mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
bf6376417a
sync with 44a0055571
547 lines
25 KiB
Python
547 lines
25 KiB
Python
from __future__ import annotations
|
|
|
|
import secrets
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Union, Callable
|
|
|
|
import PIL.Image
|
|
import einops
|
|
import torch
|
|
import torchvision.transforms as T
|
|
from diffusers.models import attention
|
|
|
|
from ldm.models.diffusion.cross_attention_control import InvokeAIDiffusersCrossAttention
|
|
|
|
# monkeypatch diffusers CrossAttention 🙈
|
|
# this is to make prompt2prompt and (future) attention maps work
|
|
attention.CrossAttention = InvokeAIDiffusersCrossAttention
|
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
from diffusers.utils.outputs import BaseOutput
|
|
from torchvision.transforms.functional import resize as tv_resize
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
from ldm.modules.embedding_manager import EmbeddingManager
|
|
from ldm.modules.encoders.modules import WeightedFrozenCLIPEmbedder
|
|
|
|
|
|
@dataclass
|
|
class PipelineIntermediateState:
|
|
run_id: str
|
|
step: int
|
|
timestep: int
|
|
latents: torch.Tensor
|
|
predicted_original: Optional[torch.Tensor] = None
|
|
|
|
|
|
# copied from configs/stable-diffusion/v1-inference.yaml
|
|
_default_personalization_config_params = dict(
|
|
placeholder_strings=["*"],
|
|
initializer_wods=["sculpture"],
|
|
per_image_tokens=False,
|
|
num_vectors_per_token=1,
|
|
progressive_words=False
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class AddsMaskLatents:
|
|
"""Add the channels required for inpainting model input.
|
|
|
|
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
|
|
and the latent encoding of the base image.
|
|
|
|
This class assumes the same mask and base image should apply to all items in the batch.
|
|
"""
|
|
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
|
|
mask: torch.FloatTensor
|
|
initial_image_latents: torch.FloatTensor
|
|
|
|
def __call__(self, latents: torch.FloatTensor, t: torch.Tensor, text_embeddings: torch.FloatTensor) -> torch.Tensor:
|
|
model_input = self.add_mask_channels(latents)
|
|
return self.forward(model_input, t, text_embeddings)
|
|
|
|
def add_mask_channels(self, latents):
|
|
batch_size = latents.size(0)
|
|
# duplicate mask and latents for each batch
|
|
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
|
image_latents = einops.repeat(self.initial_image_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
|
# add mask and image as additional channels
|
|
model_input, _ = einops.pack([latents, mask, image_latents], 'b * h w')
|
|
return model_input
|
|
|
|
|
|
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
|
|
return (
|
|
isinstance(b, torch.Tensor)
|
|
and (a.size() == b.size())
|
|
)
|
|
|
|
@dataclass
|
|
class AddsMaskGuidance:
|
|
mask: torch.FloatTensor
|
|
mask_latents: torch.FloatTensor
|
|
_scheduler: SchedulerMixin
|
|
_noise_func: Callable
|
|
_debug: Optional[Callable] = None
|
|
|
|
def __call__(self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning) -> BaseOutput:
|
|
output_class = step_output.__class__ # We'll create a new one with masked data.
|
|
|
|
# The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it.
|
|
# It's reasonable to assume the first thing is prev_sample, but then does it have other things
|
|
# like pred_original_sample? Should we apply the mask to them too?
|
|
# But what if there's just some other random field?
|
|
prev_sample = step_output[0]
