veloren/server/src/wiring.rs

252 lines
9.0 KiB
Rust
Raw Normal View History

use common::{
comp::{object, Body, LightEmitter, PhysicsState, Pos, ProjectileConstructor},
event::{Emitter, ServerEvent},
terrain::{Block, TerrainChunkSize},
util::Dir,
vol::RectVolSize,
};
use common_state::BlockChange;
2021-04-15 16:28:16 +00:00
use hashbrown::HashMap;
use specs::{Component, Entity};
use specs_idvs::IdvStorage;
use tracing::warn;
use vek::{num_traits::ToPrimitive, Rgb, Vec3};
2021-04-15 16:28:16 +00:00
/// Represents a logical operation based on a `left` and `right` input. The
/// available kinds of logical operations are enumerated by `LogicKind`.
2021-04-15 16:28:16 +00:00
pub struct Logic {
pub kind: LogicKind,
pub left: OutputFormula,
pub right: OutputFormula,
}
/// The basic element of the wiring system. Inputs are dynamically added based
/// on the outputs of other elements. Actions specify what to output or what
/// inputs to read as well as what effects the values should have on the world
/// state (eg. emit a projectile).
2021-04-15 16:28:16 +00:00
pub struct WiringElement {
pub inputs: HashMap<String, f32>,
pub outputs: HashMap<String, OutputFormula>,
pub actions: Vec<WiringAction>,
}
/// Connects input to output elements. Required for elements to receive outputs
/// from the proper inputs.
2021-04-15 16:28:16 +00:00
pub struct Circuit {
pub wires: Vec<Wire>,
}
impl Circuit {
pub fn new(wires: Vec<Wire>) -> Self { Self { wires } }
}
/// Represents an output for a `WiringAction`. The total output can be constant,
/// directly from an input, based on collision state, or based on custom logic.
2021-04-15 16:28:16 +00:00
pub enum OutputFormula {
/// Returns a constant value
2021-04-15 16:28:16 +00:00
Constant { value: f32 },
/// Retrieves the value from a string identified input. A wiring element can
/// have multiple inputs.
2021-04-15 16:28:16 +00:00
Input { name: String },
/// Performs a logic operation on the `left` and `right` values of the
/// provided `Logic`. The operation is specified by the `LogicKind`.
/// Operations include `Min`, `Max`, `Sub`, `Sum`, and `Mul`.
2021-04-15 16:28:16 +00:00
Logic(Box<Logic>),
/// Returns `value` if the wiring element is in contact with another entity
/// with collision.
OnCollide { value: f32 },
/// Returns `value` if an entity died in the last tick within `radius` of
/// the wiring element.
OnDeath { value: f32, radius: f32 },
2021-04-15 16:28:16 +00:00
// TODO: The following `OutputFormula`s are unimplemented!!!!
/// Returns an oscillating value based on the sine wave with `amplitude` and
/// `frequency`.
2021-04-15 16:28:16 +00:00
SineWave { amplitude: f32, frequency: f32 },
/// Returns `value` when the wiring element in interacted with.
2021-04-15 16:28:16 +00:00
OnInteract { value: f32 },
}
impl OutputFormula {
/// Computes the output of an `OutputFormula` as an `f32` based on the
/// inputs and world state. Currently that world state only includes
/// physics state, position, and the list of entities that died in the
/// last tick.
pub fn compute_output(
&self,
inputs: &HashMap<String, f32>,
physics_state: Option<&PhysicsState>,
entities_died_last_tick: &Vec<(Entity, Pos)>,
pos: Option<&Pos>,
) -> f32 {
match self {
OutputFormula::Constant { value } => *value,
OutputFormula::Input { name } => *inputs.get(name).unwrap_or(&0.0),
OutputFormula::Logic(logic) => {
let left =
&logic
.left
.compute_output(inputs, physics_state, entities_died_last_tick, pos);
let right = &logic.right.compute_output(
inputs,
physics_state,
entities_died_last_tick,
pos,
);
match logic.kind {
LogicKind::Max => f32::max(*left, *right),
LogicKind::Min => f32::min(*left, *right),
LogicKind::Sub => left - right,
LogicKind::Sum => left + right,
LogicKind::Mul => left * right,
}
},
OutputFormula::OnCollide { value } => physics_state.map_or(0.0, |ps| {
if ps.touch_entities.is_empty() {
0.0
} else {
*value
}
}),
OutputFormula::SineWave { .. } => {
warn!("Not implemented OutputFormula::SineWave");
0.0
},
OutputFormula::OnInteract { .. } => {
warn!("Not implemented OutputFormula::OnInteract");
0.0
},
OutputFormula::OnDeath { value, radius } => pos.map_or(0.0, |e_pos| {
*value
* entities_died_last_tick
.iter()
.filter(|(_, dead_pos)| e_pos.0.distance(dead_pos.0) <= *radius)
.count()
.to_f32()
.unwrap_or(0.0)
}),
}
}
}
/// Logical operations applied to two floats.
