InvokeAI/ldm/invoke/generator/omnibus.py
2022-11-27 03:35:49 +13:00

172 lines
6.3 KiB
Python

"""omnibus module to be used with the runwayml 9-channel custom inpainting model"""
import torch
import numpy as np
from einops import repeat
from PIL import Image, ImageOps, ImageChops
from ldm.invoke.devices import choose_autocast
from ldm.invoke.generator.base import downsampling
from ldm.invoke.generator.img2img import Img2Img
from ldm.invoke.generator.txt2img import Txt2Img
class Omnibus(Img2Img,Txt2Img):
def __init__(self, model, precision):
super().__init__(model, precision)
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
width,
height,
init_image = None,
mask_image = None,
strength = None,
step_callback=None,
threshold=0.0,
perlin=0.0,
mask_blur_radius: int = 8,
**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
self.perlin = perlin
num_samples = 1
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
if isinstance(init_image, Image.Image):
self.pil_image = init_image
if init_image.mode != 'RGB':
init_image = init_image.convert('RGB')
init_image = self._image_to_tensor(init_image)
if isinstance(mask_image, Image.Image):
self.pil_mask = mask_image
mask_image = ImageChops.multiply(mask_image.convert('L'), self.pil_image.split()[-1])
mask_image = self._image_to_tensor(ImageOps.invert(mask_image), normalize=False)
self.mask_blur_radius = mask_blur_radius
t_enc = steps
if init_image is not None and mask_image is not None: # inpainting
masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero
elif init_image is not None: # img2img
scope = choose_autocast(self.precision)
with scope(self.model.device.type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
# create a completely black mask (1s)
mask_image = torch.ones(1, 1, init_image.shape[2], init_image.shape[3], device=self.model.device)
# and the masked image is just a copy of the original
masked_image = init_image
else: # txt2img
init_image = torch.zeros(1, 3, height, width, device=self.model.device)
mask_image = torch.ones(1, 1, height, width, device=self.model.device)
masked_image = init_image
self.init_latent = init_image
height = init_image.shape[2]
width = init_image.shape[3]
model = self.model
def make_image(x_T):
with torch.no_grad():
scope = choose_autocast(self.precision)
with scope(self.model.device.type):
batch = self.make_batch_sd(
init_image,
mask_image,
masked_image,
prompt=prompt,
device=model.device,
num_samples=num_samples,
)
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
for ck in model.concat_keys:
cc = batch[ck].float()
if ck != model.masked_image_key:
bchw = [num_samples, 4, height//8, width//8]
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond={"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
shape = [model.channels, height//8, width//8]
samples, _ = sampler.sample(
batch_size = 1,
S = steps,
x_T = x_T,
conditioning = cond,
shape = shape,
verbose = False,
unconditional_guidance_scale = cfg_scale,
unconditional_conditioning = uc_full,
eta = 1.0,
img_callback = step_callback,
threshold = threshold,
)
if self.free_gpu_mem:
self.model.model.to("cpu")
return self.sample_to_image(samples)
return make_image
def make_batch_sd(
self,
image,
mask,
masked_image,
prompt,
device,
num_samples=1):
batch = {
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
"txt": num_samples * [prompt],
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
}
return batch
def get_noise(self, width:int, height:int):
if self.init_latent is not None:
height = self.init_latent.shape[2]
width = self.init_latent.shape[3]
return Txt2Img.get_noise(self,width,height)
def sample_to_image(self, samples)->Image.Image:
gen_result = super().sample_to_image(samples).convert('RGB')
if self.pil_image is None or self.pil_mask is None:
return gen_result
corrected_result = super(Img2Img, self).repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
return corrected_result