mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
from typing import Literal, Optional
|
|
|
|
import numpy
|
|
from PIL import Image, ImageFilter, ImageOps
|
|
from pydantic import BaseModel, Field
|
|
|
|
from ..models.image import ImageField, ImageType
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InvocationContext,
|
|
InvocationConfig,
|
|
)
|
|
|
|
from controlnet_aux import CannyDetector, HEDdetector, LineartDetector
|
|
from .image import ImageOutput, build_image_output, PILInvocationConfig
|
|
|
|
|
|
# Canny Image Processor
|
|
class CannyProcessorInvocation(BaseInvocation, PILInvocationConfig):
|
|
"""Applies Canny edge detection to image"""
|
|
|
|
# fmt: off
|
|
type: Literal["canny"] = "canny"
|
|
|
|
# Inputs
|
|
image: ImageField = Field(default=None, description="image to process")
|
|
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
|
|
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
|
|
# fmt: on
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
canny_processor = CannyDetector()
|
|
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
|
|
image_type = ImageType.INTERMEDIATE
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
context.services.images.save(image_type, image_name, processed_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type, image_name=image_name, image=processed_image
|
|
)
|