mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
97 lines
3.0 KiB
Python
97 lines
3.0 KiB
Python
import os
|
|
import typing
|
|
from enum import Enum
|
|
from typing import Literal, Optional
|
|
|
|
import torch
|
|
|
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus, build_ip_adapter
|
|
from invokeai.backend.model_management.models.base import (
|
|
BaseModelType,
|
|
InvalidModelException,
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
ModelType,
|
|
SubModelType,
|
|
calc_model_size_by_fs,
|
|
classproperty,
|
|
)
|
|
|
|
|
|
class IPAdapterModelFormat(str, Enum):
|
|
# The custom IP-Adapter model format defined by InvokeAI.
|
|
InvokeAI = "invokeai"
|
|
|
|
|
|
class IPAdapterModel(ModelBase):
|
|
class InvokeAIConfig(ModelConfigBase):
|
|
model_format: Literal[IPAdapterModelFormat.InvokeAI]
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.IPAdapter
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.model_size = calc_model_size_by_fs(self.model_path)
|
|
|
|
@classmethod
|
|
def detect_format(cls, path: str) -> str:
|
|
if not os.path.exists(path):
|
|
raise ModuleNotFoundError(f"No IP-Adapter model at path '{path}'.")
|
|
|
|
if os.path.isdir(path):
|
|
model_file = os.path.join(path, "ip_adapter.bin")
|
|
image_encoder_config_file = os.path.join(path, "image_encoder.txt")
|
|
if os.path.exists(model_file) and os.path.exists(image_encoder_config_file):
|
|
return IPAdapterModelFormat.InvokeAI
|
|
|
|
raise InvalidModelException(f"Unexpected IP-Adapter model format: {path}")
|
|
|
|
@classproperty
|
|
def save_to_config(cls) -> bool:
|
|
return True
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
|
if child_type is not None:
|
|
raise ValueError("There are no child models in an IP-Adapter model.")
|
|
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SubModelType] = None,
|
|
) -> typing.Union[IPAdapter, IPAdapterPlus]:
|
|
if child_type is not None:
|
|
raise ValueError("There are no child models in an IP-Adapter model.")
|
|
|
|
model = build_ip_adapter(
|
|
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
|
|
)
|
|
|
|
self.model_size = model.calc_size()
|
|
return model
|
|
|
|
@classmethod
|
|
def convert_if_required(
|
|
cls,
|
|
model_path: str,
|
|
output_path: str,
|
|
config: ModelConfigBase,
|
|
base_model: BaseModelType,
|
|
) -> str:
|
|
format = cls.detect_format(model_path)
|
|
if format == IPAdapterModelFormat.InvokeAI:
|
|
return model_path
|
|
else:
|
|
raise ValueError(f"Unsupported format: '{format}'.")
|
|
|
|
|
|
def get_ip_adapter_image_encoder_model_id(model_path: str):
|
|
"""Read the ID of the image encoder associated with the IP-Adapter at `model_path`."""
|
|
image_encoder_config_file = os.path.join(model_path, "image_encoder.txt")
|
|
|
|
with open(image_encoder_config_file, "r") as f:
|
|
image_encoder_model = f.readline().strip()
|
|
|
|
return image_encoder_model
|