += 1
if self.batch_size > 1:
filename = f'{basecount:06}.{seed}.01.png'
else:
filename = f'{basecount:06}.{seed}.png'
return os.path.join(self.outdir, filename)
else:
basename = os.path.basename(previouspath)
x = re.match('^(\d+)\..*\.png', basename)
if not x:
return self.unique_filename(seed, previouspath)
basecount = int(x.groups()[0])
series = 0
finished = False
while not finished:
series += 1
filename = f'{basecount:06}.{seed}.png'
if self.batch_size > 1 or os.path.exists(
os.path.join(self.outdir, filename)
):
if upscaled:
break
filename = f'{basecount:06}.{seed}.{series:02}.png'
finished = not os.path.exists(
os.path.join(self.outdir, filename)
)
return os.path.join(self.outdir, filename)
def save_image_and_prompt_to_png(self, image, prompt, path):
info = PngImagePlugin.PngInfo()
info.add_text('Dream', prompt)
image.save(path, 'PNG', pnginfo=info)
def make_grid(self, image_list, rows=None, cols=None):
image_cnt = len(image_list)
if None in (rows, cols):
rows = floor(sqrt(image_cnt)) # try to make it square
cols = ceil(image_cnt / rows)
width = image_list[0].width
height = image_list[0].height
grid_img = Image.new('RGB', (width * cols, height * rows))
for r in range(0, rows):
for c in range(0, cols):
i = r * rows + c
grid_img.paste(image_list[i], (c * width, r * height))
return grid_img
class PromptFormatter:
def __init__(self, t2i, opt):
self.t2i = t2i
self.opt = opt
# note: the t2i object should provide all these values.
# there should be no need to or against opt values
def normalize_prompt(self):
"""Normalize the prompt and switches"""
t2i = self.t2i
opt = self.opt
switches = list()
switches.append(f'"{opt.prompt}"')
switches.append(f'-s{opt.steps or t2i.steps}')
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
switches.append(f'-W{opt.width or t2i.width}')
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
if opt.init_img:
switches.append(f'-I{opt.init_img}')
if opt.strength and opt.init_img is not None:
switches.append(f'-f{opt.strength or t2i.strength}')
if opt.gfpgan_strength:
switches.append(f'-G{opt.gfpgan_strength}')
if opt.upscale:
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
if t2i.full_precision:
switches.append('-F')
return ' '.join(switches)