mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
419 lines
14 KiB
Python
419 lines
14 KiB
Python
'''
|
|
ldm.models.diffusion.sampler
|
|
|
|
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
|
|
|
|
'''
|
|
from enum import Enum
|
|
|
|
import torch
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from functools import partial
|
|
from ldm.invoke.devices import choose_torch_device
|
|
|
|
from ldm.modules.diffusionmodules.util import (
|
|
make_ddim_sampling_parameters,
|
|
make_ddim_timesteps,
|
|
noise_like,
|
|
extract_into_tensor,
|
|
)
|
|
|
|
class Sampler(object):
|
|
def __init__(self, model, schedule='linear', steps=None, device=None, **kwargs):
|
|
self.model = model
|
|
self.ddim_timesteps = None
|
|
self.ddpm_num_timesteps = steps
|
|
self.schedule = schedule
|
|
self.device = device or choose_torch_device()
|
|
|
|
def register_buffer(self, name, attr):
|
|
if type(attr) == torch.Tensor:
|
|
if attr.device != torch.device(self.device):
|
|
attr = attr.to(torch.float32).to(torch.device(self.device))
|
|
setattr(self, name, attr)
|
|
|
|
# This method was copied over from ddim.py and probably does stuff that is
|
|
# ddim-specific. Disentangle at some point.
|
|
def make_schedule(
|
|
self,
|
|
ddim_num_steps,
|
|
ddim_discretize='uniform',
|
|
ddim_eta=0.0,
|
|
verbose=False,
|
|
):
|
|
self.total_steps = ddim_num_steps
|
|
self.ddim_timesteps = make_ddim_timesteps(
|
|
ddim_discr_method=ddim_discretize,
|
|
num_ddim_timesteps=ddim_num_steps,
|
|
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
|
verbose=verbose,
|
|
)
|
|
alphas_cumprod = self.model.alphas_cumprod
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
|
), 'alphas have to be defined for each timestep'
|
|
to_torch = (
|
|
lambda x: x.clone()
|
|
.detach()
|
|
.to(torch.float32)
|
|
.to(self.model.device)
|
|
)
|
|
|
|
self.register_buffer('betas', to_torch(self.model.betas))
|
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
|
self.register_buffer(
|
|
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
|
)
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
self.register_buffer(
|
|
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
|
)
|
|
self.register_buffer(
|
|
'sqrt_one_minus_alphas_cumprod',
|
|
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
|
)
|
|
self.register_buffer(
|
|
'log_one_minus_alphas_cumprod',
|
|
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
|
)
|
|
self.register_buffer(
|
|
'sqrt_recip_alphas_cumprod',
|
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
|
)
|
|
self.register_buffer(
|
|
'sqrt_recipm1_alphas_cumprod',
|
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
|
)
|
|
|
|
# ddim sampling parameters
|
|
(
|
|
ddim_sigmas,
|
|
ddim_alphas,
|
|
ddim_alphas_prev,
|
|
) = make_ddim_sampling_parameters(
|
|
alphacums=alphas_cumprod.cpu(),
|
|
ddim_timesteps=self.ddim_timesteps,
|
|
eta=ddim_eta,
|
|
verbose=verbose,
|
|
)
|
|
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
|
self.register_buffer('ddim_alphas', ddim_alphas)
|
|
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
|
self.register_buffer(
|
|
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
|
)
|
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
|
(1 - self.alphas_cumprod_prev)
|
|
/ (1 - self.alphas_cumprod)
|
|
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
|
)
|
|
self.register_buffer(
|
|
'ddim_sigmas_for_original_num_steps',
|
|
sigmas_for_original_sampling_steps,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
|
# fast, but does not allow for exact reconstruction
|
|
# t serves as an index to gather the correct alphas
|
|
if use_original_steps:
|
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
|
else:
|
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
|
|
|
if noise is None:
|
|
noise = torch.randn_like(x0)
|
|
return (
|
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
|
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
|
* noise
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def sample(
|
|
self,
|
|
S, # S is steps
|
|
batch_size,
|
|
shape,
|
|
conditioning=None,
|
|
callback=None,
|
|
normals_sequence=None,
|
|
img_callback=None, # TODO: this is very confusing because it is called "step_callback" elsewhere. Change.
|
|
quantize_x0=False,
|
|
eta=0.0,
|
|
mask=None,
|
|
x0=None,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
verbose=False,
|
|
x_T=None,
|
|
log_every_t=100,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
|
**kwargs,
|
|
):
|
|
|
|
# check to see if make_schedule() has run, and if not, run it
|
|
if self.ddim_timesteps is None:
|
|
self.make_schedule(
|
|
ddim_num_steps=S,
|
|
ddim_eta = eta,
|
|
verbose = False,
|
|
)
|
|
|
|
ts = self.get_timesteps(S)
|
|
|
|
# sampling
|
|
C, H, W = shape
|
|
shape = (batch_size, C, H, W)
|
|
samples, intermediates = self.do_sampling(
|
|
conditioning,
|
|
shape,
|
|
timesteps=ts,
|
|
callback=callback,
|
|
img_callback=img_callback,
|
|
quantize_denoised=quantize_x0,
|
|
mask=mask,
|
|
x0=x0,
|
|
ddim_use_original_steps=False,
|
|
noise_dropout=noise_dropout,
|
|
temperature=temperature,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
x_T=x_T,
|
|
log_every_t=log_every_t,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
steps=S,
|
|
)
|
|
return samples, intermediates
|
|
|
|
#torch.no_grad()
|
|
def do_sampling(
|
|
self,
|
|
cond,
|
|
shape,
|
|
timesteps=None,
|
|
x_T=None,
|
|
ddim_use_original_steps=False,
|
|
callback=None,
|
|
quantize_denoised=False,
|
|
mask=None,
|
|
x0=None,
|
|
img_callback=None,
|
|
log_every_t=100,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
steps=None,
|
|
):
|
|
b = shape[0]
|
|
time_range = (
|
|
list(reversed(range(0, timesteps)))
|
|
if ddim_use_original_steps
|
|
else np.flip(timesteps)
|
|
)
|
|
|
|
total_steps=steps
|
|
|
|
iterator = tqdm(
|
|
time_range,
|
|
desc=f'{self.__class__.__name__}',
|
|
total=total_steps,
|
|
dynamic_ncols=True,
|
|
)
|
|
old_eps = []
|
|
self.prepare_to_sample(t_enc=total_steps)
|
|
img = self.get_initial_image(x_T,shape,total_steps)
|
|
|
|
# probably don't need this at all
|
|
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
|
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full(
|
|
(b,),
|
|
step,
|
|
device=self.device,
|
|
dtype=torch.long
|
|
)
|
|
ts_next = torch.full(
|
|
(b,),
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
device=self.device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if mask is not None:
|
|
assert x0 is not None
|
|
img_orig = self.model.q_sample(
|
|
x0, ts
|
|
) # TODO: deterministic forward pass?
