veloren/world/src/sim.rs

252 lines
7.6 KiB
Rust
Raw Normal View History

use common::{terrain::TerrainChunkSize, vol::VolSize};
use noise::{
BasicMulti, HybridMulti, MultiFractal, NoiseFn, OpenSimplex, RidgedMulti, Seedable,
SuperSimplex,
};
use std::{
f32,
ops::{Add, Div, Mul, Neg, Sub},
};
use vek::*;
pub const WORLD_SIZE: Vec2<usize> = Vec2 { x: 1024, y: 1024 };
pub struct WorldSim {
pub seed: u32,
chunks: Vec<SimChunk>,
gen_ctx: GenCtx,
}
impl WorldSim {
pub fn generate(seed: u32) -> Self {
let mut gen_ctx = GenCtx {
turb_x_nz: BasicMulti::new().set_seed(seed + 0),
turb_y_nz: BasicMulti::new().set_seed(seed + 1),
chaos_nz: RidgedMulti::new().set_octaves(7).set_seed(seed + 2),
hill_nz: SuperSimplex::new().set_seed(seed + 3),
alt_nz: HybridMulti::new()
.set_octaves(7)
.set_persistence(0.1)
.set_seed(seed + 4),
temp_nz: SuperSimplex::new().set_seed(seed + 5),
small_nz: BasicMulti::new().set_octaves(2).set_seed(seed + 6),
rock_nz: HybridMulti::new().set_persistence(0.3).set_seed(seed + 7),
};
let mut chunks = Vec::new();
for x in 0..WORLD_SIZE.x as u32 {
for y in 0..WORLD_SIZE.y as u32 {
chunks.push(SimChunk::generate(Vec2::new(x, y), &mut gen_ctx));
}
}
Self {
seed,
chunks,
gen_ctx,
}
}
pub fn get(&self, chunk_pos: Vec2<u32>) -> Option<&SimChunk> {
if chunk_pos
.map2(WORLD_SIZE, |e, sz| e < sz as u32)
.reduce_and()
{
Some(&self.chunks[chunk_pos.y as usize * WORLD_SIZE.x + chunk_pos.x as usize])
} else {
None
}
}
pub fn get_base_z(&self, chunk_pos: Vec2<u32>) -> Option<f32> {
self.get(chunk_pos).and_then(|_| {
(0..2)
.map(|i| (0..2).map(move |j| (i, j)))
.flatten()
.map(|(i, j)| {
self.get(chunk_pos + Vec2::new(i, j))
.map(|c| c.get_base_z())
})
.flatten()
.fold(None, |a: Option<f32>, x| a.map(|a| a.min(x)).or(Some(x)))
})
}
pub fn get_interpolated<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
where
T: Copy + Default + Add<Output = T> + Mul<f32, Output = T>,
F: FnMut(&SimChunk) -> T,
{
let pos = pos.map2(TerrainChunkSize::SIZE.into(), |e, sz: u32| {
e as f64 / sz as f64
});
let cubic = |a: T, b: T, c: T, d: T, x: f32| -> T {
let x2 = x * x;
// Catmull-Rom splines
let co0 = a * -0.5 + b * 1.5 + c * -1.5 + d * 0.5;
let co1 = a + b * -2.5 + c * 2.0 + d * -0.5;
let co2 = a * -0.5 + c * 0.5;
let co3 = b;
co0 * x2 * x + co1 * x2 + co2 * x + co3
};
let mut y = [T::default(); 4];
for (y_idx, j) in (-1..3).enumerate() {
let x0 =
f(self.get(pos.map2(Vec2::new(-1, j), |e, q| (e.max(0.0) as i32 + q) as u32))?);
let x1 = f(self.get(pos.map2(Vec2::new(0, j), |e, q| (e.max(0.0) as i32 + q) as u32))?);
let x2 = f(self.get(pos.map2(Vec2::new(1, j), |e, q| (e.max(0.0) as i32 + q) as u32))?);
let x3 = f(self.get(pos.map2(Vec2::new(2, j), |e, q| (e.max(0.0) as i32 + q) as u32))?);
y[y_idx] = cubic(x0, x1, x2, x3, pos.x.fract() as f32);
}
Some(cubic(y[0], y[1], y[2], y[3], pos.y.fract() as f32))
}
pub fn sample(&self, pos: Vec2<i32>) -> Option<Sample> {
let wposf = pos.map(|e| e as f64);
/*let wposf = wposf + Vec2::new(
self.gen_ctx.turb_x_nz.get((wposf.div(200.0)).into_array()) * 250.0,
self.gen_ctx.turb_y_nz.get((wposf.div(200.0)).into_array()) * 250.0,
);*/
let chaos = self.get_interpolated(pos, |chunk| chunk.chaos)?;
let temp = self.get_interpolated(pos, |chunk| chunk.temp)?;
let rockiness = self.get_interpolated(pos, |chunk| chunk.rockiness)?;
let rock = (self.gen_ctx.small_nz.get((wposf.div(100.0)).into_array()) as f32)
.mul(rockiness)
.sub(0.2)
.max(0.0)
.mul(2.0);
let alt = self.get_interpolated(pos, |chunk| chunk.alt)?
