InvokeAI/ldm/invoke/app/services/graph.py
Kyle Schouviller 357601e2d6
parent 9eed1919c2
author Kyle Schouviller <kyle0654@hotmail.com> 1669872800 -0800
committer Kyle Schouviller <kyle0654@hotmail.com> 1676240900 -0800

Adding base node architecture

Fix type annotation errors

Runs and generates, but breaks in saving session

Fix default model value setting. Fix deprecation warning.

Fixed node api

Adding markdown docs

Simplifying Generate construction in apps

[nodes] A few minor changes (#2510)

* Pin api-related requirements

* Remove confusing extra CORS origins list

* Adds response models for HTTP 200

[nodes] Adding graph_execution_state to soon replace session. Adding tests with pytest.

Minor typing fixes

[nodes] Fix some small output query hookups

[node] Fixing some additional typing issues

[nodes] Move and expand graph code. Add base item storage and sqlite implementation.

Update startup to match new code

[nodes] Add callbacks to item storage

[nodes] Adding an InvocationContext object to use for invocations to provide easier extensibility

[nodes] New execution model that handles iteration

[nodes] Fixing the CLI

[nodes] Adding a note to the CLI

[nodes] Split processing thread into separate service

[node] Add error message on node processing failure

Removing old files and duplicated packages

Adding python-multipart
2023-02-26 21:28:00 +01:00

798 lines
35 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import copy
import itertools
from types import NoneType
import uuid
import networkx as nx
from pydantic import BaseModel, validator
from pydantic.fields import Field
from typing import Any, Literal, Optional, Union, get_args, get_origin, get_type_hints, Annotated
from .invocation_services import InvocationServices
from ..invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from ..invocations import *
class EdgeConnection(BaseModel):
node_id: str = Field(description="The id of the node for this edge connection")
field: str = Field(description="The field for this connection")
def __eq__(self, other):
return (isinstance(other, self.__class__) and
getattr(other, 'node_id', None) == self.node_id and
getattr(other, 'field', None) == self.field)
def __hash__(self):
return hash(f'{self.node_id}.{self.field}')
def get_output_field(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_outputs = get_type_hints(node_type.get_output_type())
node_output_field = node_outputs.get(field) or None
return node_output_field
def get_input_field(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_inputs = get_type_hints(node_type)
node_input_field = node_inputs.get(field) or None
return node_input_field
def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
if not from_type:
return False
if not to_type:
return False
# TODO: this is pretty forgiving on generic types. Clean that up (need to handle optionals and such)
if from_type and to_type:
# Ports are compatible
if (from_type == to_type or
from_type == Any or
to_type == Any or
Any in get_args(from_type) or
Any in get_args(to_type)):
return True
if from_type in get_args(to_type):
return True
if to_type in get_args(from_type):
return True
if not issubclass(from_type, to_type):
return False
else:
return False
return True
def are_connections_compatible(
from_node: BaseInvocation,
from_field: str,
to_node: BaseInvocation,
to_field: str) -> bool:
"""Determines if a connection between fields of two nodes is compatible."""
# TODO: handle iterators and collectors
from_node_field = get_output_field(from_node, from_field)
to_node_field = get_input_field(to_node, to_field)
return are_connection_types_compatible(from_node_field, to_node_field)
class NodeAlreadyInGraphError(Exception):
pass
class InvalidEdgeError(Exception):
pass
class NodeNotFoundError(Exception):
pass
class NodeAlreadyExecutedError(Exception):
pass
# TODO: Create and use an Empty output?
class GraphInvocationOutput(BaseInvocationOutput):
type: Literal['graph_output'] = 'graph_output'
# TODO: Fill this out and move to invocations
class GraphInvocation(BaseInvocation):
type: Literal['graph'] = 'graph'
# TODO: figure out how to create a default here
graph: 'Graph' = Field(description="The graph to run", default=None)
def invoke(self, context: InvocationContext) -> GraphInvocationOutput:
"""Invoke with provided services and return outputs."""
return GraphInvocationOutput()
