InvokeAI/invokeai/app/invocations/controlnet_image_processors.py

49 lines
1.7 KiB
Python

from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from controlnet_aux import CannyDetector, HEDdetector, LineartDetector
from .image import ImageOutput, build_image_output, PILInvocationConfig
# Canny Image Processor
class CannyProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Applies Canny edge detection to image"""
# fmt: off
type: Literal["canny"] = "canny"
# Inputs
image: ImageField = Field(default=None, description="image to process")
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
image_type = ImageType.INTERMEDIATE
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, processed_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=processed_image
)