InvokeAI/scripts/textual_inversion_fe.py
2023-01-20 17:01:09 -05:00

351 lines
13 KiB
Python
Executable File

#!/usr/bin/env python
import npyscreen
import os
import sys
import re
import shutil
import traceback
import curses
from ldm.invoke.globals import Globals, global_set_root
from omegaconf import OmegaConf
from pathlib import Path
from typing import List
import argparse
TRAINING_DATA = 'text-inversion-training-data'
TRAINING_DIR = 'text-inversion-output'
CONF_FILE = 'preferences.conf'
class textualInversionForm(npyscreen.FormMultiPageAction):
resolutions = [512, 768, 1024]
lr_schedulers = [
"linear", "cosine", "cosine_with_restarts",
"polynomial","constant", "constant_with_warmup"
]
precisions = ['no','fp16','bf16']
learnable_properties = ['object','style']
def __init__(self, parentApp, name, saved_args=None):
self.saved_args = saved_args or {}
super().__init__(parentApp, name)
def afterEditing(self):
self.parentApp.setNextForm(None)
def create(self):
self.model_names, default = self.get_model_names()
default_initializer_token = ''
default_placeholder_token = ''
saved_args = self.saved_args
try:
default = self.model_names.index(saved_args['model'])
except:
pass
self.add_widget_intelligent(
npyscreen.FixedText,
value='Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.'
)
self.model = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Model Name:',
values=self.model_names,
value=default,
max_height=len(self.model_names)+1
)
self.placeholder_token = self.add_widget_intelligent(
npyscreen.TitleText,
name='Trigger Term:',
value='', # saved_args.get('placeholder_token',''), # to restore previous term
)
self.placeholder_token.when_value_edited = self.initializer_changed
self.nextrely -= 1
self.nextrelx += 30
self.prompt_token = self.add_widget_intelligent(
npyscreen.FixedText,
name="Trigger term for use in prompt",
value='',
)
self.nextrelx -= 30
self.initializer_token = self.add_widget_intelligent(
npyscreen.TitleText,
name='Initializer:',
value=saved_args.get('initializer_token',default_initializer_token),
)
self.resume_from_checkpoint = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Resume from last saved checkpoint",
value=False,
)
self.learnable_property = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name="Learnable property:",
values=self.learnable_properties,
value=self.learnable_properties.index(saved_args.get('learnable_property','object')),
max_height=4,
)
self.train_data_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name='Data Training Directory:',
select_dir=True,
must_exist=False,
value=str(saved_args.get('train_data_dir',Path(Globals.root) / TRAINING_DATA / default_placeholder_token))
)
self.output_dir = self.add_widget_intelligent(
npyscreen.TitleFilename,
name='Output Destination Directory:',
select_dir=True,
must_exist=False,
value=str(saved_args.get('output_dir',Path(Globals.root) / TRAINING_DIR / default_placeholder_token))
)
self.resolution = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Image resolution (pixels):',
values = self.resolutions,
value=self.resolutions.index(saved_args.get('resolution',512)),
scroll_exit = True,
max_height=4,
)
self.center_crop = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Center crop images before resizing to resolution",
value=saved_args.get('center_crop',False)
)
self.mixed_precision = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Mixed Precision:',
values=self.precisions,
value=self.precisions.index(saved_args.get('mixed_precision','fp16')),
max_height=4,
)
self.num_train_epochs = self.add_widget_intelligent(
npyscreen.TitleSlider,
name='Number of training epochs:',
out_of=1000,
step=50,
lowest=1,
value=saved_args.get('num_train_epochs',100)
)
self.max_train_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name='Max Training Steps:',
out_of=10000,
step=500,
lowest=1,
value=saved_args.get('max_train_steps',3000)
)
self.train_batch_size = self.add_widget_intelligent(
npyscreen.TitleSlider,
name='Batch Size (reduce if you run out of memory):',
out_of=50,
step=1,
lowest=1,
value=saved_args.get('train_batch_size',8),
)
self.gradient_accumulation_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name='Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):',
out_of=10,
step=1,
lowest=1,
value=saved_args.get('gradient_accumulation_steps',4)
)
self.lr_warmup_steps = self.add_widget_intelligent(
npyscreen.TitleSlider,
name='Warmup Steps:',
out_of=100,
step=1,
lowest=0,
value=saved_args.get('lr_warmup_steps',0),
)
self.learning_rate = self.add_widget_intelligent(
npyscreen.TitleText,
name="Learning Rate:",
value=str(saved_args.get('learning_rate','5.0e-04'),)
)
self.scale_lr = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Scale learning rate by number GPUs, steps and batch size",
value=saved_args.get('scale_lr',True),
)
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
npyscreen.Checkbox,
name="Use xformers acceleration",
value=saved_args.get('enable_xformers_memory_efficient_attention',False),
)
self.lr_scheduler = self.add_widget_intelligent(
npyscreen.TitleSelectOne,
name='Learning rate scheduler:',
values = self.lr_schedulers,
max_height=7,
scroll_exit = True,
value=self.lr_schedulers.index(saved_args.get('lr_scheduler','constant')),
)
def initializer_changed(self):
placeholder = self.placeholder_token.value
self.prompt_token.value = f'(Trigger by using <{placeholder}> in your prompts)'
self.train_data_dir.value = str(Path(Globals.root) / TRAINING_DATA / placeholder)
self.output_dir.value = str(Path(Globals.root) / TRAINING_DIR / placeholder)
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
def on_ok(self):
if self.validate_field_values():
self.parentApp.setNextForm(None)
self.editing = False
self.parentApp.ti_arguments = self.marshall_arguments()
npyscreen.notify('Launching textual inversion training. This will take a while...')