class IterateInvocationOutput(BaseInvocationOutput):
"""Used to connect iteration outputs. Will be expanded to a specific output."""
type: Literal['iterate_output'] = 'iterate_output'
item: Any = Field(description="The item being iterated over")
# TODO: Fill this out and move to invocations
class IterateInvocation(BaseInvocation):
type: Literal['iterate'] = 'iterate'
collection: list[Any] = Field(description="The list of items to iterate over", default_factory=list)
index: int = Field(description="The index, will be provided on executed iterators", default=0)
def invoke(self, context: InvocationContext) -> IterateInvocationOutput:
"""Produces the outputs as values"""
return IterateInvocationOutput(item = self.collection[self.index])
class CollectInvocationOutput(BaseInvocationOutput):
type: Literal['collect_output'] = 'collect_output'
collection: list[Any] = Field(description="The collection of input items")
class CollectInvocation(BaseInvocation):
"""Collects values into a collection"""
type: Literal['collect'] = 'collect'
item: Any = Field(description="The item to collect (all inputs must be of the same type)", default=None)
collection: list[Any] = Field(description="The collection, will be provided on execution", default_factory=list)
def invoke(self, context: InvocationContext) -> CollectInvocationOutput:
"""Invoke with provided services and return outputs."""
return CollectInvocationOutput(collection = copy.copy(self.collection))
InvocationsUnion = Union[BaseInvocation.get_invocations()]
InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4)
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(description="The nodes in this graph", default_factory=dict)
edges: list[tuple[EdgeConnection,EdgeConnection]] = Field(description="The connections between nodes and their fields in this graph", default_factory=list)
def add_node(self, node: BaseInvocation) -> None:
"""Adds a node to a graph
:raises NodeAlreadyInGraphError: the node is already present in the graph.
"""
if node.id in self.nodes:
raise NodeAlreadyInGraphError()
self.nodes[node.id] = node
def _get_graph_and_node(self, node_path: str) -> tuple['Graph', str]:
"""Returns the graph and node id for a node path."""
# Materialized graphs may have nodes at the top level
if node_path in self.nodes:
return (self, node_path)
node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')]
if node_id not in self.nodes:
raise NodeNotFoundError(f'Node {node_path} not found in graph')
node = self.nodes[node_id]
if not isinstance(node, GraphInvocation):
# There's more node path left but this isn't a graph - failure
raise NodeNotFoundError('Node path terminated early at a non-graph node')
return node.graph._get_graph_and_node(node_path[node_path.index('.')+1:])
def delete_node(self, node_path: str) -> None:
"""Deletes a node from a graph"""
try:
graph, node_id = self._get_graph_and_node(node_path)
# Delete edges for this node
input_edges = self._get_input_edges_and_graphs(node_path)
output_edges = self._get_output_edges_and_graphs(node_path)
for edge_graph,_,edge in input_edges:
edge_graph.delete_edge(edge)
for edge_graph,_,edge in output_edges:
edge_graph.delete_edge(edge)
del graph.nodes[node_id]
except NodeNotFoundError:
pass # Ignore, not doesn't exist (should this throw?)
def add_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None:
"""Adds an edge to a graph
:raises InvalidEdgeError: the provided edge is invalid.
"""
if self._is_edge_valid(edge) and edge not in self.edges:
self.edges.append(edge)
else:
raise InvalidEdgeError()
def delete_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None:
"""Deletes an edge from a graph"""
try:
self.edges.remove(edge)
except KeyError:
pass
def is_valid(self) -> bool:
"""Validates the graph."""
# Validate all subgraphs
for gn in (n for n in self.nodes.values() if isinstance(n, GraphInvocation)):
if not gn.graph.is_valid():
return False
# Validate all edges reference nodes in the graph
node_ids = set([e[0].node_id for e in self.edges]+[e[1].node_id for e in self.edges])
if not all((self.has_node(node_id) for node_id in node_ids)):
return False
# Validate there are no cycles
g = self.nx_graph_flat()
if not nx.is_directed_acyclic_graph(g):
return False
# Validate all edge connections are valid
if not all((are_connections_compatible(
self.get_node(e[0].node_id), e[0].field,
self.get_node(e[1].node_id), e[1].field