|
|
# Mask anything that has the same shape as prev_sample, return others as-is.
|
|
return output_class(
|
|
{k: (self.apply_mask(v, self._t_for_field(k, t))
|
|
if are_like_tensors(prev_sample, v) else v)
|
|
for k, v in step_output.items()}
|
|
)
|
|
|
|
def _t_for_field(self, field_name:str, t):
|
|
if field_name == "pred_original_sample":
|
|
return torch.zeros_like(t, dtype=t.dtype) # it represents t=0
|
|
return t
|
|
|
|
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
|
|
batch_size = latents.size(0)
|
|
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
|
noise = self._noise_func(self.mask_latents)
|
|
mask_latents = self._scheduler.add_noise(self.mask_latents, noise, t)
|
|
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
|
mask_latents = einops.repeat(mask_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
|
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
|
|
if self._debug:
|
|
self._debug(masked_input, f"t={t} lerped")
|
|
return masked_input
|
|
|
|
|
|
def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool=True, multiple_of=8) -> torch.FloatTensor:
|
|
"""
|
|
|
|
:param image: input image
|
|
:param normalize: scale the range to [-1, 1] instead of [0, 1]
|
|
:param multiple_of: resize the input so both dimensions are a multiple of this
|
|
"""
|
|
w, h = image.size
|
|
w, h = map(lambda x: x - x % multiple_of, (w, h)) # resize to integer multiple of 8
|
|
transformation = T.Compose([
|
|
T.Resize((h, w), T.InterpolationMode.LANCZOS),
|
|
T.ToTensor(),
|
|
])
|
|
tensor = transformation(image)
|
|
if normalize:
|
|
tensor = tensor * 2.0 - 1.0
|
|
return tensor
|
|
|
|
|
|
def is_inpainting_model(unet: UNet2DConditionModel):
|
|
return unet.conv_in.in_channels == 9
|
|
|
|
|
|
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
|
|
Hopefully future versions of diffusers provide access to more of these functions so that we don't
|
|
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
ID_LENGTH = 8
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: Optional[StableDiffusionSafetyChecker],
|
|
feature_extractor: Optional[CLIPFeatureExtractor],
|
|
requires_safety_checker: bool = False
|
|
):
|
|
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
|
|
safety_checker, feature_extractor, requires_safety_checker)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
# InvokeAI's interface for text embeddings and whatnot
|
|
self.clip_embedder = WeightedFrozenCLIPEmbedder(
|
|
tokenizer=self.tokenizer,
|
|
transformer=self.text_encoder
|
|
)
|
|
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
|
|
self.embedding_manager = EmbeddingManager(self.clip_embedder, **_default_personalization_config_params)
|
|
|
|
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
|
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
|
|
guidance_scale: float,
|
|
*, callback: Callable[[PipelineIntermediateState], None]=None,
|
|
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None,
|
|
run_id=None,
|
|
**extra_step_kwargs) -> StableDiffusionPipelineOutput:
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
:param latents: Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for
|
|
image generation. Can be used to tweak the same generation with different prompts.
|
|
:param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality
|
|
image at the expense of slower inference.
|
|
:param text_embeddings:
|
|
:param guidance_scale: Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
|
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
|
|
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
|
|
:param callback:
|
|
:param extra_conditioning_info:
|
|
:param run_id:
|
|
:param extra_step_kwargs:
|
|
"""
|
|
self.scheduler.set_timesteps(num_inference_steps, device=self.unet.device)
|
|
result = None
|
|
for result in self.generate_from_embeddings(
|
|
latents, text_embeddings, unconditioned_embeddings, guidance_scale,
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
run_id=run_id, **extra_step_kwargs):
|
|
if callback is not None and isinstance(result, PipelineIntermediateState):
|
|
callback(result)
|
|
if result is None:
|
|
raise AssertionError("why was that an empty generator?")
|
|
return result
|
|
|
|
def generate(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
*,
|
|
opposing_prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
run_id: str = None,
|
|
**extra_step_kwargs,
|
|
):
|
|
if isinstance(prompt, str):
|
|
batch_size = 1
|
|
else:
|
|
batch_size = len(prompt)
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
combined_embeddings = self._encode_prompt(prompt, device=self._execution_device, num_images_per_prompt=1,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=opposing_prompt)
|
|
text_embeddings, unconditioned_embeddings = combined_embeddings.chunk(2)
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
latents = self.prepare_latents(batch_size=batch_size, num_channels_latents=self.unet.in_channels,
|
|
height=height, width=width,
|
|
dtype=self.unet.dtype, device=self._execution_device,
|
|
generator=generator,
|
|
latents=latents)
|
|
|
|
yield from self.generate_from_embeddings(latents, text_embeddings, unconditioned_embeddings,
|
|
guidance_scale, run_id=run_id, **extra_step_kwargs)
|
|
|
|
def generate_from_embeddings(
|
|
self,
|
|
latents: torch.Tensor,
|
|
text_embeddings: torch.Tensor,
|
|
unconditioned_embeddings: torch.Tensor,
|
|
guidance_scale: float,
|
|
*,
|
|
run_id: str = None,
|
|
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None,
|
|
timesteps = None,
|
|
additional_guidance: List[Callable] = None,
|
|
**extra_step_kwargs):
|
|
if run_id is None:
|
|
run_id = secrets.token_urlsafe(self.ID_LENGTH)
|
|
|
|
if additional_guidance is None:
|
|
additional_guidance = []
|
|
|
|
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
|
|
self.invokeai_diffuser.setup_cross_attention_control(extra_conditioning_info,
|
|
step_count=len(self.scheduler.timesteps))
|
|
else:
|
|
self.invokeai_diffuser.remove_cross_attention_control()
|
|
|
|
if timesteps is None:
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents *= self.scheduler.init_noise_sigma
|
|
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
|
|
latents=latents)
|
|
|
|
batch_size = latents.shape[0]
|
|
batched_t = torch.full((batch_size,), timesteps[0],
|
|
dtype=timesteps.dtype, device=self.unet.device)
