* Squashed commit of the following: commit82d9c25d9a
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 19:29:11 2022 +0200 fix branch name in mkdocs-flow commit2e276cecc1
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 19:28:35 2022 +0200 fix theme name commit2eb77c1173
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 19:14:42 2022 +0200 fixed some links and formating in main README commit66a7152e48
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 08:58:58 2022 +0200 trigger mkdocs deployment on main commit897cc373ce
Merge:89da371
3b5a830
Author: Matthias Wild <40327258+mauwii@users.noreply.github.com> Date: Wed Sep 14 07:51:23 2022 +0200 Merge pull request #1 from mauwii/mkdocs Mkdocs commit3b5a8308eb
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 07:42:56 2022 +0200 huge update I was pretty busy trying to make the Readmes / docs look good in MkDocs commit0b4f5a926f
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 07:41:45 2022 +0200 update mkdocs config commit872172ea70
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 07:33:49 2022 +0200 added the mkdocs-git-revision-date-plugin commiteac81bf875
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 06:46:43 2022 +0200 add prettier config remove markdownlint move and rename requirements-mkdocs.txt commitb36d4cc088
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 02:06:39 2022 +0200 add dark theme commita14f18fede
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 01:38:02 2022 +0200 update mkdocs flow and config commit2764b48693
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 01:15:33 2022 +0200 add mkdocs workflow commit1bd22523b1
Author: mauwii <Mauwii@outlook.de> Date: Wed Sep 14 00:57:37 2022 +0200 I already begun with formating / revising the sites * change repository in mkdocs config to lstein * adapt changes from repos main README.md Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
2.9 KiB
title |
---|
TEXTUAL_INVERSION |
Personalizing Text-to-Image Generation
You may personalize the generated images to provide your own styles or objects by training a new LDM checkpoint and introducing a new vocabulary to the fixed model as a (.pt) embeddings file. Alternatively, you may use or train HuggingFace Concepts embeddings files (.bin) from https://huggingface.co/sd-concepts-library and its associated notebooks.
Training
To train, prepare a folder that contains images sized at 512x512 and execute the following:
WINDOWS
As the default backend is not available on Windows, if you're using that
platform, set the environment variable PL_TORCH_DISTRIBUTED_BACKEND
to gloo
python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt \
-t \
-n my_cat \
--gpus 0 \
--data_root D:/textual-inversion/my_cat \
--init_word 'cat'
During the training process, files will be created in
/logs/[project][time][project]/
where you can see the process.
Conditioning contains the training prompts inputs, reconstruction the input images for the training epoch samples, samples scaled for a sample of the prompt and one with the init word provided.
On a RTX3090, the process for SD will take ~1h @1.6 iterations/sec.
!!! Info Note
According to the associated paper, the optimal number of
images is 3-5. Your model may not converge if you use more images than
that.
Training will run indefinitely, but you may wish to stop it (with ctrl-c) before the heat death of the universe, when you find a low loss epoch or around ~5000 iterations. Note that you can set a fixed limit on the number of training steps by decreasing the "max_steps" option in configs/stable_diffusion/v1-finetune.yaml (currently set to 4000000)
Run the Model
Once the model is trained, specify the trained .pt or .bin file when starting dream using
python3 ./scripts/dream.py \
--embedding_path /path/to/embedding.pt \
--full_precision
Then, to utilize your subject at the dream prompt
dream> "a photo of *"
This also works with image2image
dream> "waterfall and rainbow in the style of *" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
For .pt files it's also possible to train multiple tokens (modify the
placeholder string in configs/stable-diffusion/v1-finetune.yaml
) and combine
LDM checkpoints using:
python3 ./scripts/merge_embeddings.py \
--manager_ckpts /path/to/first/embedding.pt \
[</path/to/second/embedding.pt>,[...]] \
--output_path /path/to/output/embedding.pt
Credit goes to rinongal and the repository
Please see the repository and associated paper for details and limitations.