veloren/assets/voxygen/shaders/fluid-frag/cheap.glsl

153 lines
7.0 KiB
Plaintext
Raw Normal View History

#version 400 core
#include <constants.glsl>
#define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION)
#define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR
#if (FLUID_MODE == FLUID_MODE_CHEAP)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE
#elif (FLUID_MODE == FLUID_MODE_SHINY)
#define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE
#endif
#define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET
#define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN
#define HAS_SHADOW_MAPS
#include <globals.glsl>
#include <random.glsl>
in vec3 f_pos;
flat in uint f_pos_norm;
in vec3 f_col;
in float f_light;
2020-04-25 20:23:57 +00:00
layout (std140)
uniform u_locals {
vec3 model_offs;
float load_time;
};
uniform sampler2D t_waves;
out vec4 tgt_color;
#include <sky.glsl>
#include <light.glsl>
2020-04-12 22:29:59 +00:00
#include <lod.glsl>
void main() {
// First 3 normals are negative, next 3 are positive
vec3 normals[6] = vec3[](vec3(-1,0,0), vec3(1,0,0), vec3(0,-1,0), vec3(0,1,0), vec3(0,0,-1), vec3(0,0,1));
// TODO: last 3 bits in v_pos_norm should be a number between 0 and 5, rather than 0-2 and a direction.
uint norm_axis = (f_pos_norm >> 30) & 0x3u;
// Increase array access by 3 to access positive values
uint norm_dir = ((f_pos_norm >> 29) & 0x1u) * 3u;
// Use an array to avoid conditional branching
vec3 f_norm = normals[norm_axis + norm_dir];
2020-04-04 00:32:39 +00:00
vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
2020-04-12 22:29:59 +00:00
// vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0);
// vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/);
vec3 view_dir = -cam_to_frag;
// vec3 surf_color = /*srgb_to_linear*/(vec3(0.4, 0.7, 2.0));
2020-05-01 20:58:55 +00:00
/*const */vec3 water_color = 1.0 - MU_WATER;//srgb_to_linear(vec3(0.2, 0.5, 1.0));
2020-04-28 18:49:03 +00:00
// /*const */vec3 water_color = srgb_to_linear(vec3(0.0, 0.25, 0.5));
2020-04-12 22:29:59 +00:00
vec3 sun_dir = get_sun_dir(time_of_day.x);
vec3 moon_dir = get_moon_dir(time_of_day.x);
2020-04-25 20:23:57 +00:00
float f_alt = alt_at(f_pos.xy);
vec4 f_shadow = textureBicubic(t_horizon, pos_to_tex(f_pos.xy));
float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir);
float moon_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, moon_dir);
// float sun_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, sun_dir);
// float moon_shade_frac = horizon_at(/*f_shadow, f_pos.z, */f_pos, moon_dir);
2020-04-12 22:29:59 +00:00
float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac;
float fluid_alt = f_pos.z;//max(ceil(f_pos.z), floor(f_alt));// f_alt;//max(f_alt - f_pos.z, 0.0);
2020-05-01 20:58:55 +00:00
2020-04-22 20:56:12 +00:00
const float alpha = 0.255/* / 4.0 / sqrt(2.0)*/;
2020-04-21 16:25:19 +00:00
const float n2 = 1.3325;
2020-04-25 20:23:57 +00:00
const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2);
const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2);
const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2);
const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2);
2020-05-01 20:58:55 +00:00
float R_s = (f_pos.z < fluid_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x);
// Water is transparent so both normals are valid.
vec3 cam_norm = faceforward(f_norm, f_norm, cam_to_frag);
vec3 mu = MU_WATER;
// NOTE: Default intersection point is camera position, meaning if we fail to intersect we assume the whole camera is in water.
vec3 cam_attenuation = vec3(1.0);//compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, cam_pos.xyz);
2020-05-01 20:58:55 +00:00
// NOTE: Assumes normal is vertical.
vec3 sun_view_dir = cam_pos.z <= fluid_alt ? /*refract(view_dir, -f_norm, 1.0 / n2)*//*reflect(view_dir, -f_norm)*/-view_dir : view_dir;//vec3(view_dir.xy, -view_dir.z) : view_dir;
2020-04-21 16:25:19 +00:00
vec3 k_a = vec3(1.0);
vec3 k_d = vec3(1.0);
vec3 k_s = vec3(R_s);
2020-04-04 00:32:39 +00:00
vec3 emitted_light, reflected_light;
// float point_shadow = shadow_at(f_pos, f_norm);
// vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz);
// vec3 emitted_light, reflected_light;
// vec3 light, diffuse_light, ambient_light;
float point_shadow = shadow_at(f_pos,f_norm);
2020-04-26 19:01:23 +00:00
// Squared to account for prior saturation.
