mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
9c89d3452c
feat(nodes): add ResultsServiceABC & SqliteResultsService **Doesn't actually work bc of circular imports. Can't even test it.** - add a base class for ResultsService and SQLite implementation - use `graph_execution_manager` `on_changed` callback to keep `results` table in sync fix(nodes): fix results service bugs chore(ui): regen api fix(ui): fix type guards feat(nodes): add `result_type` to results table, fix types fix(nodes): do not shadow `list` builtin feat(nodes): add results router It doesn't work due to circular imports still fix(nodes): Result class should use outputs classes, not fields feat(ui): crude results router fix(ui): send to canvas in currentimagebuttons not working feat(nodes): add core metadata builder feat(nodes): add design doc feat(nodes): wip latents db stuff feat(nodes): images_db_service and resources router feat(nodes): wip images db & router feat(nodes): update image related names feat(nodes): update urlservice feat(nodes): add high-level images service
368 lines
12 KiB
Python
368 lines
12 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
import io
|
|
from typing import Literal, Optional
|
|
|
|
import numpy
|
|
from PIL import Image, ImageFilter, ImageOps
|
|
from pydantic import BaseModel, Field
|
|
|
|
from ..models.image import ImageField, ImageType
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationContext,
|
|
InvocationConfig,
|
|
)
|
|
|
|
|
|
class PILInvocationConfig(BaseModel):
|
|
"""Helper class to provide all PIL invocations with additional config"""
|
|
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["PIL", "image"],
|
|
},
|
|
}
|
|
|
|
|
|
class ImageOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["image_output"] = "image_output"
|
|
image: ImageField = Field(default=None, description="The output image")
|
|
width: int = Field(description="The width of the image in pixels")
|
|
height: int = Field(description="The height of the image in pixels")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["type", "image", "width", "height"]}
|
|
|
|
|
|
def build_image_output(
|
|
image_type: ImageType, image_name: str, image: Image.Image
|
|
) -> ImageOutput:
|
|
"""Builds an ImageOutput and its ImageField"""
|
|
image_field = ImageField(
|
|
image_name=image_name,
|
|
image_type=image_type,
|
|
)
|
|
return ImageOutput(
|
|
image=image_field,
|
|
width=image.width,
|
|
height=image.height,
|
|
)
|
|
|
|
|
|
class MaskOutput(BaseInvocationOutput):
|
|
"""Base class for invocations that output a mask"""
|
|
|
|
# fmt: off
|
|
type: Literal["mask"] = "mask"
|
|
mask: ImageField = Field(default=None, description="The output mask")
|
|
# fmt: on
|
|
|
|
class Config:
|
|
schema_extra = {
|
|
"required": [
|
|
"type",
|
|
"mask",
|
|
]
|
|
}
|
|
|
|
|
|
class LoadImageInvocation(BaseInvocation):
|
|
"""Load an image and provide it as output."""
|
|
|
|
# fmt: off
|
|
type: Literal["load_image"] = "load_image"
|
|
|
|
# Inputs
|
|
image_type: ImageType = Field(description="The type of the image")
|
|
image_name: str = Field(description="The name of the image")
|
|
# fmt: on
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(self.image_type, self.image_name)
|
|
|
|
return build_image_output(
|
|
image_type=self.image_type,
|
|
image_name=self.image_name,
|
|
image=image,
|
|
)
|
|
|
|
|
|
class ShowImageInvocation(BaseInvocation):
|
|
"""Displays a provided image, and passes it forward in the pipeline."""
|
|
|
|
type: Literal["show_image"] = "show_image"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to show")
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
if image:
|
|
image.show()
|
|
|
|
# TODO: how to handle failure?
|
|
|
|
return build_image_output(
|
|
image_type=self.image.image_type,
|
|
image_name=self.image.image_name,
|
|
image=image,
|
|
)
|
|
|
|
|
|
class CropImageInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Crops an image to a specified box. The box can be outside of the image."""
|
|
|
|
# fmt: off
|
|
type: Literal["crop"] = "crop"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to crop")
|
|
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
|
|
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
|
|
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
|
|
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
image_crop = Image.new(
|
|
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
|
|
)
|
|
image_crop.paste(image, (-self.x, -self.y))
|
|
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, image_crop, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=image_crop,
|
|
)
|
|
|
|
|
|
class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Pastes an image into another image."""
|
|
|
|
# fmt: off
|
|
type: Literal["paste"] = "paste"
|
|
|
|
# Inputs
|
|
base_image: ImageField = Field(default=None, description="The base image")
|
|
image: ImageField = Field(default=None, description="The image to paste")
|
|
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
|
|
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
|
|
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
base_image = context.services.images.get(
|
|
self.base_image.image_type, self.base_image.image_name
|
|
)
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
mask = (
|
|
None
|
|
if self.mask is None
|
|
else ImageOps.invert(
|
|
context.services.images.get(self.mask.image_type, self.mask.image_name)
|
|
)
|
|
)
|
|
# TODO: probably shouldn't invert mask here... should user be required to do it?
|
|
|
|
min_x = min(0, self.x)
|
|
min_y = min(0, self.y)
|
|
max_x = max(base_image.width, image.width + self.x)
|
|
max_y = max(base_image.height, image.height + self.y)
|
|
|
|
new_image = Image.new(
|
|
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
|
|
)
|
|
new_image.paste(base_image, (abs(min_x), abs(min_y)))
|
|
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
|
|
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, new_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=new_image,
|
|
)
|
|
|
|
|
|
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Extracts the alpha channel of an image as a mask."""
|
|
|
|
# fmt: off
|
|
type: Literal["tomask"] = "tomask"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to create the mask from")
|
|
invert: bool = Field(default=False, description="Whether or not to invert the mask")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
image_mask = image.split()[-1]
|
|
if self.invert:
|
|
image_mask = ImageOps.invert(image_mask)
|
|
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, image_mask, metadata)
|
|
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
|
|
|
|
|
|
class BlurInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Blurs an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["blur"] = "blur"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to blur")
|
|
radius: float = Field(default=8.0, ge=0, description="The blur radius")
|
|
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
blur = (
|
|
ImageFilter.GaussianBlur(self.radius)
|
|
if self.blur_type == "gaussian"
|
|
else ImageFilter.BoxBlur(self.radius)
|
|
)
|
|
blur_image = image.filter(blur)
|
|
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, blur_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type, image_name=image_name, image=blur_image
|
|
)
|
|
|
|
|
|
class LerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["lerp"] = "lerp"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
|
|
image_arr = image_arr * (self.max - self.min) + self.max
|
|
|
|
lerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, lerp_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type, image_name=image_name, image=lerp_image
|
|
)
|
|
|
|
|
|
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Inverse linear interpolation of all pixels of an image"""
|
|
|
|
# fmt: off
|
|
type: Literal["ilerp"] = "ilerp"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="The image to lerp")
|
|
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
|
|
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
|
|
image_arr = numpy.asarray(image, dtype=numpy.float32)
|
|
image_arr = (
|
|
numpy.minimum(
|
|
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
|
|
)
|
|
* 255
|
|
)
|
|
|
|
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
|
|
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, ilerp_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type, image_name=image_name, image=ilerp_image
|
|
)
|