veloren/common/src/path.rs

478 lines
17 KiB
Rust
Raw Normal View History

use crate::{
astar::{Astar, PathResult},
terrain::Block,
vol::{BaseVol, ReadVol},
};
use hashbrown::hash_map::DefaultHashBuilder;
use std::iter::FromIterator;
use vek::*;
// Path
#[derive(Clone, Debug)]
pub struct Path<T> {
nodes: Vec<T>,
}
impl<T> Default for Path<T> {
fn default() -> Self {
Self {
nodes: Vec::default(),
}
}
}
impl<T> FromIterator<T> for Path<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
Self {
nodes: iter.into_iter().collect(),
}
}
}
#[allow(clippy::len_without_is_empty)] // TODO: Pending review in #587
impl<T> Path<T> {
pub fn len(&self) -> usize { self.nodes.len() }
2020-02-06 22:32:26 +00:00
pub fn iter(&self) -> impl Iterator<Item = &T> { self.nodes.iter() }
pub fn start(&self) -> Option<&T> { self.nodes.first() }
pub fn end(&self) -> Option<&T> { self.nodes.last() }
2020-04-20 00:17:54 +00:00
2020-04-20 16:30:39 +00:00
pub fn nodes(&self) -> &[T] { &self.nodes }
}
// Route: A path that can be progressed along
#[derive(Default, Clone, Debug)]
pub struct Route {
path: Path<Vec3<i32>>,
next_idx: usize,
}
impl From<Path<Vec3<i32>>> for Route {
fn from(path: Path<Vec3<i32>>) -> Self { Self { path, next_idx: 0 } }
}
impl Route {
pub fn path(&self) -> &Path<Vec3<i32>> { &self.path }
pub fn next(&self, i: usize) -> Option<Vec3<i32>> {
self.path.nodes.get(self.next_idx + i).copied()
}
pub fn is_finished(&self) -> bool { self.next(0).is_none() }
2020-04-18 18:28:19 +00:00
pub fn traverse<V>(
&mut self,
vol: &V,
pos: Vec3<f32>,
vel: Vec3<f32>,
2020-07-09 23:43:11 +00:00
on_ground: bool,
2020-04-18 18:28:19 +00:00
traversal_tolerance: f32,
) -> Option<(Vec3<f32>, f32)>
where
V: BaseVol<Vox = Block> + ReadVol,
{
let (next0, next1, next_tgt) = loop {
let next0 = self
.next(0)
.unwrap_or_else(|| pos.map(|e| e.floor() as i32));
// Stop using obstructed paths
if vol.get(next0).map(|b| b.is_solid()).unwrap_or(false) {
return None;
}
let next1 = self.next(1).unwrap_or(next0);
2020-07-09 23:43:11 +00:00
let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
// Determine whether we're close enough to the next to to consider it completed
2020-07-09 23:43:11 +00:00
if pos.xy().distance_squared(next_tgt.xy()) < traversal_tolerance.powf(2.0)
&& (pos.z - next_tgt.z > 1.2 || (pos.z - next_tgt.z > -0.2 && on_ground))
&& pos.z - next_tgt.z < 2.2
&& vel.z <= 0.0
// Only consider the node reached if there's nothing solid between us and it
&& vol
2020-07-09 23:43:11 +00:00
.ray(pos + Vec3::unit_z() * 1.5, next_tgt + Vec3::unit_z() * 1.5)
.until(|block| block.is_solid())
.cast()
.0
2020-07-09 23:43:11 +00:00
> pos.distance(next_tgt) * 0.9
&& self.next_idx < self.path.len()
{
// Node completed, move on to the next one
self.next_idx += 1;
} else {
// The next node hasn't been reached yet, use it as a target
2020-07-09 23:43:11 +00:00
break (next0, next1, next_tgt);
}
};
2020-07-09 23:43:11 +00:00
fn gradient(line: LineSegment2<f32>) -> f32 {
let r = (line.start.y - line.end.y) / (line.start.x - line.end.x);
if r.is_nan() { 100000.0 } else { r }
}
fn intersect(a: LineSegment2<f32>, b: LineSegment2<f32>) -> Option<Vec2<f32>> {
let ma = gradient(a);
let mb = gradient(b);
let ca = a.start.y - ma * a.start.x;
let cb = b.start.y - mb * b.start.x;
if (ma - mb).abs() < 0.0001 || (ca - cb).abs() < 0.0001 {
None
} else {
let x = (cb - ca) / (ma - mb);
let y = ma * x + ca;
Some(Vec2::new(x, y))
}
}
// We don't always want to aim for the centre of block since this can create
// jerky zig-zag movement. This function attempts to find a position
// inside a target block's area that aligned nicely with our velocity.
