InvokeAI/ldm/invoke/generator/txt2img.py
Lincoln Stein 0240656361 fix crash in txt2img and img2img w/ inpainting models and perlin > 0
- get_perlin_noise() was returning 9 channels; fixed code to return
  noise for just the 4 image channels and not the mask ones.

- Closes Issue #2541
2023-02-05 22:55:08 -05:00

55 lines
2.0 KiB
Python

'''
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
'''
import PIL.Image
import torch
from .base import Generator
from .diffusers_pipeline import StableDiffusionGeneratorPipeline, ConditioningData
from ...models.diffusion.shared_invokeai_diffusion import ThresholdSettings
class Txt2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,
attention_maps_callback=None,
**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
conditioning_data = (
ConditioningData(
uc, c, cfg_scale, extra_conditioning_info,
threshold = ThresholdSettings(threshold, warmup=0.2) if threshold else None)
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
def make_image(x_T) -> PIL.Image.Image:
pipeline_output = pipeline.image_from_embeddings(
latents=torch.zeros_like(x_T,dtype=self.torch_dtype()),
noise=x_T,
num_inference_steps=steps,
conditioning_data=conditioning_data,
callback=step_callback,
)
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
return make_image