) for e in self.edges)):
return False
# Validate all iterators
# TODO: may need to validate all iterators in subgraphs so edge connections in parent graphs will be available
if not all((self._is_iterator_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, IterateInvocation))):
return False
# Validate all collectors
# TODO: may need to validate all collectors in subgraphs so edge connections in parent graphs will be available
if not all((self._is_collector_connection_valid(n.id) for n in self.nodes.values() if isinstance(n, CollectInvocation))):
return False
return True
def _is_edge_valid(self, edge: tuple[EdgeConnection, EdgeConnection]) -> bool:
"""Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
try:
from_node = self.get_node(edge[0].node_id)
to_node = self.get_node(edge[1].node_id)
except NodeNotFoundError:
return False
# Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge[1].node_id, edge[1].field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
return False
# Validate that no cycles would be created
g = self.nx_graph_flat()
g.add_edge(edge[0].node_id, edge[1].node_id)
if not nx.is_directed_acyclic_graph(g):
return False
# Validate that the field types are compatible
if not are_connections_compatible(from_node, edge[0].field, to_node, edge[1].field):
return False
# Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge[1].field == 'collection':
if not self._is_iterator_connection_valid(edge[1].node_id, new_input = edge[0]):
return False
# Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge[0].field == 'item':
if not self._is_iterator_connection_valid(edge[0].node_id, new_output = edge[1]):
return False
# Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge[1].field == 'item':
if not self._is_collector_connection_valid(edge[1].node_id, new_input = edge[0]):
return False
# Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge[0].field == 'collection':
if not self._is_collector_connection_valid(edge[0].node_id, new_output = edge[1]):
return False
return True
def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph."""
try:
n = self.get_node(node_path)
if n is not None:
return True
else:
return False
except NodeNotFoundError:
return False
def get_node(self, node_path: str) -> InvocationsUnion:
"""Gets a node from the graph using a node path."""
# Materialized graphs may have nodes at the top level
graph, node_id = self._get_graph_and_node(node_path)
return graph.nodes[node_id]
def _get_node_path(self, node_id: str, prefix: Optional[str] = None) -> str:
return node_id if prefix is None or prefix == '' else f'{prefix}.{node_id}'
def update_node(self, node_path: str, new_node: BaseInvocation) -> None:
"""Updates a node in the graph."""
graph, node_id = self._get_graph_and_node(node_path)
node = graph.nodes[node_id]
# Ensure the node type matches the new node
if type(node) != type(new_node):
raise TypeError(f'Node {node_path} is type {type(node)} but new node is type {type(new_node)}')
# Ensure the new id is either the same or is not in the graph
prefix = None if '.' not in node_path else node_path[:node_path.rindex('.')]
new_path = self._get_node_path(new_node.id, prefix = prefix)
if new_node.id != node.id and self.has_node(new_path):
raise NodeAlreadyInGraphError('Node with id {new_node.id} already exists in graph')
# Set the new node in the graph
graph.nodes[new_node.id] = new_node
if new_node.id != node.id:
input_edges = self._get_input_edges_and_graphs(node_path)
output_edges = self._get_output_edges_and_graphs(node_path)
# Delete node and all edges
graph.delete_node(node_path)
# Create new edges for each input and output
for graph,_,edge in input_edges:
# Remove the graph prefix from the node path
new_graph_node_path = new_node.id if '.' not in edge[1].node_id else f'{edge[1].node_id[edge[1].node_id.rindex("."):]}.{new_node.id}'
graph.add_edge((edge[0], EdgeConnection(node_id = new_graph_node_path, field = edge[1].field)))
for graph,_,edge in output_edges:
# Remove the graph prefix from the node path
new_graph_node_path = new_node.id if '.' not in edge[0].node_id else f'{edge[0].node_id[edge[0].node_id.rindex("."):]}.{new_node.id}'
graph.add_edge((EdgeConnection(node_id = new_graph_node_path, field = edge[0].field), edge[1]))
def _get_input_edges(self, node_path: str, field: Optional[str] = None) -> list[tuple[EdgeConnection,EdgeConnection]]:
"""Gets all input edges for a node"""
