veloren/voxygen/src/scene/camera.rs

154 lines
4.8 KiB
Rust
Raw Normal View History

use client::Client;
use common::vol::ReadVol;
use std::f32::consts::PI;
use vek::*;
const NEAR_PLANE: f32 = 0.1;
const FAR_PLANE: f32 = 10000.0;
2019-06-05 15:22:06 +00:00
const INTERP_TIME: f32 = 0.05;
pub struct Camera {
tgt_focus: Vec3<f32>,
focus: Vec3<f32>,
ori: Vec3<f32>,
tgt_dist: f32,
dist: f32,
fov: f32,
aspect: f32,
last_time: Option<f64>,
}
impl Camera {
/// Create a new `Camera` with default parameters.
pub fn new(aspect: f32) -> Self {
Self {
tgt_focus: Vec3::unit_z() * 10.0,
focus: Vec3::unit_z() * 10.0,
ori: Vec3::zero(),
tgt_dist: 10.0,
dist: 10.0,
fov: 1.1,
aspect,
last_time: None,
}
}
2019-01-15 15:13:11 +00:00
/// Compute the transformation matrices (view matrix and projection matrix) and position of the
/// camera.
pub fn compute_dependents(&self, client: &Client) -> (Mat4<f32>, Mat4<f32>, Vec3<f32>) {
let dist = {
let (start, end) = (
self.focus,
self.focus
+ (Vec3::new(
-f32::sin(self.ori.x) * f32::cos(self.ori.y),
-f32::cos(self.ori.x) * f32::cos(self.ori.y),
f32::sin(self.ori.y),
) * self.dist),
);
match client
.state()
.terrain()
.ray(start, end)
.ignore_error()
.max_iter(500)
.cast()
{
(d, Ok(Some(_))) => f32::min(d - 1.0, self.dist),
(_, Ok(None)) => self.dist,
(_, Err(_)) => self.dist,
}
.max(0.0)
};
let view_mat = Mat4::<f32>::identity()
* Mat4::translation_3d(-Vec3::unit_z() * dist)
* Mat4::rotation_z(self.ori.z)
* Mat4::rotation_x(self.ori.y)
* Mat4::rotation_y(self.ori.x)
* Mat4::rotation_3d(PI / 2.0, -Vec4::unit_x())
* Mat4::translation_3d(-self.focus);
let proj_mat = Mat4::perspective_rh_no(self.fov, self.aspect, NEAR_PLANE, FAR_PLANE);
// TODO: Make this more efficient.
let cam_pos = Vec3::from(view_mat.inverted() * Vec4::unit_w());
(view_mat, proj_mat, cam_pos)
}
/// Rotate the camera about its focus by the given delta, limiting the input accordingly.
pub fn rotate_by(&mut self, delta: Vec3<f32>) {
// Wrap camera yaw
self.ori.x = (self.ori.x + delta.x) % (2.0 * PI);
// Clamp camera pitch to the vertical limits
self.ori.y = (self.ori.y + delta.y).min(PI / 2.0).max(-PI / 2.0);
// Wrap camera roll
self.ori.z = (self.ori.z + delta.z) % (2.0 * PI);
}
/// Set the orientation of the camera about its focus.
pub fn set_orientation(&mut self, orientation: Vec3<f32>) {
// Wrap camera yaw
self.ori.x = orientation.x % (2.0 * PI);
// Clamp camera pitch to the vertical limits
self.ori.y = orientation.y.min(PI / 2.0).max(-PI / 2.0);
// Wrap camera roll
self.ori.z = orientation.z % (2.0 * PI);
}
/// Zoom the camera by the given delta, limiting the input accordingly.
pub fn zoom_by(&mut self, delta: f32) {
// Clamp camera dist to the 0 <= x <= infinity range
self.tgt_dist = (self.tgt_dist + delta).max(0.0);
}
/// Set the distance of the camera from the target (i.e., zoom).
pub fn set_distance(&mut self, dist: f32) {
self.tgt_dist = dist;
}
pub fn update(&mut self, time: f64) {
// This is horribly frame time dependent, but so is most of the game
let delta = self.last_time.replace(time).map_or(0.0, |t| time - t);
if (self.dist - self.tgt_dist).abs() > 0.01 {
self.dist = f32::lerp(self.dist, self.tgt_dist, (delta as f32) / INTERP_TIME);
}
if (self.focus - self.tgt_focus).magnitude() > 0.01 {
self.focus = Vec3::lerp(self.focus, self.tgt_focus, (delta as f32) / INTERP_TIME);
}
}
/// Get the focus position of the camera.
pub fn get_focus_pos(&self) -> Vec3<f32> {
self.tgt_focus
}
/// Set the focus position of the camera.
pub fn set_focus_pos(&mut self, focus: Vec3<f32>) {
self.tgt_focus = focus;
}
2019-01-23 22:39:31 +00:00
/// Get the aspect ratio of the camera.
pub fn get_aspect_ratio(&self) -> f32 {
self.aspect
}
2019-01-23 22:39:31 +00:00
/// Set the aspect ratio of the camera.
pub fn set_aspect_ratio(&mut self, aspect: f32) {
self.aspect = if aspect.is_normal() { aspect } else { 1.0 };
}
/// Get the orientation of the camera.
pub fn get_orientation(&self) -> Vec3<f32> {
self.ori
}
/// Get the field of view of the camera in radians.
pub fn get_fov(&self) -> f32 {
self.fov
}
}