mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
resolved conflicts and write properly-formatted prompt string (with sampler & upscaling) into image file
This commit is contained in:
commit
b85773f332
@ -344,6 +344,7 @@ repository and associated paper for details and limitations.
|
||||
enabled if the GFPGAN directory is located as a sibling to Stable Diffusion.
|
||||
VRAM requirements are modestly reduced. Thanks to both [Blessedcoolant](https://github.com/blessedcoolant) and
|
||||
[Oceanswave](https://github.com/oceanswave) for their work on this.
|
||||
- You can now swap samplers on the dream> command line. [Blessedcoolant](https://github.com/blessedcoolant)
|
||||
|
||||
- v1.11 (26 August 2022)
|
||||
- NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module. (kudos to [Oceanswave](https://github.com/Oceanswave)
|
||||
|
@ -106,6 +106,8 @@ class PromptFormatter:
|
||||
self.t2i = t2i
|
||||
self.opt = opt
|
||||
|
||||
# note: the t2i object should provide all these values.
|
||||
# there should be no need to or against opt values
|
||||
def normalize_prompt(self):
|
||||
"""Normalize the prompt and switches"""
|
||||
t2i = self.t2i
|
||||
@ -118,13 +120,15 @@ class PromptFormatter:
|
||||
switches.append(f'-W{opt.width or t2i.width}')
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-m{t2i.sampler_name}')
|
||||
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.strength and opt.init_img is not None:
|
||||
switches.append(f'-f{opt.strength or t2i.strength}')
|
||||
if opt.gfpgan_strength:
|
||||
switches.append(f'-G{opt.gfpgan_strength}')
|
||||
if opt.upscale:
|
||||
switches.append(f'-U {" ".join([str(u) for u in opt.upscale])}')
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return ' '.join(switches)
|
||||
|
@ -212,6 +212,7 @@ class T2I:
|
||||
save_original=False,
|
||||
upscale=None,
|
||||
variants=None,
|
||||
user_sampler=None,
|
||||
**args,
|
||||
): # eat up additional cruft
|
||||
"""
|
||||
@ -271,6 +272,10 @@ class T2I:
|
||||
|
||||
scope = autocast if self.precision == 'autocast' else nullcontext
|
||||
|
||||
if user_sampler and (user_sampler != self.sampler_name):
|
||||
self.sampler_name = user_sampler
|
||||
self._set_sampler()
|
||||
|
||||
tic = time.time()
|
||||
torch.cuda.torch.cuda.reset_peak_memory_stats()
|
||||
results = list()
|
||||
@ -537,39 +542,38 @@ class T2I:
|
||||
except AttributeError:
|
||||
raise SystemExit
|
||||
|
||||
msg = f'setting sampler to {self.sampler_name}'
|
||||
if self.sampler_name == 'plms':
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||||
else:
|
||||
msg = f'unsupported sampler {self.sampler_name}, defaulting to plms'
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
print(msg)
|
||||
self._set_sampler()
|
||||
|
||||
return self.model
|
||||
|
||||
def _set_sampler(self):
|
||||
msg = f'>> Setting Sampler to {self.sampler_name}'
|
||||
if self.sampler_name == 'plms':
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'dpm_2_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(
|
||||
self.model, 'euler_ancestral', device=self.device
|
||||
)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||||
else:
|
||||
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
print(msg)
|
||||
|
||||
def _load_model_from_config(self, config, ckpt):
|
||||
print(f'Loading model from {ckpt}')
|
||||
pl_sd = torch.load(ckpt, map_location='cpu')
|
||||
|
@ -51,7 +51,8 @@ def main():
|
||||
weights=weights,
|
||||
full_precision=opt.full_precision,
|
||||
config=config,
|
||||
latent_diffusion_weights=opt.laion400m, # this is solely for recreating the prompt
|
||||
# this is solely for recreating the prompt
|
||||
latent_diffusion_weights=opt.laion400m,
|
||||
embedding_path=opt.embedding_path,
|
||||
device=opt.device,
|
||||
)
|
||||
@ -281,8 +282,9 @@ def create_argv_parser():
|
||||
help='use slower full precision math for calculations',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--sampler',
|
||||
'-A',
|
||||
'-m',
|
||||
'--sampler',
|
||||
dest='sampler_name',
|
||||
choices=[
|
||||
'ddim',
|
||||
@ -295,7 +297,7 @@ def create_argv_parser():
|
||||
'plms',
|
||||
],
|
||||
default='k_lms',
|
||||
help='which sampler to use (k_lms) - can only be set on command line',
|
||||
help='which sampler to use (k_lms)',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--outdir',
|
||||
@ -447,6 +449,25 @@ def create_cmd_parser():
|
||||
action='store_true',
|
||||
help='skip subprompt weight normalization',
|
||||
)
|
||||
parser.add_argument(
|
||||
'-A',
|
||||
'-m',
|
||||
'--sampler',
|
||||
dest='sampler_name',
|
||||
default=None,
|
||||
type=str,
|
||||
choices=[
|
||||
'ddim',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_2',
|
||||
'k_euler_a',
|
||||
'k_euler',
|
||||
'k_heun',
|
||||
'k_lms',
|
||||
'plms',
|
||||
],
|
||||
help='Change to another supported sampler using this command',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user