veloren/common/src/sys/movement.rs

232 lines
7.8 KiB
Rust
Raw Normal View History

use super::phys::GRAVITY;
2019-07-21 12:42:45 +00:00
use crate::{
comp::{
CharacterState, Controller, Mounting, MovementState::*, Ori, PhysicsState, Pos, Stats, Vel,
},
event::{EventBus, ServerEvent},
2019-07-21 12:42:45 +00:00
state::DeltaTime,
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
terrain::TerrainGrid,
2019-07-21 12:42:45 +00:00
};
use specs::prelude::*;
use sphynx::Uid;
use std::time::Duration;
2019-07-21 12:42:45 +00:00
use vek::*;
2019-12-09 14:45:10 +00:00
pub const ROLL_DURATION: Duration = Duration::from_millis(600);
2019-08-26 18:05:30 +00:00
2019-10-14 10:22:48 +00:00
const HUMANOID_ACCEL: f32 = 50.0;
2019-07-21 12:42:45 +00:00
const HUMANOID_SPEED: f32 = 120.0;
const HUMANOID_AIR_ACCEL: f32 = 10.0;
const HUMANOID_AIR_SPEED: f32 = 100.0;
const HUMANOID_WATER_ACCEL: f32 = 70.0;
const HUMANOID_WATER_SPEED: f32 = 120.0;
const HUMANOID_CLIMB_ACCEL: f32 = 5.0;
const ROLL_SPEED: f32 = 17.0;
const CHARGE_SPEED: f32 = 20.0;
2019-07-21 12:42:45 +00:00
const GLIDE_ACCEL: f32 = 15.0;
const GLIDE_SPEED: f32 = 45.0;
const BLOCK_ACCEL: f32 = 30.0;
const BLOCK_SPEED: f32 = 75.0;
2019-07-21 12:42:45 +00:00
// Gravity is 9.81 * 4, so this makes gravity equal to .15
const GLIDE_ANTIGRAV: f32 = GRAVITY * 0.96;
const CLIMB_SPEED: f32 = 5.0;
2019-07-21 12:42:45 +00:00
pub const MOVEMENT_THRESHOLD_VEL: f32 = 3.0;
/// # Movement System
/// #### Applies forces, calculates new positions and velocities,7
/// #### based on Controller(Inputs) and CharacterState.
/// ----
///
/// **Writes:**
/// Pos, Vel, Ori
///
/// **Reads:**
/// Uid, Stats, Controller, PhysicsState, CharacterState, Mounting
2019-07-21 12:42:45 +00:00
pub struct Sys;
impl<'a> System<'a> for Sys {
type SystemData = (
Entities<'a>,
common: Rework volume API See the doc comments in `common/src/vol.rs` for more information on the API itself. The changes include: * Consistent `Err`/`Error` naming. * Types are named `...Error`. * `enum` variants are named `...Err`. * Rename `VolMap{2d, 3d}` -> `VolGrid{2d, 3d}`. This is in preparation to an upcoming change where a “map” in the game related sense will be added. * Add volume iterators. There are two types of them: * _Position_ iterators obtained from the trait `IntoPosIterator` using the method `fn pos_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `Vec3<i32>`. * _Volume_ iterators obtained from the trait `IntoVolIterator` using the method `fn vol_iter(self, lower_bound: Vec3<i32>, upper_bound: Vec3<i32>) -> ...` which returns an iterator over `(Vec3<i32>, &Self::Vox)`. Those traits will usually be implemented by references to volume types (i.e. `impl IntoVolIterator<'a> for &'a T` where `T` is some type which usually implements several volume traits, such as `Chunk`). * _Position_ iterators iterate over the positions valid for that volume. * _Volume_ iterators do the same but return not only the position but also the voxel at that position, in each iteration. * Introduce trait `RectSizedVol` for the use case which we have with `Chonk`: A `Chonk` is sized only in x and y direction. * Introduce traits `RasterableVol`, `RectRasterableVol` * `RasterableVol` represents a volume that is compile-time sized and has its lower bound at `(0, 0, 0)`. The name `RasterableVol` was chosen because such a volume can be used with `VolGrid3d`. * `RectRasterableVol` represents a volume that is compile-time sized at least in x and y direction and has its lower bound at `(0, 0, z)`. There's no requirement on he lower bound or size in z direction. The name `RectRasterableVol` was chosen because such a volume can be used with `VolGrid2d`.