// This has a twofold benefit:
//
// 1. Entities can move at any angle when
// running on a flat surface
//
// 2. We don't have to search diagonals when
// pathfinding - cartesian positions are enough since this code will
// make the entity move smoothly along them
2020-07-09 23:43:11 +00:00
let corners = [
Vec2::new(0, 0),
Vec2::new(1, 0),
Vec2::new(1, 1),
Vec2::new(0, 1),
Vec2::new(0, 0), // Repeated start
];
let vel_line = LineSegment2 {
start: pos.xy(),
end: pos.xy() + vel.xy() * 100.0,
};
let align = |block_pos: Vec3<i32>, precision: f32| {
let lerp_block = |x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);
(0..4)
.filter_map(|i| {
let edge_line = LineSegment2 {
start: lerp_block((block_pos.xy() + corners[i]).map(|e| e as f32), precision),
end: lerp_block((block_pos.xy() + corners[i + 1]).map(|e| e as f32), precision),
};
intersect(vel_line, edge_line)
.filter(|intersect| intersect.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32 + 1.0),
).distance_squared(*intersect) < 0.001)
})
2020-07-09 23:43:11 +00:00
.min_by_key(|intersect: &Vec2<f32>| (intersect.distance_squared(vel_line.end) * 1000.0) as i32)
.unwrap_or_else(|| (0..2)
.map(|i| (0..2).map(move |j| Vec2::new(i, j)))
.flatten()
.map(|rpos| block_pos + rpos)
.map(|block_pos| {
let block_posf = block_pos.xy().map(|e| e as f32);
let proj = vel_line.projected_point(block_posf);
let clamped = lerp_block(proj.clamped(
block_pos.xy().map(|e| e as f32),
block_pos.xy().map(|e| e as f32),
), precision);
(proj.distance_squared(clamped), clamped)
})
.min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
.unwrap()
.1)
};
2020-07-09 23:43:11 +00:00
let bez = CubicBezier2 {
start: pos.xy(),
2020-07-09 23:43:11 +00:00
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or(Vec2::zero()) * 1.0,
ctrl1: align(next0, 1.0),
end: align(next1, 1.0),
};
// Use a cubic spline of the next few targets to come up with a sensible target
// position. We want to use a position that gives smooth movement but is
// also accurate enough to avoid the agent getting stuck under ledges or
// falling off walls.
2020-07-09 23:43:11 +00:00
let next_dir = bez
.evaluate_derivative(0.85)
.try_normalized()
2020-07-09 23:43:11 +00:00
.unwrap_or(Vec2::zero());
let straight_factor = next_dir
.dot(vel.xy().try_normalized().unwrap_or(next_dir))
.max(0.0)
.powf(2.0);
let bez = CubicBezier2 {
start: pos.xy(),
ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or(Vec2::zero()) * 1.0,
ctrl1: align(next0, (1.0 - straight_factor * if (next0.z as f32 - pos.z).abs() < 0.25 { 1.0 } else { 0.0 }).max(0.1)),
end: align(next1, 1.0),
};
2020-07-09 23:43:11 +00:00
let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 { 0.25 } else { 0.5 });
let tgt = Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z;
Some((
tgt - pos,
// Control the entity's speed to hopefully stop us falling off walls on sharp corners.
// This code is very imperfect: it does its best but it can still fail for particularly
// fast entities.
2020-07-09 23:43:11 +00:00
straight_factor * 0.75 + 0.25,
))
2020-07-09 23:43:11 +00:00
.filter(|(bearing, _)| bearing.z < 2.1)
}
}
/// A self-contained system that attempts to chase a moving target, only
/// performing pathfinding if necessary
#[derive(Default, Clone, Debug)]
pub struct Chaser {
last_search_tgt: Option<Vec3<f32>>,
2020-07-04 00:17:51 +00:00
route: Option<Route>,
/// We use this hasher (AAHasher) because:
/// (1) we care about DDOS attacks (ruling out FxHash);
/// (2) we don't care about determinism across computers (we can use
/// AAHash).