|
|
# NOTE: Depends on scheduler being already initialized!
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
batched_t.fill_(t)
|
|
step_output = self.step(batched_t, latents, guidance_scale,
|
|
text_embeddings, unconditioned_embeddings,
|
|
i, additional_guidance=additional_guidance,
|
|
**extra_step_kwargs)
|
|
latents = step_output.prev_sample
|
|
predicted_original = getattr(step_output, 'pred_original_sample', None)
|
|
yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents,
|
|
predicted_original=predicted_original)
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
torch.cuda.empty_cache()
|
|
|
|
with torch.inference_mode():
|
|
image = self.decode_latents(latents)
|
|
output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[])
|
|
yield self.check_for_safety(output, dtype=text_embeddings.dtype)
|
|
|
|
@torch.inference_mode()
|
|
def step(self, t: torch.Tensor, latents: torch.Tensor, guidance_scale: float,
|
|
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
|
|
step_index:int | None = None, additional_guidance: List[Callable] = None,
|
|
**extra_step_kwargs):
|
|
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
|
timestep = t[0]
|
|
|
|
if additional_guidance is None:
|
|
additional_guidance = []
|
|
|
|
# TODO: should this scaling happen here or inside self._unet_forward?
|
|
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
|
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.invokeai_diffuser.do_diffusion_step(
|
|
latent_model_input, t,
|
|
unconditioned_embeddings, text_embeddings,
|
|
guidance_scale,
|
|
step_index=step_index)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
|
|
|
|
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
|
|
# But the way things are now, scheduler runs _after_ that, so there was
|
|
# no way to use it to apply an operation that happens after the last scheduler.step.
|
|
for guidance in additional_guidance:
|
|
step_output = guidance(step_output, timestep, (unconditioned_embeddings, text_embeddings))
|
|
|
|
return step_output
|
|
|
|
def _unet_forward(self, latents, t, text_embeddings):
|
|
# predict the noise residual
|
|
return self.unet(latents, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
def img2img_from_embeddings(self,
|
|
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
|
strength: float,
|
|
num_inference_steps: int,
|
|
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
|
|
guidance_scale: float,
|
|
*, callback: Callable[[PipelineIntermediateState], None] = None,
|
|
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None,
|
|
run_id=None,
|
|
noise_func=None,
|
|
**extra_step_kwargs) -> StableDiffusionPipelineOutput:
|
|
device = self.unet.device
|
|
latents_dtype = self.unet.dtype
|
|
batch_size = 1
|
|
num_images_per_prompt = 1
|
|
|
|
if isinstance(init_image, PIL.Image.Image):
|
|
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
|
|
|
|
if init_image.dim() == 3:
|
|
init_image = einops.rearrange(init_image, 'c h w -> 1 c h w')
|
|
|
|
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
|
|
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
|
|
# 6. Prepare latent variables
|
|
latents, _ = self.prepare_latents_from_image(init_image, latent_timestep, latents_dtype, device, noise_func)
|
|
|
|
result = None
|
|
for result in self.generate_from_embeddings(
|
|
latents, text_embeddings, unconditioned_embeddings, guidance_scale,
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
timesteps=timesteps,
|
|
run_id=run_id, **extra_step_kwargs):
|
|
if callback is not None and isinstance(result, PipelineIntermediateState):
|
|
callback(result)
|
|
if result is None:
|
|
raise AssertionError("why was that an empty generator?")
