mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
78ef946e01
- Implement new model loader and modify invocations and embeddings - Finish implementation loaders for all models currently supported by InvokeAI. - Move lora, textual_inversion, and model patching support into backend/embeddings. - Restore support for model cache statistics collection (a little ugly, needs work). - Fixed up invocations that load and patch models. - Move seamless and silencewarnings utils into better location
178 lines
6.9 KiB
Python
178 lines
6.9 KiB
Python
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
|
"""
|
|
Base class for model loading in InvokeAI.
|
|
|
|
Use like this:
|
|
|
|
loader = AnyModelLoader(...)
|
|
loaded_model = loader.get_model('019ab39adfa1840455')
|
|
with loaded_model as model: # context manager moves model into VRAM
|
|
# do something with loaded_model
|
|
"""
|
|
|
|
import hashlib
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from logging import Logger
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, Optional, Tuple, Type
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
|
from invokeai.backend.model_manager.config import AnyModel, VaeCheckpointConfig, VaeDiffusersConfig
|
|
from invokeai.backend.model_manager.load.convert_cache.convert_cache_base import ModelConvertCacheBase
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
|
|
@dataclass
|
|
class LoadedModel:
|
|
"""Context manager object that mediates transfer from RAM<->VRAM."""
|
|
|
|
config: AnyModelConfig
|
|
locker: ModelLockerBase
|
|
|
|
def __enter__(self) -> AnyModel: # I think load_file() always returns a dict
|
|
"""Context entry."""
|
|
self.locker.lock()
|
|
return self.model
|
|
|
|
def __exit__(self, *args: Any, **kwargs: Any) -> None:
|
|
"""Context exit."""
|
|
self.locker.unlock()
|
|
|
|
@property
|
|
def model(self) -> AnyModel:
|
|
"""Return the model without locking it."""
|
|
return self.locker.model
|
|
|
|
|
|
class ModelLoaderBase(ABC):
|
|
"""Abstract base class for loading models into RAM/VRAM."""
|
|
|
|
@abstractmethod
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
logger: Logger,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
):
|
|
"""Initialize the loader."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
|
"""
|
|
Return a model given its confguration.
|
|
|
|
Given a model identified in the model configuration backend,
|
|
return a ModelInfo object that can be used to retrieve the model.
|
|
|
|
:param model_config: Model configuration, as returned by ModelConfigRecordStore
|
|
:param submodel_type: an ModelType enum indicating the portion of
|
|
the model to retrieve (e.g. ModelType.Vae)
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_size_fs(
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
) -> int:
|
|
"""Return size in bytes of the model, calculated before loading."""
|
|
pass
|
|
|
|
|
|
# TO DO: Better name?
|
|
class AnyModelLoader:
|
|
"""This class manages the model loaders and invokes the correct one to load a model of given base and type."""
|
|
|
|
# this tracks the loader subclasses
|
|
_registry: Dict[str, Type[ModelLoaderBase]] = {}
|
|
_logger: Logger = InvokeAILogger.get_logger()
|
|
|
|
def __init__(
|
|
self,
|
|
app_config: InvokeAIAppConfig,
|
|
logger: Logger,
|
|
ram_cache: ModelCacheBase[AnyModel],
|
|
convert_cache: ModelConvertCacheBase,
|
|
):
|
|
"""Initialize AnyModelLoader with its dependencies."""
|
|
self._app_config = app_config
|
|
self._logger = logger
|
|
self._ram_cache = ram_cache
|
|
self._convert_cache = convert_cache
|
|
|
|
@property
|
|
def ram_cache(self) -> ModelCacheBase[AnyModel]:
|
|
"""Return the RAM cache associated used by the loaders."""
|
|
return self._ram_cache
|
|
|
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
|
"""
|
|
Return a model given its configuration.
|
|
|
|
:param key: model key, as known to the config backend
|
|
:param submodel_type: an ModelType enum indicating the portion of
|
|
the model to retrieve (e.g. ModelType.Vae)
|
|
"""
|
|
implementation, model_config, submodel_type = self.__class__.get_implementation(model_config, submodel_type)
|
|
return implementation(
|
|
app_config=self._app_config,
|
|
logger=self._logger,
|
|
ram_cache=self._ram_cache,
|
|
convert_cache=self._convert_cache,
|
|
).load_model(model_config, submodel_type)
|
|
|
|
@staticmethod
|
|
def _to_registry_key(base: BaseModelType, type: ModelType, format: ModelFormat) -> str:
|
|
return "-".join([base.value, type.value, format.value])
|
|
|
|
@classmethod
|
|
def get_implementation(
|
|
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
|
|
) -> Tuple[Type[ModelLoaderBase], AnyModelConfig, Optional[SubModelType]]:
|
|
"""Get subclass of ModelLoaderBase registered to handle base and type."""
|
|
# We have to handle VAE overrides here because this will change the model type and the corresponding implementation returned
|
|
conf2, submodel_type = cls._handle_subtype_overrides(config, submodel_type)
|
|
|
|
key1 = cls._to_registry_key(conf2.base, conf2.type, conf2.format) # for a specific base type
|
|
key2 = cls._to_registry_key(BaseModelType.Any, conf2.type, conf2.format) # with wildcard Any
|
|
implementation = cls._registry.get(key1) or cls._registry.get(key2)
|
|
if not implementation:
|
|
raise NotImplementedError(
|
|
f"No subclass of LoadedModel is registered for base={config.base}, type={config.type}, format={config.format}"
|
|
)
|
|
return implementation, conf2, submodel_type
|
|
|
|
@classmethod
|
|
def _handle_subtype_overrides(
|
|
cls, config: AnyModelConfig, submodel_type: Optional[SubModelType]
|
|
) -> Tuple[AnyModelConfig, Optional[SubModelType]]:
|
|
if submodel_type == SubModelType.Vae and hasattr(config, "vae") and config.vae is not None:
|
|
model_path = Path(config.vae)
|
|
config_class = (
|
|
VaeCheckpointConfig if model_path.suffix in [".pt", ".safetensors", ".ckpt"] else VaeDiffusersConfig
|
|
)
|
|
hash = hashlib.md5(model_path.as_posix().encode("utf-8")).hexdigest()
|
|
new_conf = config_class(path=model_path.as_posix(), name=model_path.stem, base=config.base, key=hash)
|
|
submodel_type = None
|
|
else:
|
|
new_conf = config
|
|
return new_conf, submodel_type
|
|
|
|
@classmethod
|
|
def register(
|
|
cls, type: ModelType, format: ModelFormat, base: BaseModelType = BaseModelType.Any
|
|
) -> Callable[[Type[ModelLoaderBase]], Type[ModelLoaderBase]]:
|
|
"""Define a decorator which registers the subclass of loader."""
|
|
|
|
def decorator(subclass: Type[ModelLoaderBase]) -> Type[ModelLoaderBase]:
|
|
cls._logger.debug(f"Registering class {subclass.__name__} to load models of type {base}/{type}/{format}")
|
|
key = cls._to_registry_key(base, type, format)
|
|
cls._registry[key] = subclass
|
|
return subclass
|
|
|
|
return decorator
|