astar: Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
}
impl Chaser {
pub fn chase<V>(
&mut self,
vol: &V,
pos: Vec3<f32>,
vel: Vec3<f32>,
2020-07-09 23:43:11 +00:00
on_ground: bool,
tgt: Vec3<f32>,
min_dist: f32,
traversal_tolerance: f32,
) -> Option<(Vec3<f32>, f32)>
where
V: BaseVol<Vox = Block> + ReadVol,
{
let pos_to_tgt = pos.distance(tgt);
// If we're already close to the target then there's nothing to do
2020-07-04 00:17:51 +00:00
if ((pos - tgt) * Vec3::new(1.0, 1.0, 2.0)).magnitude_squared() < min_dist.powf(2.0) {
self.route = None;
return None;
}
2020-07-04 00:17:51 +00:00
let bearing = if let Some(end) = self.route.as_ref().and_then(|r| r.path().end().copied()) {
let end_to_tgt = end.map(|e| e as f32).distance(tgt);
// If the target has moved significantly since the path was generated then it's
// time to search for a new path. Also, do this randomly from time
// to time to avoid any edge cases that cause us to get stuck. In
// theory this shouldn't happen, but in practice the world is full
// of unpredictable obstacles that are more than willing to mess up
// our day. TODO: Come up with a better heuristic for this
if end_to_tgt > pos_to_tgt * 0.3 + 5.0
/* || thread_rng().gen::<f32>() < 0.005 */
{
2020-07-05 14:00:44 +00:00
None
} else {
self.route
.as_mut()
2020-07-09 23:43:11 +00:00
.and_then(|r| r.traverse(vol, pos, vel, on_ground, traversal_tolerance))
// In theory this filter isn't needed, but in practice agents often try to take
// stale paths that start elsewhere. This code makes sure that we're only using
// paths that start near us, avoiding the agent doubling back to chase a stale
// path.
.filter(|(bearing, _)| bearing.xy()
.magnitude_squared() < (traversal_tolerance * 3.0).powf(2.0))
2020-07-05 14:00:44 +00:00
}
} else {
None
};
2020-07-09 23:43:11 +00:00
if let Some((bearing, speed)) = bearing {
Some((bearing, speed))
} else {
// Only search for a path if the target has moved from their last position. We
// don't want to be thrashing the pathfinding code for targets that
// we're unable to access!
if self
.last_search_tgt
.map(|last_tgt| last_tgt.distance(tgt) > pos_to_tgt * 0.15 + 5.0)
.unwrap_or(true)
2020-07-09 23:43:11 +00:00
|| self.astar.is_some()
|| self.route.is_none()
{
2020-07-04 00:17:51 +00:00
let (start_pos, path) = find_path(&mut self.astar, vol, pos, tgt);
// Don't use a stale path
2020-07-04 00:17:51 +00:00
if start_pos.distance_squared(pos) < 4.0f32.powf(2.0) {
self.route = path.map(Route::from);
} else {
self.route = None;
}
}
Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.0), 0.75))
}
}
}
#[allow(clippy::float_cmp)] // TODO: Pending review in #587
fn find_path<V>(
astar: &mut Option<Astar<Vec3<i32>, DefaultHashBuilder>>,
vol: &V,
2020-01-24 10:40:52 +00:00
startf: Vec3<f32>,
endf: Vec3<f32>,
2020-07-04 00:17:51 +00:00
) -> (Vec3<f32>, Option<Path<Vec3<i32>>>)
where
V: BaseVol<Vox = Block> + ReadVol,
{
let is_walkable = |pos: &Vec3<i32>| {
vol.get(*pos - Vec3::new(0, 0, 1))
.map(|b| b.is_solid() && b.get_height() == 1.0)
.unwrap_or(false)
&& vol
.get(*pos + Vec3::new(0, 0, 0))
.map(|b| !b.is_solid())
.unwrap_or(true)
&& vol
.get(*pos + Vec3::new(0, 0, 1))
.map(|b| !b.is_solid())
.unwrap_or(true)
};
let get_walkable_z = |pos| {
let mut z_incr = 0;
2020-01-25 18:49:47 +00:00
for _ in 0..32 {
let test_pos = pos + Vec3::unit_z() * z_incr;
if is_walkable(&test_pos) {
return Some(test_pos);
}
z_incr = -z_incr + if z_incr <= 0 { 1 } else { 0 };
}
None
};
let (start, end) = match (