|
|
return result
|
|
|
|
def inpaint_from_embeddings(
|
|
self,
|
|
init_image: torch.FloatTensor,
|
|
mask: torch.FloatTensor,
|
|
strength: float,
|
|
num_inference_steps: int,
|
|
text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor,
|
|
guidance_scale: float,
|
|
*, callback: Callable[[PipelineIntermediateState], None] = None,
|
|
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None,
|
|
run_id=None,
|
|
noise_func=None,
|
|
**extra_step_kwargs) -> StableDiffusionPipelineOutput:
|
|
device = self.unet.device
|
|
latents_dtype = self.unet.dtype
|
|
batch_size = 1
|
|
num_images_per_prompt = 1
|
|
|
|
if isinstance(init_image, PIL.Image.Image):
|
|
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
|
|
|
|
init_image = init_image.to(device=device, dtype=latents_dtype)
|
|
|
|
if init_image.dim() == 3:
|
|
init_image = init_image.unsqueeze(0)
|
|
|
|
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
|
|
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device)
|
|
|
|
assert img2img_pipeline.scheduler is self.scheduler
|
|
|
|
# 6. Prepare latent variables
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
latents, init_image_latents = self.prepare_latents_from_image(init_image, latent_timestep, latents_dtype, device, noise_func)
|
|
|
|
if mask.dim() == 3:
|
|
mask = mask.unsqueeze(0)
|
|
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR) \
|
|
.to(device=device, dtype=latents_dtype)
|
|
|
|
guidance: List[Callable] = []
|
|
|
|
if is_inpainting_model(self.unet):
|
|
# TODO: we should probably pass this in so we don't have to try/finally around setting it.
|
|
self.invokeai_diffuser.model_forward_callback = \
|
|
AddsMaskLatents(self._unet_forward, mask, init_image_latents)
|
|
else:
|
|
guidance.append(AddsMaskGuidance(mask, init_image_latents, self.scheduler, noise_func))
|
|
|
|
result = None
|
|
|
|
try:
|
|
for result in self.generate_from_embeddings(
|
|
latents, text_embeddings, unconditioned_embeddings, guidance_scale,
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
timesteps=timesteps,
|
|
run_id=run_id, additional_guidance=guidance, **extra_step_kwargs):
|
|
if callback is not None and isinstance(result, PipelineIntermediateState):
|
|
callback(result)
|
|
if result is None:
|
|
raise AssertionError("why was that an empty generator?")
|
|
return result
|
|
finally:
|
|
self.invokeai_diffuser.model_forward_callback = self._unet_forward
|
|
|
|
|
|
def prepare_latents_from_image(self, init_image, timestep, dtype, device, noise_func) -> (torch.FloatTensor, torch.FloatTensor):
|
|
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
|
|
# because we have our own noise function
|
|
init_image = init_image.to(device=device, dtype=dtype)
|
|
with torch.inference_mode():
|
|
init_latent_dist = self.vae.encode(init_image).latent_dist
|
|
init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible!
|
|
init_latents = 0.18215 * init_latents
|
|
|
|
noise = noise_func(init_latents)
|
|
noised_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
return noised_latents, init_latents
|
|
|
|
def check_for_safety(self, output, dtype):
|
|
with torch.inference_mode():
|
|
screened_images, has_nsfw_concept = self.run_safety_checker(
|
|
output.images, device=self._execution_device, dtype=dtype)
|
|
return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept)
|
|
|
|
@torch.inference_mode()
|
|
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
|
|
"""
|
|
Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion.
|
|
"""
|
|
return self.clip_embedder.encode(c, return_tokens=return_tokens, fragment_weights=fragment_weights)
|
|
|
|
@property
|
|
def cond_stage_model(self):
|
|
warnings.warn("legacy compatibility layer", DeprecationWarning)
|
|
return self.clip_embedder
|
|
|
|
@torch.inference_mode()
|
|
def _tokenize(self, prompt: Union[str, List[str]]):
|
|
return self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
@property
|
|
def channels(self) -> int:
|
|
"""Compatible with DiffusionWrapper"""
|
|
return self.unet.in_channels
|
|
|
|
def debug_latents(self, latents, msg):
|
|
with torch.inference_mode():
|
|
from ldm.util import debug_image
|
|
decoded = self.numpy_to_pil(self.decode_latents(latents))
|
|
for i, img in enumerate(decoded):
|
|
debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)
|