mirror of
https://github.com/teachingtechYT/teachingtechYT.github.io.git
synced 2024-08-30 18:23:26 +00:00
@ -1067,7 +1067,7 @@
|
||||
<p>Higher acceleration and jerk will result in a faster print time, as the printer reaches top speed faster and maintains a higher speed when corning. This is harder on the printer, and may result in reduced lifespan of components and the need for more regular maintenance. It also introduces more surface defects such as ringing/ghosting.</p>
|
||||
<p>Lower acceleration and jerk will result in a slower print time, as the printer reaches top speed more gradually and corners at a lower velocity. This is easier on the printer, with potentially increased component lifespan and less need for regular maintenance. It reduces surface artefacts such as ringing/ghosting, unless it is far too conservative, in which case it may introduce bulging in corners.</p>
|
||||
</div>
|
||||
<h2>Calculating maximum feedrate - optional</h2>
|
||||
<h2>Calculating maximum feedrate - optional but strongly recommended</h2>
|
||||
<p>One strategy is to calculate the fastest your 3D printer can move while extruding cleanly, set this feedrate in the slicer, and then tune acceleration to meet this speed. If you are not interested in printing as fast as possible, skip to the next section.</p>
|
||||
<p><i>This part of the guide and calculator is adapted from <a href="https://grabcad.com/tutorials/dialing-in-a-filament-and-specifying-the-max-volumetric-e-xtrusion-value"target="_blank">Martin Pirringer's tutorial</a>. Please consider supporting him and his robotics team through <a href="paypal.me/DudeWithaPulse" target="_blank">paypal</a> or you can also donate to team 1989 through their <a href="www.vernonrobotics.com" target="_blank">Team 1989 Web Site</a></i></p>
|
||||
<p>The following calculator will assist you in determining the maximum feedrate your printer/extruder/hot end is capable of.</p>
|
||||
|
Reference in New Issue
Block a user