+ self.gen_ctx.small_nz.get((wposf.div(128.0)).into_array()) as f32
* chaos.max(0.15)
* 32.0
+ rock * 15.0;
// Colours
let cold_grass = Rgb::new(0.0, 0.75, 0.25);
let warm_grass = Rgb::new(0.55, 0.9, 0.0);
let cold_stone = Rgb::new(0.78, 0.86, 1.0);
let warm_stone = Rgb::new(0.8, 0.7, 0.55);
let sand = Rgb::new(0.93, 0.84, 0.23);
let grass = Rgb::lerp(cold_grass, warm_grass, temp);
let ground = Rgb::lerp(grass, warm_stone, rock.mul(5.0).min(0.8));
let cliff = Rgb::lerp(cold_stone, warm_stone, temp);
Some(Sample {
alt,
chaos,
surface_color: Rgb::lerp(
sand,
// Land
Rgb::lerp(ground, cliff, (alt - SEA_LEVEL - 100.0) / 150.0),
// Beach
(alt - SEA_LEVEL - 2.0) / 5.0,
),
})
}
}
pub struct Sample {
pub alt: f32,
pub chaos: f32,
pub surface_color: Rgb<f32>,
}
struct GenCtx {
turb_x_nz: BasicMulti,
turb_y_nz: BasicMulti,
chaos_nz: RidgedMulti,
alt_nz: HybridMulti,
hill_nz: SuperSimplex,
temp_nz: SuperSimplex,
small_nz: BasicMulti,
rock_nz: HybridMulti,
}
const Z_TOLERANCE: (f32, f32) = (32.0, 64.0);
pub const SEA_LEVEL: f32 = 64.0;
pub struct SimChunk {
pub chaos: f32,
pub alt: f32,
pub temp: f32,
pub rockiness: f32,
}
impl SimChunk {
fn generate(pos: Vec2<u32>, gen_ctx: &mut GenCtx) -> Self {
let wposf = (pos * Vec2::from(TerrainChunkSize::SIZE)).map(|e| e as f64);
let hill = (gen_ctx.hill_nz.get((wposf.div(3500.0)).into_array()) as f32).max(0.0);
let chaos = (gen_ctx.chaos_nz.get((wposf.div(3500.0)).into_array()) as f32)
.add(1.0)
.mul(0.5)
.powf(1.9)
.add(0.25 * hill);
let chaos = chaos + chaos.mul(20.0).sin().mul(0.05);
let alt_base = gen_ctx.alt_nz.get((wposf.div(5000.0)).into_array()) as f32 * 0.4;
let alt_main = gen_ctx.alt_nz.get((wposf.div(750.0)).into_array()) as f32;
Self {
chaos,
alt: SEA_LEVEL
+ (0.0
+ alt_main
+ gen_ctx.small_nz.get((wposf.div(300.0)).into_array()) as f32
* alt_main.max(0.05)
* chaos
* 1.3)
.add(1.0)
.mul(0.5)
.mul(chaos)
.add(alt_base)
.mul(750.0),
temp: (gen_ctx.temp_nz.get((wposf.div(48.0)).into_array()) as f32)
.add(1.0)
.mul(0.5),
rockiness: (gen_ctx.rock_nz.get((wposf.div(1024.0)).into_array()) as f32)
.sub(0.1)
.mul(1.2)
.max(0.0),
}
}
pub fn get_base_z(&self) -> f32 {
self.alt - Z_TOLERANCE.0
}
pub fn get_max_z(&self) -> f32 {
self.alt + Z_TOLERANCE.1
}
}
trait Hsv {
fn into_hsv(self) -> Self;
fn into_rgb(self) -> Self;
}
impl Hsv for Rgb<f32> {
fn into_hsv(mut self) -> Self {
unimplemented!()
}
fn into_rgb(mut self) -> Self {
unimplemented!()
}
}