2019-09-03 22:23:29 +00:00
ReadExpect<'a, TerrainGrid>,
Read<'a, EventBus<ServerEvent>>,
2019-07-21 12:42:45 +00:00
Read<'a, DeltaTime>,
WriteStorage<'a, Pos>,
WriteStorage<'a, Vel>,
WriteStorage<'a, Ori>,
ReadStorage<'a, Uid>,
ReadStorage<'a, Stats>,
ReadStorage<'a, Controller>,
ReadStorage<'a, PhysicsState>,
ReadStorage<'a, CharacterState>,
ReadStorage<'a, Mounting>,
2019-07-21 12:42:45 +00:00
);
fn run(
&mut self,
(
entities,
2019-09-04 23:03:49 +00:00
_terrain,
_server_bus,
2019-07-21 12:42:45 +00:00
dt,
mut positions,
mut velocities,
mut orientations,
uids,
stats,
controllers,
physics_states,
character_states,
mountings,
2019-07-21 12:42:45 +00:00
): Self::SystemData,
) {
// Apply movement inputs
for (
_entity,
mut _pos,
mut vel,
mut ori,
_uid,
stats,
controller,
physics,
character,
mount,
) in (
&entities,
2019-07-21 12:42:45 +00:00
&mut positions,
&mut velocities,
&mut orientations,
&uids,
&stats,
&controllers,
&physics_states,
&character_states,
mountings.maybe(),
2019-07-21 12:42:45 +00:00
)
.join()
{
if stats.is_dead {
continue;
}
if mount.is_some() {
continue;
}
let inputs = &controller.inputs;
if character.action.is_roll() {
2019-08-25 16:47:45 +00:00
vel.0 = Vec3::new(0.0, 0.0, vel.0.z)
+ (vel.0 * Vec3::new(1.0, 1.0, 0.0)
+ 1.5 * inputs.move_dir.try_normalized().unwrap_or_default())
.try_normalized()
.unwrap_or_default()
* ROLL_SPEED;
} else if character.action.is_charge() {
vel.0 = Vec3::new(0.0, 0.0, vel.0.z)
+ (vel.0 * Vec3::new(1.0, 1.0, 0.0)
+ 1.5 * inputs.move_dir.try_normalized().unwrap_or_default())
.try_normalized()
.unwrap_or_default()
* CHARGE_SPEED;
} else if character.action.is_block() {
vel.0 += Vec2::broadcast(dt.0)
* inputs.move_dir
2019-09-04 23:03:49 +00:00
* match physics.on_ground {
true if vel.0.magnitude_squared() < BLOCK_SPEED.powf(2.0) => BLOCK_ACCEL,
_ => 0.0,
}
2019-08-25 16:08:00 +00:00
} else {
// Move player according to move_dir
vel.0 += Vec2::broadcast(dt.0)
* inputs.move_dir
2019-08-25 16:08:00 +00:00
* match (physics.on_ground, &character.movement) {
(true, Run) if vel.0.magnitude_squared() < HUMANOID_SPEED.powf(2.0) => {
HUMANOID_ACCEL
}
(false, Climb) if vel.0.magnitude_squared() < HUMANOID_SPEED.powf(2.0) => {
HUMANOID_CLIMB_ACCEL
}
2019-08-25 16:08:00 +00:00
(false, Glide) if vel.0.magnitude_squared() < GLIDE_SPEED.powf(2.0) => {
GLIDE_ACCEL
}
2019-12-09 14:45:10 +00:00
(false, Fall) | (false, Jump)
2019-08-25 16:08:00 +00:00
if vel.0.magnitude_squared() < HUMANOID_AIR_SPEED.powf(2.0) =>
{
HUMANOID_AIR_ACCEL
}
(false, Swim)
if vel.0.magnitude_squared() < HUMANOID_WATER_SPEED.powf(2.0) =>
{
HUMANOID_WATER_ACCEL
}
2019-08-25 16:08:00 +00:00
_ => 0.0,
};
}
2019-07-21 12:42:45 +00:00
// Set direction based on move direction when on the ground
let ori_dir = if
//character.action.is_wield() ||
character.action.is_attack() || character.action.is_block() {
Vec2::from(inputs.look_dir).normalized()
} else if let (Climb, Some(wall_dir)) = (character.movement, physics.on_wall) {
if Vec2::<f32>::from(wall_dir).magnitude_squared() > 0.001 {
Vec2::from(wall_dir).normalized()
} else {
Vec2::from(vel.0)
}
} else {
Vec2::from(vel.0)
};
2019-08-24 17:58:28 +00:00
if ori_dir.magnitude_squared() > 0.0001
&& (ori.0.normalized() - Vec3::from(ori_dir).normalized()).magnitude_squared()
> 0.001
{
ori.0 = vek::ops::Slerp::slerp(
ori.0,
ori_dir.into(),
2019-10-14 10:22:48 +00:00
if physics.on_ground { 9.0 } else { 2.0 } * dt.0,
);
2019-07-21 12:42:45 +00:00
}
// Glide
if character.movement == Glide
&& Vec2::<f32>::from(vel.0).magnitude_squared() < GLIDE_SPEED.powf(2.0)
&& vel.0.z < 0.0
{
let lift = GLIDE_ANTIGRAV + vel.0.z.abs().powf(2.0) * 0.15;
vel.0.z += dt.0
* lift
* (Vec2::<f32>::from(vel.0).magnitude() * 0.075)
.min(1.0)
.max(0.2);
2019-07-21 12:42:45 +00:00
}
// Climb
if let (true, Some(_wall_dir)) = (
2019-11-29 15:20:35 +00:00
(inputs.climb.is_pressed() | inputs.climb_down.is_pressed())
&& vel.0.z <= CLIMB_SPEED,
physics.on_wall,
) {
2019-11-29 15:20:35 +00:00
if inputs.climb_down.is_pressed() && !inputs.climb.is_pressed() {
vel.0 -= dt.0 * vel.0.map(|e| e.abs().powf(1.5) * e.signum() * 6.0);
2019-11-29 15:20:35 +00:00
} else if inputs.climb.is_pressed() && !inputs.climb_down.is_pressed() {
vel.0.z = (vel.0.z + dt.0 * GRAVITY * 1.25).min(CLIMB_SPEED);
} else {
vel.0.z = vel.0.z + dt.0 * GRAVITY * 1.5;
vel.0 = Lerp::lerp(
vel.0,
Vec3::zero(),
30.0 * dt.0 / (1.0 - vel.0.z.min(0.0) * 5.0),
);
}
}
if character.movement == Swim && inputs.jump.is_pressed() {
vel.0.z = (vel.0.z + dt.0 * GRAVITY * 1.25).min(HUMANOID_WATER_SPEED);
}
2019-07-21 12:42:45 +00:00
}
}
}