2020-01-24 10:40:52 +00:00
get_walkable_z(startf.map(|e| e.floor() as i32)),
get_walkable_z(endf.map(|e| e.floor() as i32)),
) {
(Some(start), Some(end)) => (start, end),
2020-07-04 00:17:51 +00:00
_ => return (startf, None),
};
let heuristic = |pos: &Vec3<i32>| (pos.distance_squared(end) as f32).sqrt();
let neighbors = |pos: &Vec3<i32>| {
let pos = *pos;
2020-01-25 18:49:47 +00:00
const DIRS: [Vec3<i32>; 17] = [
Vec3::new(0, 1, 0), // Forward
Vec3::new(0, 1, 1), // Forward upward
Vec3::new(0, 1, 2), // Forward Upwardx2
Vec3::new(0, 1, -1), // Forward downward
Vec3::new(1, 0, 0), // Right
Vec3::new(1, 0, 1), // Right upward
Vec3::new(1, 0, 2), // Right Upwardx2
Vec3::new(1, 0, -1), // Right downward
Vec3::new(0, -1, 0), // Backwards
Vec3::new(0, -1, 1), // Backward Upward
Vec3::new(0, -1, 2), // Backward Upwardx2
Vec3::new(0, -1, -1), // Backward downward
Vec3::new(-1, 0, 0), // Left
Vec3::new(-1, 0, 1), // Left upward
Vec3::new(-1, 0, 2), // Left Upwardx2
Vec3::new(-1, 0, -1), // Left downward
Vec3::new(0, 0, -1), // Downwards
];
// let walkable = [
// is_walkable(&(pos + Vec3::new(1, 0, 0))),
// is_walkable(&(pos + Vec3::new(-1, 0, 0))),
// is_walkable(&(pos + Vec3::new(0, 1, 0))),
// is_walkable(&(pos + Vec3::new(0, -1, 0))),
// ];
// const DIAGONALS: [(Vec3<i32>, [usize; 2]); 8] = [
// (Vec3::new(1, 1, 0), [0, 2]),
// (Vec3::new(-1, 1, 0), [1, 2]),
// (Vec3::new(1, -1, 0), [0, 3]),
// (Vec3::new(-1, -1, 0), [1, 3]),
// (Vec3::new(1, 1, 1), [0, 2]),
// (Vec3::new(-1, 1, 1), [1, 2]),
// (Vec3::new(1, -1, 1), [0, 3]),
// (Vec3::new(-1, -1, 1), [1, 3]),
// ];
2020-01-25 18:49:47 +00:00
DIRS.iter()
2020-03-17 14:14:20 +00:00
.map(move |dir| (pos, dir))
.filter(move |(pos, dir)| {
is_walkable(pos)
2020-07-04 00:17:51 +00:00
&& is_walkable(&(*pos + **dir))
2020-03-17 14:14:20 +00:00
&& ((dir.z < 1
|| vol
.get(pos + Vec3::unit_z() * 2)
.map(|b| !b.is_solid())
.unwrap_or(true))
&& (dir.z < 2
|| vol
.get(pos + Vec3::unit_z() * 3)
.map(|b| !b.is_solid())
.unwrap_or(true))
2020-03-17 16:37:39 +00:00
&& (dir.z >= 0
2020-03-17 14:14:20 +00:00
|| vol
.get(pos + *dir + Vec3::unit_z() * 2)
.map(|b| !b.is_solid())
.unwrap_or(true)))
})
.map(move |(pos, dir)| pos + dir)
// .chain(
// DIAGONALS
// .iter()
// .filter(move |(dir, [a, b])| {
// is_walkable(&(pos + *dir)) && walkable[*a] &&
// walkable[*b] })
// .map(move |(dir, _)| pos + *dir),
// )
};
let crow_line = LineSegment2 {
start: startf.xy(),
end: endf.xy(),
};
let transition = |a: &Vec3<i32>, b: &Vec3<i32>| {
// Modify the heuristic a little in order to prefer paths that take us on a
// straight line toward our target. This means we get smoother movement.
1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025
2020-07-09 23:43:11 +00:00
+ (b.z - a.z - 1).max(0) as f32 * 10.0
};
let satisfied = |pos: &Vec3<i32>| pos == &end;
let mut new_astar = match astar.take() {
2020-07-04 00:17:51 +00:00
None => Astar::new(25_000, start, heuristic, DefaultHashBuilder::default()),
Some(astar) => astar,
};
2020-07-04 00:17:51 +00:00
let path_result = new_astar.poll(100, heuristic, neighbors, transition, satisfied);
*astar = Some(new_astar);
2020-07-04 00:17:51 +00:00
(startf, match path_result {
PathResult::Path(path) => {
*astar = None;
2020-07-04 00:17:51 +00:00
Some(path)
},
PathResult::None(path) => {
*astar = None;
2020-07-04 00:17:51 +00:00
Some(path)
},
PathResult::Exhausted(path) => {
*astar = None;
2020-07-04 00:17:51 +00:00
Some(path)
},
2020-07-04 00:17:51 +00:00
PathResult::Pending => None,
})
}