edges = self._get_input_edges_and_graphs(node_path)
# Filter to edges that match the field
filtered_edges = (e for e in edges if field is None or e[2][1].field == field)
# Create full node paths for each edge
return [(EdgeConnection(node_id = self._get_node_path(e[0].node_id, prefix = prefix), field=e[0].field), EdgeConnection(node_id = self._get_node_path(e[1].node_id, prefix = prefix), field=e[1].field)) for _,prefix,e in filtered_edges]
def _get_input_edges_and_graphs(self, node_path: str, prefix: Optional[str] = None) -> list[tuple['Graph', str, tuple[EdgeConnection,EdgeConnection]]]:
"""Gets all input edges for a node along with the graph they are in and the graph's path"""
edges = list()
# Return any input edges that appear in this graph
edges.extend([(self, prefix, e) for e in self.edges if e[1].node_id == node_path])
node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')]
node = self.nodes[node_id]
if isinstance(node, GraphInvocation):
graph = node.graph
graph_path = node.id if prefix is None or prefix == '' else self._get_node_path(node.id, prefix = prefix)
graph_edges = graph._get_input_edges_and_graphs(node_path[(len(node_id)+1):], prefix=graph_path)
edges.extend(graph_edges)
return edges
def _get_output_edges(self, node_path: str, field: str) -> list[tuple[EdgeConnection,EdgeConnection]]:
"""Gets all output edges for a node"""
edges = self._get_output_edges_and_graphs(node_path)
# Filter to edges that match the field
filtered_edges = (e for e in edges if e[2][0].field == field)
# Create full node paths for each edge
return [(EdgeConnection(node_id = self._get_node_path(e[0].node_id, prefix = prefix), field=e[0].field), EdgeConnection(node_id = self._get_node_path(e[1].node_id, prefix = prefix), field=e[1].field)) for _,prefix,e in filtered_edges]
def _get_output_edges_and_graphs(self, node_path: str, prefix: Optional[str] = None) -> list[tuple['Graph', str, tuple[EdgeConnection,EdgeConnection]]]:
"""Gets all output edges for a node along with the graph they are in and the graph's path"""
edges = list()
# Return any input edges that appear in this graph
edges.extend([(self, prefix, e) for e in self.edges if e[0].node_id == node_path])
node_id = node_path if '.' not in node_path else node_path[:node_path.index('.')]
node = self.nodes[node_id]
if isinstance(node, GraphInvocation):
graph = node.graph
graph_path = node.id if prefix is None or prefix == '' else self._get_node_path(node.id, prefix = prefix)
graph_edges = graph._get_output_edges_and_graphs(node_path[(len(node_id)+1):], prefix=graph_path)
edges.extend(graph_edges)
return edges
def _is_iterator_connection_valid(self, node_path: str, new_input: Optional[EdgeConnection] = None, new_output: Optional[EdgeConnection] = None) -> bool:
inputs = list([e[0] for e in self._get_input_edges(node_path, 'collection')])
outputs = list([e[1] for e in self._get_output_edges(node_path, 'item')])
if new_input is not None:
inputs.append(new_input)
if new_output is not None:
outputs.append(new_output)
# Only one input is allowed for iterators
if len(inputs) > 1:
return False
# Get input and output fields (the fields linked to the iterator's input/output)
input_field = get_output_field(self.get_node(inputs[0].node_id), inputs[0].field)
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
# Input type must be a list
if get_origin(input_field) != list:
return False
# Validate that all outputs match the input type
input_field_item_type = get_args(input_field)[0]
if not all((are_connection_types_compatible(input_field_item_type, f) for f in output_fields)):
return False
return True
def _is_collector_connection_valid(self, node_path: str, new_input: Optional[EdgeConnection] = None, new_output: Optional[EdgeConnection] = None) -> bool:
inputs = list([e[0] for e in self._get_input_edges(node_path, 'item')])
outputs = list([e[1] for e in self._get_output_edges(node_path, 'collection')])
if new_input is not None:
inputs.append(new_input)
if new_output is not None:
outputs.append(new_output)
# Get input and output fields (the fields linked to the iterator's input/output)
input_fields = list([get_output_field(self.get_node(e.node_id), e.field) for e in inputs])
output_fields = list([get_input_field(self.get_node(e.node_id), e.field) for e in outputs])