2021-04-15 16:28:16 +00:00
pub enum LogicKind {
/// Returns the minimum of `left` and `right`. Acts like And.
Min,
/// Returns the maximum of `left` and `right`. Acts like Or.
Max,
/// Returns `left` minus `right`. Acts like Not, depending on referance
/// values.
Sub,
/// Returns `left` plus `right`.
2021-05-05 13:54:24 +00:00
Sum,
/// Returns `left` times `right`.
Mul,
2021-04-15 16:28:16 +00:00
}
/// Determines what kind of output an element produces (or input is read) based
/// on the `formula`. The `threshold` is the minimum computed output for effects
/// to take place. Effects refer to effects in the game world such as emitting
/// light.
2021-04-15 16:28:16 +00:00
pub struct WiringAction {
pub formula: OutputFormula,
pub threshold: f32,
pub effects: Vec<WiringActionEffect>,
}
impl WiringAction {
/// Applies all effects on the world (such as turning on a light etc.) if
/// the output of the `formula` is greater than `threshold`.
pub fn apply_effects(
&self,
entity: Entity,
inputs: &HashMap<String, f32>,
physics_state: Option<&PhysicsState>,
entities_died_last_tick: &Vec<(Entity, Pos)>,
server_emitter: &mut Emitter<'_, ServerEvent>,
pos: Option<&Pos>,
block_change: &mut BlockChange,
mut light_emitter: Option<&mut LightEmitter>,
) {
self.effects
.iter()
.for_each(|action_effect| match action_effect {
WiringActionEffect::SetBlock { coords, block } => {
let chunk_origin = pos.map_or(Vec3::zero(), |opos| {
opos.0
.xy()
.as_::<i32>()
.map2(TerrainChunkSize::RECT_SIZE.as_::<i32>(), |a, b| (a / b) * b)
.with_z(0)
});
let offset_pos = chunk_origin + coords;
block_change.set(offset_pos, *block);
},
WiringActionEffect::SpawnProjectile { constr } => {
if let Some(&pos) = pos {
server_emitter.emit(ServerEvent::Shoot {
entity,
pos,
dir: Dir::forward(),
body: Body::Object(object::Body::Arrow),
projectile: constr.create_projectile(None, 0.0, 1.0, 1.0),
light: None,
speed: 5.0,
object: None,
});
}
},
WiringActionEffect::SetLight { r, g, b } => {
if let Some(light_emitter) = &mut light_emitter {
let computed_r =
r.compute_output(inputs, physics_state, entities_died_last_tick, pos);
let computed_g =
g.compute_output(inputs, physics_state, entities_died_last_tick, pos);
let computed_b =
b.compute_output(inputs, physics_state, entities_died_last_tick, pos);
light_emitter.col = Rgb::new(computed_r, computed_g, computed_b);
}
},
});
}
}
/// Effects of a circuit in the game world.
2021-04-15 16:28:16 +00:00
pub enum WiringActionEffect {
/// Spawn a projectile.
SpawnProjectile { constr: ProjectileConstructor },
/// Set a terrain block at the provided coordinates.
SetBlock { coords: Vec3<i32>, block: Block },
/// Emit light with the given RGB values.
2021-04-15 16:28:16 +00:00
SetLight {
r: OutputFormula,
g: OutputFormula,
b: OutputFormula,
},
}
/// Holds an input and output node.
2021-04-15 16:28:16 +00:00
pub struct Wire {
pub input: WireNode,
pub output: WireNode,
}
/// Represents a node in the circuit. Each node is an entity with a name.
pub struct WireNode {
pub entity: Entity,
pub name: String,
}
impl WireNode {
pub fn new(entity: Entity, name: String) -> Self { Self { entity, name } }
2021-04-15 16:28:16 +00:00
}
impl Component for WiringElement {
type Storage = IdvStorage<Self>;
}
impl Component for Circuit {
type Storage = IdvStorage<Self>;
}