# The module load takes a while, so we do it while the form and message are still up
import ldm.invoke.textual_inversion_training
else:
self.editing = True
def ok_cancel(self):
sys.exit(0)
def validate_field_values(self)->bool:
bad_fields = []
if self.model.value is None:
bad_fields.append('Model Name must correspond to a known model in models.yaml')
if not re.match('^[a-zA-Z0-9.-]+$',self.placeholder_token.value):
bad_fields.append('Trigger term must only contain alphanumeric characters, the dot and hyphen')
if self.train_data_dir.value is None:
bad_fields.append('Data Training Directory cannot be empty')
if self.output_dir.value is None:
bad_fields.append('The Output Destination Directory cannot be empty')
if len(bad_fields) > 0:
message = 'The following problems were detected and must be corrected:'
for problem in bad_fields:
message += f'\n* {problem}'
npyscreen.notify_confirm(message)
return False
else:
return True
def get_model_names(self)->(List[str],int):
conf = OmegaConf.load(os.path.join(Globals.root,'configs/models.yaml'))
model_names = [idx for idx in sorted(list(conf.keys())) if conf[idx].get('format',None)=='diffusers']
defaults = [idx for idx in range(len(model_names)) if 'default' in conf[model_names[idx]]]
return (model_names,defaults[0])
def marshall_arguments(self)->dict:
args = dict()
# the choices
args.update(
model = self.model_names[self.model.value[0]],
resolution = self.resolutions[self.resolution.value[0]],
lr_scheduler = self.lr_schedulers[self.lr_scheduler.value[0]],
mixed_precision = self.precisions[self.mixed_precision.value[0]],
learnable_property = self.learnable_properties[self.learnable_property.value[0]],
)
# all the strings and booleans
for attr in ('initializer_token','placeholder_token','train_data_dir',
'output_dir','scale_lr','center_crop','enable_xformers_memory_efficient_attention'):
args[attr] = getattr(self,attr).value
# all the integers
for attr in ('train_batch_size','gradient_accumulation_steps',
'num_train_epochs','max_train_steps','lr_warmup_steps'):
args[attr] = int(getattr(self,attr).value)
# the floats (just one)
args.update(
learning_rate = float(self.learning_rate.value)
)
# a special case
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
args['resume_from_checkpoint'] = 'latest'
return args
class MyApplication(npyscreen.NPSAppManaged):
def __init__(self, saved_args=None):
super().__init__()
self.ti_arguments=None
self.saved_args=saved_args
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main = self.addForm('MAIN', textualInversionForm, name='Textual Inversion Settings', saved_args=self.saved_args)
def copy_to_embeddings_folder(args:dict):
'''
Copy learned_embeds.bin into the embeddings folder, and offer to
delete the full model and checkpoints.
'''
source = Path(args['output_dir'],'learned_embeds.bin')
dest_dir_name = args['placeholder_token'].strip('<>')
destination = Path(Globals.root,'embeddings',dest_dir_name)
os.makedirs(destination,exist_ok=True)
print(f'>> Training completed. Copying learned_embeds.bin into {str(destination)}')
shutil.copy(source,destination)
if (input('Delete training logs and intermediate checkpoints? [y] ') or 'y').startswith(('y','Y')):
shutil.rmtree(Path(args['output_dir']))
else:
print(f'>> Keeping {args["output_dir"]}')
def save_args(args:dict):
'''
Save the current argument values to an omegaconf file
'''
dest_dir = Path(Globals.root) / TRAINING_DIR
os.makedirs(dest_dir, exist_ok=True)
conf_file = dest_dir / CONF_FILE
conf = OmegaConf.create(args)
OmegaConf.save(config=conf, f=conf_file)
def previous_args()->dict:
'''
Get the previous arguments used.
'''
conf_file = Path(Globals.root) / TRAINING_DIR / CONF_FILE
try:
conf = OmegaConf.load(conf_file)
conf['placeholder_token'] = conf['placeholder_token'].strip('<>')
except:
conf= None
return conf
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='InvokeAI textual inversion training')
parser.add_argument(
'--root_dir','--root-dir',
type=Path,
default=Globals.root,
help='Path to the invokeai runtime directory',
)
args = parser.parse_args()
global_set_root(args.root_dir)
saved_args = previous_args()
myapplication = MyApplication(saved_args=saved_args)
myapplication.run()
from ldm.invoke.textual_inversion_training import do_textual_inversion_training
if args := myapplication.ti_arguments:
os.makedirs(args['output_dir'],exist_ok=True)
# Automatically add angle brackets around the trigger
if not re.match('^<.+>$',args['placeholder_token']):
args['placeholder_token'] = f"<{args['placeholder_token']}>"
args['only_save_embeds'] = True
save_args(args)
try:
print(f'DEBUG: args = {args}')
do_textual_inversion_training(**args)
copy_to_embeddings_folder(args)
except Exception as e:
print('** An exception occurred during training. The exception was:')
print(str(e))
print('** DETAILS:')
print(traceback.format_exc())