# Validate that all inputs are derived from or match a single type
input_field_types = set([t for input_field in input_fields for t in ([input_field] if get_origin(input_field) == None else get_args(input_field)) if t != NoneType]) # Get unique types
type_tree = nx.DiGraph()
type_tree.add_nodes_from(input_field_types)
type_tree.add_edges_from([e for e in itertools.permutations(input_field_types, 2) if issubclass(e[1], e[0])])
type_degrees = type_tree.in_degree(type_tree.nodes)
if sum((t[1] == 0 for t in type_degrees)) != 1:
return False # There is more than one root type
# Get the input root type
input_root_type = next(t[0] for t in type_degrees if t[1] == 0)
# Verify that all outputs are lists
if not all((get_origin(f) == list for f in output_fields)):
return False
# Verify that all outputs match the input type (are a base class or the same class)
if not all((issubclass(input_root_type, get_args(f)[0]) for f in output_fields)):
return False
return True
def nx_graph(self) -> nx.DiGraph:
"""Returns a NetworkX DiGraph representing the layout of this graph"""
# TODO: Cache this?
g = nx.DiGraph()
g.add_nodes_from([n for n in self.nodes.keys()])
g.add_edges_from(set([(e[0].node_id, e[1].node_id) for e in self.edges]))
return g
def nx_graph_flat(self, nx_graph: Optional[nx.DiGraph] = None, prefix: Optional[str] = None) -> nx.DiGraph:
"""Returns a flattened NetworkX DiGraph, including all subgraphs (but not with iterations expanded)"""
g = nx_graph or nx.DiGraph()
# Add all nodes from this graph except graph/iteration nodes
g.add_nodes_from([self._get_node_path(n.id, prefix) for n in self.nodes.values() if not isinstance(n, GraphInvocation) and not isinstance(n, IterateInvocation)])
# Expand graph nodes
for sgn in (gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)):
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded
unique_edges = set([(e[0].node_id, e[1].node_id) for e in self.edges])
g.add_edges_from([(self._get_node_path(e[0], prefix), self._get_node_path(e[1], prefix)) for e in unique_edges])
return g
class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution"""
id: str = Field(description="The id of the execution state", default_factory=uuid.uuid4)
# TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed")
# The graph of materialized nodes
execution_graph: Graph = Field(description="The expanded graph of activated and executed nodes", default_factory=Graph)
# Nodes that have been executed
executed: set[str] = Field(description="The set of node ids that have been executed", default_factory=set)
executed_history: list[str] = Field(description="The list of node ids that have been executed, in order of execution", default_factory=list)
# The results of executed nodes
results: dict[str, Annotated[InvocationOutputsUnion, Field(discriminator="type")]] = Field(description="The results of node executions", default_factory=dict)
# Map of prepared/executed nodes to their original nodes
prepared_source_mapping: dict[str, str] = Field(description="The map of prepared nodes to original graph nodes", default_factory=dict)
# Map of original nodes to prepared nodes
source_prepared_mapping: dict[str, set[str]] = Field(description="The map of original graph nodes to prepared nodes", default_factory=dict)
def next(self) -> BaseInvocation | None:
"""Gets the next node ready to execute."""
# TODO: enable multiple nodes to execute simultaneously by tracking currently executing nodes
# possibly with a timeout?
# If there are no prepared nodes, prepare some nodes
next_node = self._get_next_node()
if next_node is None:
prepared_id = self._prepare()
# TODO: prepare multiple nodes at once?
# while prepared_id is not None and not isinstance(self.graph.nodes[prepared_id], IterateInvocation):
# prepared_id = self._prepare()
if prepared_id is not None:
next_node = self._get_next_node()
# Get values from edges
if next_node is not None:
self._prepare_inputs(next_node)
# If next is still none, there's no next node, return None
return next_node
def complete(self, node_id: str, output: InvocationOutputsUnion):
"""Marks a node as complete"""
if node_id not in self.execution_graph.nodes:
return # TODO: log error?
# Mark node as executed
self.executed.add(node_id)
self.results[node_id] = output
# Check if source node is complete (all prepared nodes are complete)
source_node = self.prepared_source_mapping[node_id]
prepared_nodes = self.source_prepared_mapping[source_node]
if all([n in self.executed for n in prepared_nodes]):