|
|
img = img_orig * mask + (1.0 - mask) * img
|
|
|
|
outs = self.p_sample(
|
|
img,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
use_original_steps=ddim_use_original_steps,
|
|
quantize_denoised=quantize_denoised,
|
|
temperature=temperature,
|
|
noise_dropout=noise_dropout,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
old_eps=old_eps,
|
|
t_next=ts_next,
|
|
)
|
|
img, pred_x0, e_t = outs
|
|
|
|
old_eps.append(e_t)
|
|
if len(old_eps) >= 4:
|
|
old_eps.pop(0)
|
|
if callback:
|
|
callback(i)
|
|
if img_callback:
|
|
img_callback(img,i)
|
|
|
|
if index % log_every_t == 0 or index == total_steps - 1:
|
|
intermediates['x_inter'].append(img)
|
|
intermediates['pred_x0'].append(pred_x0)
|
|
|
|
return img, intermediates
|
|
|
|
# NOTE that decode() and sample() are almost the same code, and do the same thing.
|
|
# The variable names are changed in order to be confusing.
|
|
@torch.no_grad()
|
|
def decode(
|
|
self,
|
|
x_latent,
|
|
cond,
|
|
t_start,
|
|
img_callback=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
use_original_steps=False,
|
|
init_latent = None,
|
|
mask = None,
|
|
):
|
|
|
|
timesteps = (
|
|
np.arange(self.ddpm_num_timesteps)
|
|
if use_original_steps
|
|
else self.ddim_timesteps
|
|
)
|
|
timesteps = timesteps[:t_start]
|
|
|
|
time_range = np.flip(timesteps)
|
|
total_steps = timesteps.shape[0]
|
|
print(f'>> Running {self.__class__.__name__} sampling starting at step {self.total_steps - t_start} of {self.total_steps} ({total_steps} new sampling steps)')
|
|
|
|
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
|
x_dec = x_latent
|
|
x0 = init_latent
|
|
self.prepare_to_sample(t_enc=total_steps)
|
|
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full(
|
|
(x_latent.shape[0],),
|
|
step,
|
|
device=x_latent.device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
ts_next = torch.full(
|
|
(x_latent.shape[0],),
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
device=self.device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if mask is not None:
|
|
assert x0 is not None
|
|
xdec_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
|
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
|
|
|
outs = self.p_sample(
|
|
x_dec,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
use_original_steps=use_original_steps,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
t_next = ts_next,
|
|
)
|
|
|
|
x_dec, pred_x0, e_t = outs
|
|
if img_callback:
|
|
img_callback(x_dec,i)
|
|
|
|
return x_dec
|
|
|
|
def get_initial_image(self,x_T,shape,timesteps=None):
|
|
if x_T is None:
|
|
return torch.randn(shape, device=self.device)
|
|
else:
|
|
return x_T
|
|
|
|
def p_sample(
|
|
self,
|
|
img,
|
|
cond,
|
|
ts,
|
|
index,
|
|
repeat_noise=False,
|
|
use_original_steps=False,
|
|
quantize_denoised=False,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
old_eps=None,
|
|
t_next=None,
|
|
steps=None,
|
|
):
|
|
raise NotImplementedError("p_sample() must be implemented in a descendent class")
|
|
|
|
def prepare_to_sample(self,t_enc,**kwargs):
|
|
'''
|
|
Hook that will be called right before the very first invocation of p_sample()
|
|
to allow subclass to do additional initialization. t_enc corresponds to the actual
|
|
number of steps that will be run, and may be less than total steps if img2img is
|
|
active.
|
|
'''
|
|
pass
|
|
|
|
def get_timesteps(self,ddim_steps):
|
|
'''
|
|
The ddim and plms samplers work on timesteps. This method is called after
|
|
ddim_timesteps are created in make_schedule(), and selects the portion of
|
|
timesteps that will be used for sampling, depending on the t_enc in img2img.
|
|
'''
|
|
return self.ddim_timesteps[:ddim_steps]
|
|
|
|
def q_sample(self,x0,ts):
|
|
'''
|
|
Returns self.model.q_sample(x0,ts). Is overridden in the k* samplers to
|
|
return self.model.inner_model.q_sample(x0,ts)
|
|
'''
|
|
return self.model.q_sample(x0,ts)
|
|
|
|
|
|
|