float f_light = pow(f_light, 1.5);
2020-04-12 22:29:59 +00:00
// float vert_light = f_light;
2020-04-24 14:12:20 +00:00
// vec3 light_frac = /*vec3(1.0);*/light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha);
2020-04-12 22:29:59 +00:00
2020-04-04 00:32:39 +00:00
// vec3 surf_color = /*srgb_to_linear*/(vec3(0.4, 0.7, 2.0));
2020-04-27 11:13:23 +00:00
float max_light = 0.0;
max_light += get_sun_diffuse2(f_norm, /*time_of_day.x*/sun_dir, moon_dir, /*-cam_to_frag*/sun_view_dir/*view_dir*/, f_pos, mu, cam_attenuation, fluid_alt, k_a/* * (shade_frac * 0.5 + light_frac * 0.5)*/, /*vec3(0.0)*/k_d, k_s, alpha, 1.0, emitted_light, reflected_light);
reflected_light *= f_light * point_shadow * shade_frac;
2020-04-27 12:01:43 +00:00
emitted_light *= f_light * point_shadow * max(shade_frac, MIN_SHADOW);
2020-04-27 11:13:23 +00:00
max_light *= f_light * point_shadow * shade_frac;
2020-04-04 00:32:39 +00:00
// get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 0.0);
// diffuse_light *= f_light * point_shadow;
// ambient_light *= f_light, point_shadow;
// vec3 point_light = light_at(f_pos, f_norm);
// light += point_light;
// diffuse_light += point_light;
// reflected_light += point_light;
// vec3 surf_color = srgb_to_linear(vec3(0.4, 0.7, 2.0)) * light * diffuse_light * ambient_light;
2020-04-12 22:29:59 +00:00
// lights_at(f_pos, f_norm, cam_to_frag, k_a * f_light * point_shadow, k_d * f_light * point_shadow, k_s * f_light * point_shadow, alpha, emitted_light, reflected_light);
/*vec3 point_light = light_at(f_pos, f_norm);
emitted_light += point_light;
reflected_light += point_light; */
max_light += lights_at(f_pos, /*f_norm*/cam_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, 1.0, emitted_light, reflected_light);
2020-05-01 20:58:55 +00:00
// vec3 diffuse_light_point = vec3(0.0);
// max_light += lights_at(f_pos, f_norm, view_dir, k_a, vec3(1.0), k_s, alpha, emitted_light, diffuse_light_point);
2020-04-12 22:29:59 +00:00
2020-05-01 20:58:55 +00:00
float reflected_light_point = length(reflected_light);///*length*/(diffuse_light_point.r) + f_light * point_shadow;
// vec3 dump_light = vec3(0.0);
// vec3 specular_light_point = vec3(0.0);
// lights_at(f_pos, f_norm, view_dir, vec3(0.0), vec3(0.0), /*vec3(1.0)*/k_s, alpha, dump_light, specular_light_point);
// diffuse_light_point -= specular_light_point;
2020-04-12 22:29:59 +00:00
2020-05-01 20:58:55 +00:00
// float reflected_light_point = /*length*/(diffuse_light_point.r) + f_light * point_shadow;
// reflected_light += k_d * (diffuse_light_point + f_light * point_shadow * shade_frac) + specular_light_point;
float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x);
vec4 clouds;
2020-04-12 22:29:59 +00:00
vec3 fog_color = get_sky_color(cam_to_frag, time_of_day.x, cam_pos.xyz, f_pos, 0.25, true, clouds);
float passthrough = /*pow(*/dot(cam_norm, -cam_to_frag/*view_dir*/)/*, 0.5)*/;
vec3 surf_color = illuminate(max_light, view_dir, water_color * fog_color * emitted_light, /*surf_color * */water_color * reflected_light);
2020-05-01 20:58:55 +00:00
vec4 color = mix(vec4(surf_color, 1.0), vec4(surf_color, 1.0 / (1.0 + /*diffuse_light*//*(f_light * point_shadow + point_light)*/4.0 * reflected_light_point/* * 0.25*/)), passthrough);
2020-04-27 11:13:23 +00:00
tgt_color = mix(mix(color, vec4(fog_color, 0.0), fog_level), vec4(clouds.rgb, 0.0), clouds.a);
}