self.executed.add(source_node)
self.executed_history.append(source_node)
def is_complete(self) -> bool:
"""Returns true if the graph is complete"""
return all((k in self.executed for k in self.graph.nodes))
def _create_execution_node(self, node_path: str, iteration_node_map: list[tuple[str, str]]) -> list[str]:
"""Prepares an iteration node and connects all edges, returning the new node id"""
node = self.graph.get_node(node_path)
self_iteration_count = -1
# If this is an iterator node, we must create a copy for each iteration
if isinstance(node, IterateInvocation):
# Get input collection edge (should error if there are no inputs)
input_collection_edge = next(iter(self.graph._get_input_edges(node_path, 'collection')))
input_collection_prepared_node_id = next(n[1] for n in iteration_node_map if n[0] == input_collection_edge[0].node_id)
input_collection_prepared_node_output = self.results[input_collection_prepared_node_id]
input_collection = getattr(input_collection_prepared_node_output, input_collection_edge[0].field)
self_iteration_count = len(input_collection)
new_nodes = list()
if self_iteration_count == 0:
# TODO: should this raise a warning? It might just happen if an empty collection is input, and should be valid.
return new_nodes
# Get all input edges
input_edges = self.graph._get_input_edges(node_path)
# Create new edges for this iteration
# For collect nodes, this may contain multiple inputs to the same field
new_edges = list()
for edge in input_edges:
for input_node_id in (n[1] for n in iteration_node_map if n[0] == edge[0].node_id):
new_edge = (EdgeConnection(node_id = input_node_id, field = edge[0].field), EdgeConnection(node_id = '', field = edge[1].field))
new_edges.append(new_edge)
# Create a new node (or one for each iteration of this iterator)
for i in (range(self_iteration_count) if self_iteration_count > 0 else [-1]):
# Create a new node
new_node = copy.deepcopy(node)
# Create the node id (use a random uuid)
new_node.id = str(uuid.uuid4())
# Set the iteration index for iteration invocations
if isinstance(new_node, IterateInvocation):
new_node.index = i
# Add to execution graph
self.execution_graph.add_node(new_node)
self.prepared_source_mapping[new_node.id] = node_path
if node_path not in self.source_prepared_mapping:
self.source_prepared_mapping[node_path] = set()
self.source_prepared_mapping[node_path].add(new_node.id)
# Add new edges to execution graph
for edge in new_edges:
new_edge = (edge[0], EdgeConnection(node_id = new_node.id, field = edge[1].field))
self.execution_graph.add_edge(new_edge)
new_nodes.append(new_node.id)
return new_nodes
def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph()
collectors = (n for n in self.graph.nodes if isinstance(self.graph.nodes[n], CollectInvocation))
for c in collectors:
g.remove_edges_from(list(g.in_edges(c)))
return g
def _get_node_iterators(self, node_id: str) -> list[str]:
"""Gets iterators for a node"""
g = self._iterator_graph()
iterators = [n for n in nx.ancestors(g, node_id) if isinstance(self.graph.nodes[n], IterateInvocation)]
return iterators
def _prepare(self) -> Optional[str]:
# Get flattened source graph
g = self.graph.nx_graph_flat()
# Find next unprepared node where all source nodes are executed
sorted_nodes = nx.topological_sort(g)
next_node_id = next((n for n in sorted_nodes if n not in self.source_prepared_mapping and all((e[0] in self.executed for e in g.in_edges(n)))), None)
if next_node_id == None:
return None
# Get all parents of the next node
next_node_parents = [e[0] for e in g.in_edges(next_node_id)]
# Create execution nodes
next_node = self.graph.get_node(next_node_id)
new_node_ids = list()
if isinstance(next_node, CollectInvocation):
# Collapse all iterator input mappings and create a single execution node for the collect invocation
all_iteration_mappings = list(itertools.chain(*(((s,p) for p in self.source_prepared_mapping[s]) for s in next_node_parents)))
#all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings)))
create_results = self._create_execution_node(next_node_id, all_iteration_mappings)
if create_results is not None:
new_node_ids.extend(create_results)
else: # Iterators or normal nodes
# Get all iterator combinations for this node
# Will produce a list of lists of prepared iterator nodes, from which results can be iterated
iterator_nodes = self._get_node_iterators(next_node_id)
iterator_nodes_prepared = [list(self.source_prepared_mapping[n]) for n in iterator_nodes]
iterator_node_prepared_combinations = list(itertools.product(*iterator_nodes_prepared))
# Select the correct prepared parents for each iteration
# For every iterator, the parent must either not be a child of that iterator, or must match the prepared iteration for that iterator
# TODO: Handle a node mapping to none
eg = self.execution_graph.nx_graph_flat()
prepared_parent_mappings = [[(n,self._get_iteration_node(n, g, eg, it)) for n in next_node_parents] for it in iterator_node_prepared_combinations]
# Create execution node for each iteration
for iteration_mappings in prepared_parent_mappings:
create_results = self._create_execution_node(next_node_id, iteration_mappings)
if create_results is not None:
new_node_ids.extend(create_results)
return next(iter(new_node_ids), None)
def _get_iteration_node(self, source_node_path: str, graph: nx.DiGraph, execution_graph: nx.DiGraph, prepared_iterator_nodes: list[str]) -> Optional[str]:
"""Gets the prepared version of the specified source node that matches every iteration specified"""
prepared_nodes = self.source_prepared_mapping[source_node_path]
if len(prepared_nodes) == 1:
return next(iter(prepared_nodes))
# Check if the requested node is an iterator
prepared_iterator = next((n for n in prepared_nodes if n in prepared_iterator_nodes), None)
if prepared_iterator is not None:
return prepared_iterator
# Filter to only iterator nodes that are a parent of the specified node, in tuple format (prepared, source)
iterator_source_node_mapping = [(n, self.prepared_source_mapping[n]) for n in prepared_iterator_nodes]
parent_iterators = [itn for itn in iterator_source_node_mapping if nx.has_path(graph, itn[1], source_node_path)]
return next((n for n in prepared_nodes if all(pit for pit in parent_iterators if nx.has_path(execution_graph, pit[0], n))), None)
def _get_next_node(self) -> Optional[BaseInvocation]:
g = self.execution_graph.nx_graph()
sorted_nodes = nx.topological_sort(g)
next_node = next((n for n in sorted_nodes if n not in self.executed), None)
if next_node is None:
return None
return self.execution_graph.nodes[next_node]
def _prepare_inputs(self, node: BaseInvocation):
input_edges = [e for e in self.execution_graph.edges if e[1].node_id == node.id]
if isinstance(node, CollectInvocation):
output_collection = [getattr(self.results[edge[0].node_id], edge[0].field) for edge in input_edges if edge[1].field == 'item']
setattr(node, 'collection', output_collection)
else:
for edge in input_edges:
output_value = getattr(self.results[edge[0].node_id], edge[0].field)
setattr(node, edge[1].field, output_value)
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: tuple[EdgeConnection, EdgeConnection]) -> bool:
if not self._is_edge_valid(edge):
return False
# Invalid if destination has already been prepared or executed
if edge[1].node_id in self.source_prepared_mapping:
return False
# Otherwise, the edge is valid
return True
def _is_node_updatable(self, node_id: str) -> bool:
# The node is updatable as long as it hasn't been prepared or executed
return node_id not in self.source_prepared_mapping
def add_node(self, node: BaseInvocation) -> None:
self.graph.add_node(node)
def update_node(self, node_path: str, new_node: BaseInvocation) -> None:
if not self._is_node_updatable(node_path):
raise NodeAlreadyExecutedError(f'Node {node_path} has already been prepared or executed and cannot be updated')
self.graph.update_node(node_path, new_node)
def delete_node(self, node_path: str) -> None:
if not self._is_node_updatable(node_path):
raise NodeAlreadyExecutedError(f'Node {node_path} has already been prepared or executed and cannot be deleted')
self.graph.delete_node(node_path)
def add_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None:
if not self._is_node_updatable(edge[1].node_id):
raise NodeAlreadyExecutedError(f'Destination node {edge[1].node_id} has already been prepared or executed and cannot be linked to')
self.graph.add_edge(edge)
def delete_edge(self, edge: tuple[EdgeConnection, EdgeConnection]) -> None:
if not self._is_node_updatable(edge[1].node_id):
raise NodeAlreadyExecutedError(f'Destination node {edge[1].node_id} has already been prepared or executed and cannot have a source edge deleted')
self.graph.delete_edge(edge)
GraphInvocation.update_forward_refs()